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Abstract—In order to transfer complex human behavior to
a robot, segmentation methods are needed which are able to
detect central movement patterns that can be combined to
generate a wide range of behaviors. We propose an algorithm that
segments human movements into behavior building blocks in a
fully automatic way, called velocity-based multiple change-point
inference (vMCI). Based on characteristic bell-shaped velocity
patterns that can be found in point-to-point arm movements,
the algorithm infers segment borders using Bayesian inference.
Different segment lengths and variations in the movement ex-
ecution can be handled. Moreover, the number of segments
the movement is composed of need not be known in advance.
Several experiments are performed on synthetic and motion
capturing data of human movements to compare vMCI with other
techniques for unsupervised segmentation. The results show that
vMCI is able to detect segment borders even in noisy data and
in demonstrations with smooth transitions between segments.

I. INTRODUCTION

The artificial imitation of human movement behavior in
robotics is a challenging problem. Solving a task like grasping
a cup can easily be performed by humans independent of,
e.g., the orientation of the cup. For a robot, even minor
changes to the task or the objects involved could require
the use of new, accordingly adapted control mechanisms.
With increasing complexity of the task, the control of robot
movements gets even more challenging. In recent years, new
methods to simplify movement generation in robotic systems
have been proposed, which use learning techniques to transfer
human demonstrations of complex behavior to a robot [1].
In this research area called “Learning from Demonstration”
(LfD), most state-of-the-art methods are monolithic learning
approaches, i.e., they learn one behavior that covers the whole
demonstration. With these approaches, learning can be very
time consuming or even impossible if complex behavior should
be learned.

Learning of complex behaviors in humans takes place
incrementally, as shown in behavioral studies in, e.g., in-
fants [2]. This means that smaller individual building blocks
are learned separately and later combined to a single, higher
level complex behavior. This process is called chunking of
action repertoires [3]. When learning novel behaviors, formerly
learned building blocks might be re-used and can accelerate
the learning process. This principle of learning performs better
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than monolithic learning approaches, i.e., allows learning more
complex behavior [4]. To learn complex behavior in a robotic
system with LfD, segmentation techniques are required to
divide demonstrations into behavioral blocks, which can be
learned individually and transferred to a robot.

In this paper, we propose an algorithm which segments a
trajectory of a human movement demonstration into its behav-
ior building blocks in a fully automated fashion. Ideally, these
building blocks should represent ‘primitive motions’ from
which a wide range of behaviors can be generated. Although
the question of what a primitive human motion is remains
open in the literature, Morasso made interesting observations
in human arm movements which give a meaningful basis for a
segmentation into primitives [5]. He observed in human point-
to-point arm movements piece-wise planar hand trajectories
which had characteristic, bell-shaped velocity profiles. Based
on these observations, we propose a segmentation method
which uses the position and the velocity trajectories of the
hand as indicators for segmentation points. To our knowledge,
the proposed algorithm is the first unsupervised behavior
segmentation algorithm, which includes velocity patters into
the segmentation process to find meaningful behavior segments
which have a clear relation to potential movement primitives.

The automatic segmentation of human behavior into be-
havior building blocks comes along with several problems.
Demonstrations of the same behavior can be performed with
a large inter-subject as well as intra-subject variability. There-
fore, a segmentation algorithm is required which is able to,
e.g., handle different segment lengths resulting from move-
ments demonstrated at varying speeds. Our proposed algorithm
is based on Bayesian inference, where noise in the recorded
movement can be integrated into the model. The segmentation
algorithm is based on an online variant of an algorithm to
detect change-points in time-series data by Fearnhead and
Liu [6], called Multiple Change-point Inference (MCI). We
have extended this approach to a velocity-based MCI (vMCI),
in which the velocity profiles, as observed by Morasso [5], are
integrated into the segmentation process.

