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Abstract
This paper describes work carried out in the European project TrendMiner which partly deals with the extraction and representation of
real time information from dynamic data streams. The focus of this paper lies on the construction of an integrated ontology, TMO, the
TrendMiner Ontology, that has been assembled from several independent multilingual taxonomies and ontologies which are brought
together by an interface specification, expressed in OWL. Within TrendMiner, TMO serves as a common language that helps to interlink
data, delivered from both symbolic and statistical components of the TrendMiner system. Very often, the extracted data is supplied as
quintuples, RDF triples that are extended by two further temporal arguments, expressing the temporal extent in which an atemporal
statement is true. In this paper, we will also sneak a peek on the temporal entailment rules and queries that are built into the semantic
repository hosting the data and which can be used to derive useful new information.

Keywords: multilingual multifaceted integrated ontology; temporally-changing information & temporal entailment; web harvest-
ing & migration rules.

1. Introduction
This paper describes work carried out in the European
project TRENDMINER (www.trendminer-project.eu)
which deals, in part, with the extraction and representa-
tion of real time information from dynamic data streams,
such as blogs, twitter, newswires, and wikis. Besides the
dynamic nature and the huge amount of data being pro-
cessed, TRENDMINER addresses two large case studies,
viz., assisting financial investing decisions (e.g., by har-
vesting stock exchange Web pages) and an EU-wide track-
ing of political views, trends, and politician popularity over
time.
The focus of this paper lies on the construction of an inte-
grated ontology, TMO, the TRENDMINER Ontology, that
has been assembled from several independent multilingual
taxonomies and ontologies which are brought together by
an interface specification, expressed in OWL (McGuinness
and van Harmelen, 2004).1 Within TRENDMINER, TMO
serves as a common language that helps to interlink data,
delivered from both symbolic and statistical components of
the TRENDMINER system.
Very often, the extracted symbolic data from webpages is
supplied as quintuples, RDF triples that are “annotated” by
two further temporal arguments, expressing the temporal
extent in which an atemporal fact holds (essentially, an ex-
tension of the plain N-Triples format; see (Grant and Beck-
ett, 2004)). In order to store such quintuples, they are ei-
ther transformed into a set of semantic-preserving triples
when stored in a triple repository like OWLIM (Kiryakov
et al., 2005), applying, e.g., W3C’s N-ary relation encod-
ing scheme (Hayes and Welty, 2006), or can be utilized im-
mediately, when recorded in an N-tuple repository, such as
HFC (Krieger, 2013).
In this paper, we will also sneak a peek on the temporal en-
tailment rules (Krieger, 2012) and queries that are built into

1The ontologies are publicly available for open research and to
other institutions upon request; see www.dfki.de/lt/onto/.

one of the semantic repository hosting the data and which
can be used to derive useful explicit information. This
includes identifying companies operating in similar areas,
monitoring data for unusual events, or making knowledge
about people explicit.
We will also describe how information is harvested from
company websites (resulting in company snapshots = sets
of quintuples) and how this data is made compatible with
the ontology schema, using so-called migration rules. Fi-
nally, we will look more closely on the multilingual infor-
mation encoded in some of our sub-ontologies and how this
might help during automatic ontology alignment.

2. Ontologies
Overall, TMO consists of 18 sub-ontologies, sixteen of
which are truly independent and do not have knowl-
edge of one another. Two further ontologies, called IF
and XEBR2XBRL, bring them together through the use
of interface axioms, using axiom constructors, such as
rdfs:subClassOf and owl:equivalentProperty, or by posing
domain and range restrictions on certain underspecified
properties. It is worth noting that across the ontologies,
each property has been cross-classified as being either syn-
chronic, i.e., property instances staying constant over time,
or diachronic, i.e., changing over time (Krieger, 2010).
This property characteristic can be used, amongst other
things, to check the consistency of a temporal ABox or as
a distinguishing mark in an entailment rule (see, e.g., Sec-
tions 3.4. and 3.5.).
Let us introduce the 18 sub-ontologies of TMO (see Figure
1) and then focus on a few selected highlights in Sections
2.1–2.5.