The state-of-the-art algorithms for behavior segmentation
are discussed in Section II. The methods we use are explained
in Section III, starting with an explanation of the used repre-
sentation of behavior segments (III-A), the online variation of
the original MCI (III-B), and finishing with the presentation
of our proposed extension of MCI where velocity patterns in



movement demonstrations are used to find segmentation points
in Section III-C. Afterwards the performance of the proposed
vMCI is compared with other segmentation methods in several
experiments. At the end, a conclusion and an outlook for future
research topics is given.

II. RELATED WORK

Segmentation of time series data and recognition of hu-
man actions is an active research area with many different
applications and algorithms. Most of these algorithms are
supervised [7] and for this reason not applicable if the searched
behavior segments are not known in advance. Instead, un-
supervised algorithms are needed to segment a time series
into its behavior blocks. A heuristic approach for automatic
segmentation is presented by Fod et al. [8], where segment
points are detected if the angular velocity of several degrees of
freedom (DOFs) crosses zero. This approach is very sensitive
to noise and tends to over-segment the data, in particular if
many DOFs are considered as data input. A similar approach
is proposed by Jenkins and Matarić [9], who use Kinematic
Centroid Segmentation to detect ‘swings’ in the velocity of
joint angle data. Here, as well as for the detection of zero
velocity crossings, a threshold has to be chosen which may
change if a different movement is analyzed.

Other approaches use probabilistic models to segment
behavioral data. This bears the advantage that variations in
the movement execution can be integrated into the data model
as presented for example by Chiappa and Peters [10]. Their
method is applicable without manual a segmentation of train-
ing data, but the number of segments has to be determined
in advance or by, e.g., cross-validation. An example for a
probabilistic segmentation which does not require a priori
knowledge is given by Kohlmorgen and Lemm [11], in which
a behavior segment is modeled with a HMM built from a
windowed data sequence in an online fashion. An extended
version is used by Kulić et al. to segment and cluster full body
motions [12]. On the other hand, Fox et al. model a behavior
segment with a linear regression model and infer segment
borders with the so-called beta process autoregressive HMM
(BPARHMM) [13]. Their inference model allows for shared re-
gression models, i.e., the resulting segments are segmented and
clustered at the same time to identify repeated building blocks
of the same movement. Niekum et al. used the BPARHMM
algorithm to segment kinesthetic demonstrations provided by
hand-coded controllers of a pick-and-place task [14]. The MCI
algorithm, which served as a starting point for the method
we propose in this paper, is a similar segmentation method
which works without a priori knowledge of the number of
segments. Furthermore, it has a data model that allows to
integrate characteristic velocity patterns into the segmentation.
It is also used by Konidaris et al. [15] to segment trajectories
recorded by maneuvering a robot through a corridor.

III. METHODS

A. Bayesian Linear Regression Models for Data Representa-
tion

In the MCI algorithm as well as in our extension to
a velocity-based MCI, behavior blocks are represented with
linear regression models (LRMs) and Bayesian inference tech-
niques are used to determine the model parameters. A detailed

introduction to Bayesian linear regression is, e.g., given by
Bishop [16]. Below, we give a short introduction to this data
representation.

We assume that a data sequence, y = (y1, .., yn) of
length n, with yi ∈ Rd being an observation at time point
i, consists of an unknown number of segments. The segments
are modeled independently of each other with linear regression
models (LRMs). A LRM is a weighted sum of q basis functions
φ with added noise. A segment yi+1:j = (yi+1, ..., yj) starting
at time point i+ 1 and continuing until time j is modeled by

yi+1:j =

q∑
k=1

βkφk + ε = Hβ + ε. (1)

H is a (j− i)×q matrix of basis functions φ, β = (β1, ..., βq)
are the model parameters, and ε is a vector of independent
and identically distributed Gaussian noise with zero mean and
variance Σ. To infer the model from the data, prior distributions
are set over the weights and the noise variance. The parameters
β are assumed to be matrix-normal distributed with zero mean
and covariances D and Σ along rows and columns respectively.
To ensure direct calculation of the posterior probability of the
data, conjugate priors are assumed. This results in an inverse
Wishart prior for the variance Σ with parameters ν and S. The
likelihood of the data sequence p(yi+1:j |m) given the model
m of order q can be derived by marginalizing out the model
parameters β, i.e.,

p(yi+1:j |m) =

∫
p(yi+1:j |β, model m)p(β) dβ

=

∫ ∫
p(yi+1:j |β,Σ) · p(β|D,Σ)

· p(Σ|ν, S) dΣ dβ, (2)

as derived and explained, e.g., by Bishop [16].

B. Online Multiple Change-point Inference (MCI)

Fearnhead and Liu [6] presented several methods to directly
infer segment borders and models from the posterior for the
data representation of the previous section. In this section we
present their proposed online inference algorithm and later on,
in Section III-C, expand it to determine behavior segments in
a demonstrated trajectory based on the velocity profiles.

Fearnhead and Liu treat a segment border as a change-
point which refers to a time point i in the series y where the
underlying LRM changes. The segment models are assumed to
be independent of each other. The change-point positions are
modeled via a Markov process where the transition probabili-
ties are dependent of the segment length between two change-
points:

P (next change-point at j|change-point at i) = g(i− j). (3)

Here, g(l) is the probability of a segment having length l.
The cumulative distribution function of this length is given
by G(l) =

∑l
k=1 g(k). As proposed by Konidaris et al. [15],

we assume a geometric distribution for g(l), so that g(l) =
(1−p)l−1p and G(l) = 1− (1−pl). Using these distributions,
the parameter p regulates the expected segment length, which
is 1/p.



To determine the most probable change-point positions and
segment models for an observed data sequence, an online
Viterbi algorithm is proposed by Fearnhead and Liu [6]. For
each time point t, the algorithm calculates the most likely
change-point position j prior to t and the most likely model
of this segment from j to t. This is done by determining the
posterior probabilities for each segment which ends at t and
for all data models. The algorithm calculates for each t > 0,
j = 0, ..., t− 1, and every model m ∈M:

Pt(j,m) = (1−G(t− j − 1))p(yj+1:t|m)p(m)PMAP
j , (4)

and

PMAP
t = max

j,m

(
Pt(j, q)g(t− j)

1−G(t− j − 1)

)
. (5)

Equation (4) gives the probability that the most recent change-
point prior to t occurs at time j with model m for the segment
yj+1:t that has a length of at least t− j. The first term is the
probability that the assumed segment starting at j + 1 has a
length of at least t − j. It is multiplied with the marginal
likelihood of that segment having model m, p(yi+1:j |m),
times the prior probability of the model m, p(m). The last
term PMAP

t denotes the most likely change-point position
prior to j. In Equation (5) the most probable j and m are
determined. We chose the initial PMAP

0 to be 1/|M|. Because
the probabilities Pt(j,m) are very close to zero for most of the
possible segments, a particle filter as proposed by Fearnhead
and Liu can be used to reduce computation time [6].

C. Segmentation of Velocity Profiles using Velocity-Based MCI

To account for the bell-shaped velocity profiles in point-to-
point movements as observed by Morasso [5], we extended the
MCI to a velocity-based MCI (vMCI). For this, we modified
the data representation of Section III-A and adapted the MCI
algorithm to infer change-points using this new representa-
tion. We propose to split the data model given in Equation
(1) and model different data dimensions with different basis
functions. More precisely, we assume that the data sequence
y = (y1, ..., yn), yi ∈ Rd, consists of one dimension with
the absolute velocity in the direction of movement, denoted as
yv . This dimension is modeled separately with a special basis
function, which approximates a bell-shaped structure. Using
this model, the assumption that one segment is characterized
by an increasing velocity at the start and a decreasing velocity
at the end can be integrated into the segmentation process.
Note that this approach does not require the velocity to become
zero between segments, unlike other methods for automatic
segmentation. Furthermore, inaccuracies in the movement tra-
jectory can be handled because of the integrated modeling of
noise.