1. BIO (biographical facts about people and events)

2. CFI (ISO’s classification of financial instruments)

3. DAX (stock exchange: Deutscher Aktien Index)

4. DC (one concept, three properties from Dublin Core)



5. EN (stock exchange: NYSE Euronext)

6. GICS (Standard&Poor’s/MSCI industry sector classi-
fication)

7. ICB (Dow Jones/FTSE industry sector classification)

8. IF (most of the interface axioms)

9. LOGIC (modalized propositions; used by SENT )

10. NACE (EU/UN industry sector classification)

11. OP (opinion: extends the MARL ontology)

12. POL (political facts about people and events)

13. SENT (sentiment, uses LOGIC )

14. SKOS (SKOS relations applicable to classes)

15. SOC (translation of TheSoz/GESIS sociology the-
saurus)

16. TIME (distinction: synchronic/diachronic properties)

17. XEBR (XBRL Europe Business Registers)

18. XEBR2XBRL (interfacing XEBR and local XBRL ju-
risdictions)

Even though ABox data (populated instances) usually come
with a temporal extent, the TBoxes and RBoxes of the on-
tologies are not equipped with temporal information, thus
still being represented as triples. For instance, we can not
state that an URI represents a class at a certain time and a
property at a different time. Or that a class is a subclass of
another class for only some amount of time. Thus TBox
and RBox of the integrated ontology represent knowledge
that is true at any time, so there is no need to equip them
with a fourth and fifth temporal argument. This quality
gives rise to the use of ontology editors, such as Protégé,
for manually constructing the TBoxes and RBoxes of some
of our ontologies.

We note here that most ontologies are multilingual in that
both classes, properties, and predefined instances are as-
signed multiple and multilingual labels or even longer def-
initions in different languages, making use of the annota-
tion properties rdfs:label, skos:prefLabel, and skos:altLabel,
together with an additional annotation property which we
called rdfs:definition.

TMO, as such, can be seen as a mid-level ontology which
takes a liberal stand against top-level ontologies (such as
SUMO or DOLCE) or against ontologies which try to de-
scribe specific aspects of an agent (e.g., a company) on a
very general level (e.g., the Registered Organization Vocab-
ulary). Nevertheless, it is clear that concepts and properties
from these ontologies can be interlinked to TMO via inter-
face axioms, as described in Section 2.5..

2.1. BIO

BIO is used to represent biographical facts about people’s
lives. The ontology comes with a tripartite structure of the
following pairwise disjoint classes, subclasses of the most
general class Entity:

Figure 1: The TMO ontology consists of 18 sub-ontologies over-
all. The color encoding refers to ontologies focussing on models
of people’s private and public lives (yellow), sentiment/opinion
(purple), industry sector classification (green), stock exchange
(brown rectangle), financial reporting (orange rectangle), finan-
cial instruments (blue), and interface (red). As can be seen from
the picture, some of the ontologies even model several aspects of a
domain; e.g., DAX alone deals with industry sector classification,
reporting, description of stock exchange listed information, and
people who are either key executives or shareholders of a com-
pany.

• Abstract. An Abstract thing can manifest in a Hap-
pening, whereas a Happening might lead to an Entity.
Abstract can be used to describe literal concepts, such
as activities, ideas, dreams, the life, etc. Abstractions
can further manifest in real-world Happenings. The
outcome of a Happening can be virtually everything.

• Happening. Happenings are either static atomic Situa-
tions or dynamic decomposable Events. A Happening
keeps its own startDate and endDate, involves Agents,
and happensAt a Location. An Event startsWith, con-
tinuesWith, and endsWith a Happening, thus this mod-
elling structure can be used to model simple processes.

• Object. The subclass Agent makes a fundamental dis-
tinction between Person, Group, and political State.
People might be involved in a happening or learn
about it (property owns), thus being aware of a hap-
pening using property isAwareOf. Since isAwareOf is
a diachronic property, we can easily model (using the
temporal extent) that awareness might turn into obliv-
ion.

Assertional knowledge (i.e., ABox relation instances) in
BIO is usually encoded as quintuple with the notable ex-
ception of instances of Happening which encapsulate their
own starting and ending time (see above).