The velocity yv of the observed data sequence is modeled
by

yv = α1φv + α2 + ε. (6)

As in the original LRM, the weights α = (α1, α2)
and the noise ε are matrix-normal distributed with α ∼
MN (0, Dv,Σv) and ε ∼ MN (0, I,Σv). Dv and Σv are
the prior parameters. The prior distribution of Σv is again
chosen to be inverse Wishart, Σv ∼ IW(νv, Sv), to provide
conjugate priors. The model order is fixed to 2, with the two
basis functions φv and 1. The constant weighted with α2 is

added to account for velocities unequal to zero at start or end of
the segment. To modulate the velocity, φv is chosen to be one
single radial basis function with center c and width r because
of its bell-shaped structure. Thus,

φv(xt) = exp

{
− (c− xt)2

r2

}
. (7)

Whereas the MCI algorithm determines the best fitting LRM
of Equation (1) out of a set of different models defined by
different orders q, the possible velocity LRMs of Equation
(6) differ in their center position c. For example, a center
location closer to the starting point of the segment allows to
approximate a segment with high velocity at the beginning and
rather low velocity at the end. The width parameter r is chosen
to be half of the assumed segment length, i.e., r = (t−j−1)/2,
such that the whole segment can be covered by the model.

To infer the segment borders and model parameters from
the data with different LRMs for different data dimensions,
one can proceed as explained in the previous section with
the online Viterbi algorithm. The set of possible models
M now consists of every combination of models for the
velocity dimension as well as models for the remaining data
dimensions. Only the model evidence of Equation (2), which
gives the fit probability of a certain model to the data has to be
adapted. As we assume independent models for the velocity
and the rest, p(yi+1:j |m) is now defined as a product of the
model evidences of both linear regression models. They can
be calculated using the formula given in Equation (2) with
parameters D,S, and ν or Dv, Sv , and νv for the velocity
dimension, respectively.

IV. EXPERIMENTS

We present several experiments to evaluate the performance
of vMCI and to compare it to other segmentation algorithms.
In general, the comparison of different behavior segmentation
algorithms is difficult because a ground truth segmentation is
not available in natural human movements. For this reason, it is
desirable that the influence of the parameters of the algorithm
is low such that they can be fixed or calculated from the data
because an optimization, e.g., via cross validation, is in general
not possible. Hence, we show in a first experiment the reduced
parameter influence of vMCI in comparison to the original
MCI and the beta process auto-regressive hidden Markov
model (BPARHMM) [13]. The experiment was performed on
synthetic trajectories consisting of two segments, where the
ground truth is known. In the second set of experiments, de-
scribed in Section IV-B, human movements were recorded with
a motion capture system to obtain realistic demonstrations of
human behavior. In these experiments, the capability of vMCI
to segment a demonstration into behavior building blocks
characterized by bell-shaped velocity patterns is shown. In the
first motion capture experiment, demonstrations were recorded
in a restricted environment which only allows for variations in
the movement velocity. There we show that out proposed vMCI
methods performs better than a naive segmentation method
which searches for local velocity minima. In a last experiment,
the ability of vMCI to scale to free human movements is shown
on ball-throwing demonstrations.

In all experiments, the basis functions φ of the LRM
are chosen to be autoregressive with order q = 1, i.e.,
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Fig. 1. Two datasets of sequenced DMPs. (a) Trajectories of three demon-
strations for each of three possible subgoal positions (red points) with their
corresponding velocities which were varied at the subgoal positions. (b)
Trajectories with corresponding velocities of the second DMP dataset with
added noise.

φ(xt) = yt−1 for time xt in Equation (1). The data dimensions
modeled with this basis are pre-processed to a mean of zero
and such that the variance of the first order differences of each
dimension is equal to 1. The parameter for the distribution of
the segment length p in the MCI and vMCI algorithm is fixed
to p=0.02 because it has, due to the Bayesian model of the
algorithm, a small influence on the segmentation results.

A. Segmentation of Sequenced DMPs

In this experiment, we compare vMCI with other unsuper-
vised segmentation methods on synthetic data with different
parameter configurations to show the reduced influence of
the parameters due to the integration of the velocity into
the segmentation process. The synthetic dataset consist of
two consecutive dynamical movement primitives (DMPs) [17].
With this, the ground truth segmentation point between the
two DMPs is known which makes a comparison of the algo-
rithms possible. DMPs are a popular representation of behavior
building blocks in LfD domains. They describe a movement
using a dynamical point attractor system, from which arbitrary
shape-able, goal-directed movements can be generated.

Using DMPs, two datasets were generated, each consisting
of 9 trajectories which are concatenations of two DMPs of the
same length. The first dataset contains 3 demonstrations for
each of 3 different subgoal positions between the two DMPs.
In the second dataset, Gaussian noise was added to simulate
variance in the movement execution. The DMP sequences have
different velocities at the subgoal positions. To generate the
trajectories, the DMP representation by Mülling et al. [18]
was used where the goal velocity can be modified to a desired
value. In Fig. 1 the generated trajectories are shown with their
corresponding velocity.

Using this dataset, vMCI was compared to the conventional
MCI and to the BPARHMM algorithm by Fox et al. [13]
introduced in Section II. The BPARHMM uses the same
data model as MCI and has a set of equal parameters. This

TABLE I. MEAN SEGMENTATION RESULTS ON SEQUENCED DMP
DATASET (WITH NOISE).

F1-measure number true positives number false positives
(avg., optimal: 1) (avg., optimal: 0)

vMCI 0.89 (0.85) 0.96 (0.93) 0.23 (0.29)
MCI 0.41 (0.20) 0.61 (0.25) 0.87 (0.38)
BPARHMM 0.68 (0.63) 0.98 (0.86) 1.34 (1.10)
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Fig. 2. Distribution of detected segmentation points by different algorithms
with different parameter configuration. The true segment border is marked
with a solid horizontal line. Segmentation points detected in a margin around
this point (dashed lines) are treated as correct. (a) Results on DMP dataset.
(b) Results on noisy DMP data.

allows us to compare the algorithm with the same set of pa-
rameter configurations. Furthermore, the BPARHMM is used
for comparison because it showed promising segmentation
results in the literature [14]. An open-source implementation
is available1.

The three algorithms were compared on the two synthetic
DMP datasets with different parameter configurations. The
hyper-parameters D,S, and ν, influencing the prior distribu-
tions of the model parameter β and the noise variance, of the
three segmentation algorithms were varied in the following
ranges: D ∈ [1, 5, 10, 20], S ∈ [0.1, 1, 10, 25], and ν ∈ [4, 6, 8].
This results in 4 · 4 · 3 = 48 different parameter configurations
for each demonstration. The other parameters were chosen as
suggested in the original publications. Note that due to a more
complex inference method, the calculation time of BPARHMM
segmenting the synthetic dataset is approx. 20 times larger than
the calculation time of the same data with the proposed vMCI.

In Fig. 2 the position of the obtained segment borders
of all parameter configurations and all 9 demonstrations are
shown in a histogram for each of the segmentation algorithms.
The segmentation accuracy determined with the F1-measure
and the number of true and false positives for each algorithm
are listed in Table I. The results show that vMCI detects the
correct position of the segment transition more accurately than
MCI and BPARHMM. Although BPARHMM outperforms the
conventional MCI, it shows more false positives than vMCI if
the parameters are varied. This means that with the integration
of the velocity profiles into the MCI, the segmentation results
become more robust with respect to parameter selection. This
holds true for different subgoal velocities as well as when
adding noise.

1http://stat.wharton.upenn.edu/ebfox/software



Fig. 3. Reference testbed for motion capturing. The subject was instructed
to move the stick from the top left position through the path and back to the
start, if possible without hitting the edges. The expected behavior segments lie
between two corners of the figure, marked with white squares in the image.

B. Motion Capture Experiments

To evaluate vMCI on human behavior, two series of
demonstration experiments were conducted. In the first set of
experiments, a subject sitting in front of a 80x80 cm table being
covered by 6 motion capture cameras was instructed to move
a stick though a step-like path (see Fig. 3). The movements
were captured with a marker placed at the top of the stick
with a resolution of 500 Hz, which was down-sampled during
pre-processing to 25 Hz. The subject had to move the stick
with her/his right hand through the path and back to the start
position without hitting the edges. The setup was designed in
a way that the main difference between the demonstrations
lies in the velocity. It is assumed that the movement is slowed
down at the corners of the path, which mark the expected
segment borders. The velocities in the movement direction
of the three demonstrations are shown in the first row in
Fig. 4. The points in time when the stick passed the corners
are marked with horizontal lines. As expected, the segments
between the corners show bell-shaped velocity patterns.