2.2. EN
The Euronext ontology EN does not come up with its
own industry classification, but makes use of ICB (see be-



low). EN , in part, reduplicates the stock exchange ontology
DAX , but uses different names for classes and properties.
However, more financial numbers are given here, even for
three succeeding year.
Let us take an example. Credit Agricole’s revenues for
2012, 2011, and 2010 are listed today as 16,315,000,
20,783,000, and 20,129,000 Euros. Even at the end of this
year, these numbers will be the same. However in 2014,
the number for 2010 will no longer be listed, but instead,
we will then find only numbers for 2013, 2012, and 2011.
Clearly, we do not want to extend the ontology with new
property names every time a new business year starts, thus
we must avoid properties such as hasRevenue2013, has-
Revenue2012, hasRevenue2011, etc.
In order to address this and to properly represent the num-
bers against the varying date when the information was
harvested from the companies websites, we use a simple
“trick” here: we always use exactly the three properties
hasRevenue-1, hasRevenue-2, and hasRevenue-3. The hy-
phen character - now should be interpret as a minus sign
−, thus, e.g., the value stored under hasRevenue-2 actually
refers to the revenue two (2) years ago relative to the actual
business year when the company snapshot was taken (the
business year is stated elsewhere).

2.3. Industry Sectors: ICB, DAX , GICS , and NACE

ICB, the Industry Classification Benchmark, is an industry
classification schema used worldwide at many places (e.g.,
NYSE in New York), developed by Dow Jones and FTSE.
Euronext (as operated by NYSE) makes use of ICB’s four-
level deep classification in its description of financial titles.
Given the ICB terminology stated in Microsoft Excel docu-
ments, we have auto-generated an OWL ontology ICB that
arranges the 186 industry sectors in a subsumption hierar-
chy.
ICB is connected to EN through an axiom from IF and
comes up with an informal sector description for English,
German, and Spanish, together with a further multilingual
“definition” of the most specific concepts. In order to ad-
dress these definitions on the class level properly, we make
use of a further annotation property which we have called
rdfs:definition.
TMO has integrated further industry classification tax-
onomies which partially overlap with ICB (see also Section
3.1.), but establish different views on industry sectors, viz.,

• DAX (origin: Deutsche Börse): comes with its own
two-level deep sector classification; 81 classes; Ger-
man and English labels.

• GICS (origin: Standard & Poor’s and MSCI): four-
level deep sector classification; 268 classes; 10 lan-
guages.

• NACE (origin: EU and UN): four-level deep sector
classification; 997 classes; English, German, and Ital-
ian labels at the moment.

The top-level sector classes of the four industry classifica-
tion ontologies have been manually identified using OWL’s
equivalentClass axiom constructor (see also Section 2.5.1.).

2.4. OP
This opinion ontology is based on the Marl ontology, de-
scribed in (Westerski et al., 2011). Even though some of
the property names would have been labelled differently by
us (e.g., using hasTarget instead of describesObject in or-
der to be compatible with opinion mining terminology), we
have not alter the original property names.
We have, however, made some adjustments to Marl and
have added further properties as described below:

• extractedFrom is now a datatype property, mapping to
xsd:anyURI;

• we have added the object property hasHolder (range:
underspecified);

• we have added the datatype property holdersTrust
(range: xsd:double);

• we have added the datatype property utteredAt (range:
xsd:dateTime);

• we have declared certain properties to be functional;

• we have defined the range type for already-existing
properties.

Some of the original properties (e.g., describeFeature) as
well the new property hasHolder are not assigned a range
class in Marl . In order to constrain these properties fur-
ther, we recommend (as we have done in TMO) to add fur-
ther interface axioms, e.g., the holder of an opinion is an
agent/person (see Section 2.5. below).
We have furthermore classified all properties in the opinion
ontology as diachronic properties. This has the advantage
that such a treatment makes it easy to see how an opinion
evolves/changes over time. Note that this evolution mostly
happens for aggregated opinions, but might even happen
for information related to a single opinion, say, the holders’
trust changes within a longer period of time.

2.5. IF
As already explained, the interface ontology IF interlinks
the 16 sub-ontologies through manually specified interface
axioms. To achieve this, IF makes use of DC , SKOS and
TIME , but mostly utilizes the standard axioms constructors
from RDFS and OWL, together with domain and range re-
strictions, i.e.,

• owl:equivalentClass

• rdfs:subClassOf

• owl:equivalentProperty

• rdfs:subPropertyOf

• owl:sameAs

• rdfs:domain

• rdfs:range

• rdf:type

Here are some examples, using description logics (DL) syn-
tax.



2.5.1. Classes and Properties
dax:Company, en:Company, nace:IndustrySector, and
gics:GICS can be used interchangeably; xebr:Report is a
subclass of dc:Resource; the properties dax:portrait and
en:activity are equivalent (DL syntax):

dax:Company≡ en:Company
dax:Company≡ gics:GICS
dax:Company≡ nace:IndustrySector
xebr:Reportv dc:Resource
dax:portrait≡ en:activity

Note that the transitivity of owl:equivalentClass guar-
antees that dax:Company, en:Company, gics:GICS, and
nace:IndustrySector are belonging to the same equivalence
class.