Three demonstrations were recorded, consisting of the 3-
dimensional position of a marker placed on top of the stick and
its velocity. The recorded data was automatically segmented
with vMCI. The parameters were fixed or calculated from
the data, because of their small influence, as shown in the
previous experiment. The parameter D, which regulates the
variance of the model parameters β along the data dimensions,
is set to the identity matrix. This is a good choice because an
autoregressive basis is chosen and the data is pre-processed
to a variance of one. The parameters S and ν influence the
variance of the weights as well as the Gaussian noise of the
LRM along the time dimension. These parameters can directly
be calculated from the data to estimate the true variance by
determining the variance of the first order differences of the
data along the time dimension.

The results of the segmentation of the reference demon-
stration with vMCI are depicted in the middle row of Fig. 4.
The LRMs for the velocity with the highest probability are
shown as a green dotted line. The velocity of each segment
is successfully approximated with the model of Equation (6),
despite any noise in the data. For comparison, the dataset was
additionally segmented with a naive baseline approach which
detects a segmentation point in the data at positions where
a local minimum occurs in the velocity in a window of 5
time points (0.2 seconds). In the results shown in the lower
row of Fig. 4, one can see a high number of false positive
segmentation points due to the noise contained in the data.

TABLE II. MEAN SEGMENTATION RESULTS ON STEPS DATASET.

F1-measure number true positives number false positives
(avg., optimal: 9) (avg., optimal: 0)

vMCI 0.93 8.33 0.67
local minima 0.60 8.67 11.33

The segmentation performance shown in Table II confirms this
visual impression. Although the effect of over-segmentation
could potentially be reduced by choosing a larger time window
to find the minima, this segmentation method could not be used
with other demonstrations containing different levels of noise
without manual adaption, while this is possible with vMCI.

In a last experiment the capability of vMCI to detect
meaningful segments in a free, natural movement is analyzed.
A subject with markers placed at the arm and the hand was
instructed to throw a small ball into a box. The demonstra-
tion was captured with 5 cameras, again with a resolution
of 500 Hz, down-sampled to 25 Hz. This movement can be
divided into three main phases: a strike out, followed by the
actual throw, and a final movement bringing the arm back to its
initial position. The segmentation with vMCI was performed
on the position and velocity of the marker placed on top of
the hand of the subject. The representative segmentation result
of one demonstration is shown in Fig. 5. The velocity of the
demonstration shows again bell-shaped curves, one for each
of the three main throwing segments and two belonging to a
settle down-phase at the end of the movement. As indicated
by the vertical lines, it was possible to detect these segments
using vMCI.

V. CONCLUSION

With the velocity-based MCI approach, we presented an
algorithm for unsupervised segmentation of behavior demon-
strations which successfully detects behavior building blocks
with bell-shaped velocity patterns, which are assumed to be
characteristic for primitive motions in human arm movements.
The performed experiments show that the algorithm is robust
against noise and can handle variations in the movement execu-
tion more effectively than other methods for unsupervised seg-
mentation. Furthermore, the influence of the parameters could
be reduced which makes the algorithm applicable to different
datasets where the required manual user input is reduced. The
experimental data gained from human demonstrations were
designed in a way that the movements could be naturally per-
formed, without artificial integrated pauses between assumed
behavior blocks. Nonetheless, the vMCI detected meaningful
segments which corresponds to the assumed building blocks.

Although the segmentation was performed only on the
position and velocity of a single marker in the presented
experiments, the presented vMCI algorithm could be used
in future work to segment data gained by multiple markers.
Furthermore, other data, like joint configurations, could be
used by designing other basis functions which fit characteristic
patterns of this data.
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