2.5.2. Domain & Range Restrictions and Typing
XEBR reports are linked to companies via the diachronic
functional object property if:hasReport; the holder of an
opinion is an agent:
>v ∀if:hasReport− . dax:Company
>v ∀if:hasReport . xebr:Report
if:hasReport : owl:FunctionalProperty
if:hasReport : owl:ObjectProperty
if:hasReport : time:DiachronicProperty
>v ∀op:hasHolder . bio:Agent

The last axiom together with
bio:Person≡ pol:Person

gives us the possibility to talk about, e.g., journalists and
their opinions, due to the following subclass axioms, spec-
ified in BIO and POL , resp.:

bio:Personv bio:Agent
pol:Journalistv pol:Person

2.5.3. Meta-Modelling
The class DiachronicProperty is a subclass of rdf:Property;
the property partOf is a property connecting OWL classes,
not instances:

time:DiachronicPropertyv rdf:Property
>v ∀xebr:partOf− . owl:Class
>v ∀xebr:partOf . owl:Class

3. Rules
This section presents some showcases that involve individ-
ual ontologies, interlinking axioms, and domain-specific
queries and entailment rules.

3.1. Finding Competitors Across Stock Exchanges
Characterizing a company against an industry sector classi-
fication is an extremely important showcase which involves
finding competitors of a company that work in a similar
field. We attack this problem in two ways. Firstly, we
have established manual mappings between sectors from
different classification schemes, such as (all four classes
talk about financial institutions)

icb:ICB8300≡ nace:nace 64.1
icb:ICB8300≡ dax:Banks
icb:ICB8300≡ gics:GICS4010

Secondly, we are currently trying to automatically align the
multilingual labels of the NACE , ICB , DAX , and GICS

classes in order to establish a unified sector classification
across the four ontologies (see also Section 5.).
Since the mappings connect industry sectors across dif-
ferent stock exchanges, querying for companies of type
dax:Banks will automatically yield companies classified as
icb:ICB8300, nace:nace 64.1, or gics:GICS4010. Here is
an example involving competitors of Deutsche Bank, mak-
ing use of the query language in HFC (Krieger, 2013) to
access quintuples in the WHERE clauses:

SELECT DISTINCT ?competitor
WHERE ?db dax:name "Deutsche Bank" ?s ?e

?db rdf:type ?type ?s ?e
?competitor rdf:type ?type ?s2 ?e2

FILTER ?db != ?competitor

3.2. Monitoring Unusual Events
“Unusual” events refer to important changes that have hap-
pened in a company or in a person’s life, say, the replace-
ment of a CEO or the change of the transparency standard
(a company can not adhere to more than one standard at the
same time). If the latter happens, a rule can leave a me-
mento in the repository that can be queried later. Here is an
example, making use of HFC ’s rule language:

?c dax:transparencyStandard ?ts1 ?s1 ?e1
?c dax:transparencyStandard ?ts2 ?s2 ?e2
->
?mem rdf:type if:Memento ?e1 ?s2
?mem if:changeStandard ?c ?ts1 ?ts2 ?e1 ?s2
@test
?ts1 != ?ts2
DTLess ?s1 ?s2
@action
?mem = MakeUri ?c ?e1 ?s2 ?ts1 ?ts2

The predicate (@test) DTLess guarantees that ?s1 is
smaller than ?s2 (both variables will bind XSD atoms of
type dateTime). The action (@action) MakeUri determin-
istically generates a new URI from its input arguments ?c,
?e1, ?s2, ?ts1, and ?ts2. This URI then is used on the
RHS of the rule to store the relevant information, viz., the
company, the different standards, and the period in which
the change has happened.

3.3. Making Knowledge About People Explicit
The below depicted HFC rules unveil simple, but still
useful knowledge, e.g., people from political governance
(chancellor, judges, ministers) are also regarded as politi-
cal figures (note the fourth and fifth temporal arguments):

?p rdf:type pol:PoliticalGovernance ?s ?e
->
?p rdf:type pol:PoliticalFigure ?s ?e

People from a sub-organization of a party are also party
members. Note that Max2 and Min2 below implement an in-
tersection of the two temporal intervals [b1,e1] and [b3,e3];
see (Krieger, 2012):

?x rdf:type pol:Party ?b1 ?e1
?x pol:hasOrganization ?y ?b2 ?e2



?y pol:hasMember ?p ?b3 ?e3
->
?x pol:hasMember ?p ?b ?e
@action
?b = Max2 ?b1 ?b3
?e = Min2 ?e1 ?e3

3.4. Domain-Independent Temporal Entailment
In (Krieger, 2012), we have presented a temporal extension
of the Hayes (Hayes, 2004) and ter Horst (ter Horst, 2005)
entailment rules for RDFS and OWL and have shown that
temporal reasoning and querying with triples is extremely
complex, expensive, and error-prone when compared with
quintuple-based representations (see also Section 6.).
For instance, we have complemented the original rule rdfp1
in (ter Horst, 2005) dealing with object properties by a new
rule that also addresses datatype properties. Let us start
with the assumption that the object is either a URI or a
blank node, exactly what the original rule encodes in its
where condition:

?p rdf:type owl:FunctionalProperty
?p rdf:type owl:ObjectProperty
?p rdf:type time:DiachronicProperty
?x ?p ?y ?s1 ?e1
?x ?p ?z ?s2 ?e2
->
?y owl:sameAs ?z
@test
IntersectionNotEmpty ?s1 ?e1 ?s2 ?e2

The IntersectionNotEmpty predicate in the test section
(@test) guarantees that we only identify ?y and ?z on the
RHS in case the temporal extent of p(x,y) and p(x,z) has a
non-empty intersection:

IntersectionNotEmpty start1 end1 start2 end2 ≡
start := max(start1, start2)
end := min(end1, end2)
return (start ≤ end)

Thus a single overlapping observation leads to a total iden-
tification of ?y and ?z (at all times!), so the sameAs state-
ment need not be equipped with temporal information. If
both observations, however, do talk about different non-
intersecting times, it makes perfect sense that ?y and ?z
need not be equal, even though ?p is a functional property
(good example: marriedWith relation).
Let us now focus on the second rule, dealing with func-
tional datatype properties.

?p rdf:type owl:FunctionalProperty
?p rdf:type owl:DatatypeProperty
?p rdf:type time:DiachronicProperty
?x ?p ?y ?s1 ?e1
?x ?p ?z ?s2 ?e2
->
?x rdf:type owl:Nothing ?s ?e
@test
?y != ?z
IntersectionNotEmpty ?s1 ?e1 ?s2 ?e2
@action

?s = Max2 ?s1 ?s2
?e = Min2 ?e1 ?e2

If two non-identical atoms are defined on a property, the
above rule signals a problem by assigning the bottom type
owl:Nothing to the URI in the first place of the tuple.
Since p(x,y,s1,e1) and p(x,z,s2,e2) come with a duration,
the type assignment to ?x only holds for the intersection of
the two intervals [s1,e1] and [s2,e2], computed by Max2 and
Min2.

3.5. Merging Temporal Extents
The next rule turns two quintuples which coincide in sub-
ject, predicate, and object position and which share a non-
empty temporal intersection into a larger unit. Consider,
for instance, the ceoOf relation between a person p and a
company c. Commonsense dictates that

ceoOf (p,c,s1,e1)∧ ceoOf (p,c,s2,e2)∧ s2 ≤ e1

should entail

ceoOf (p,c,s1,e2)

Since only diachronic properties are supposed to change
over time, we add a further typing constraint and quantify
over the property position ?p in the below HFC rule:

?p rdf:type time:DiachronicProperty
?c ?p ?v ?s1 ?e1
?c ?p ?v ?s2 ?e2
->
?c ?p ?v ?s1 ?e2
@test
DTLess ?s2 ?e1

4. Instance Data
We already mentioned in the introduction that instance data
is often delivered as quintuples (relational fluents), i.e., bi-
nary relation instances that have been extended by two fur-
ther temporal arguments, representing the temporal interval
(starting and ending time) in which the relation instance is
true. In the past, this was realized by harvesters, standalone
Java programs that produce ABox data, compliant with the
ontologies. Since the HTML representation of the informa-
tion changed rapidly and sometimes drastically (especially
for stock exchange data), we were forced to change the pro-
gram code of the harvesters on the input side over and over
again. And in case our ontologies were modified, the output
of the harvesters need to be adapted too.
In order to change this unsatisfying procedure and to ab-
stract from the imperative program code, we decided to use
a dedicated syntactic web scraper instead, in order to create
the extended RDF datasets (Kumar Nedunchezhian, 2013).
The use of this scraper has two important advantages, viz.,

1. the information in which we are interested in is speci-
fied declaratively, and

2. the output is agnostic against the target ontologies.

Let us focus on these two aspects and see how we finally
address the target ontologies by using the HFC reasoner
from above as a succeeding migration service.



Describing what to extract from an HTML page is specified
in the scraper by defining declarative rules that address the
different ways information is specified on a web page, e.g.,

• one key, one value;

• one key, many values (table with a horizontal header);

• more than one key and values (table with horizontal
and vertical labels).

Given the source HTTP address where the information is
located, the scraper then produces N-tuples which come
with brand-new URI anchors (generated from the heading
name and Unix’s epoch time) and that use the key(s) and
value(s) from the web page as elements of the N-tuples.
Since the information was taken in a moment of time, the
starting and ending time of the N-tuple coincide.

For instance, the address for adidas can be found on
the DAX page http://www.boerse-frankfurt.de/en/←↩
/equities/adidas+ag+DE000A1EWWW0/company+data under
heading Address, where the actual address is listed there
again under key Address, together with other information,
such as the phone number. Given this input, the scraper
then generates the following N-tuples (we have slightly
shortened the URIs for better readability):

scrap:adidas_AG_1382726391024
scrap:HEAD_Address
scrap:Address_1382726391026
"2013-10-25T20:39:51"ˆˆxsd:dateTime
"2013-10-25T20:39:51"ˆˆxsd:dateTime .

scrap:Address_1382726391026
scrap:KEY_Address
"adidas AG
Adi-Dassler-Strasse 1
91074 Herzogenaurach
Deutschland"

"2013-10-25T20:39:51"ˆˆxsd:dateTime
"2013-10-25T20:39:51"ˆˆxsd:dateTime .

scrap:Address_1382726391026
scrap:KEY_Phone
"+49 (0)9132 84 - 0"
"2013-10-25T20:39:51"ˆˆxsd:dateTime
"2013-10-25T20:39:51"ˆˆxsd:dateTime .

.....

Now, in case the input representation changes, we have to
update the declarative scraping rules, instead of modifying
the Java program code (which we find is much easier).

The question now remains how we guarantee that the N-
tuples, produced by the scraper, are compliant with the
quintuples for the target ontologies, as

1. the generated property names differ,

2. the values require some “polishing”,

3. information from several places needs to be combined,
and

4. the number of elements in an N-tuple not necessarily
equals 5 (e.g., for two-dimensional tables).

All this was addressed previously in the harvesters via
(reduplicated) program code. Now, as the scraper deliv-
ers N-tuples, we can use HFC (see Section 3.) to mediate
between the different representations. This is achieved by
writing declarative mapping rules in HFC which take N-
tuples as input and yield quintuples for the target ontolo-
gies. Here is an example dealing with adidas’ foundation
year. The scraper correctly delivers

scrap:adidas_AG_1382726391024
scrap:HEAD_Corporate_Information
scrap:Corporate_Information_1382726391026
"2013-10-25T20:39:51"ˆˆxsd:dateTime
"2013-10-25T20:39:51"ˆˆxsd:dateTime .

scrap:Corporate_Information_1382726391026
scrap:KEY_Established
"1949"
"2013-10-25T20:39:51"ˆˆxsd:dateTime
"2013-10-25T20:39:51"ˆˆxsd:dateTime .

The simple migration rule then reduces to

?comp scrap:HEAD_Corporate_Information ?ci ?s ?e
?ci scrap:KEY_Established ?year ?s ?e
->
?comp dax:foundedIn ?gyear ?s ?e
@action
?gyear = MakeGYear ?year

where the RHS action generates an XSD Gregorian
year bound to ?gyear, given the XSD string stored in
?year, thus delivering the schema-compliant quintuple
(sub-ontology: DAX )

scrap:adidas_AG_1382726391024
dax:foundedIn
"1949"ˆˆxsd:gYear
"2013-10-25T20:39:51"ˆˆxsd:dateTime
"2013-10-25T20:39:51"ˆˆxsd:dateTime .

5. Ontology Alignment
As mentioned in Section 3.1., we are currently investigat-
ing methods to automatically relate the multilingual labels
and definitions from NACE , ICB , DAX , and GICS with
one another, but also with the free-text information from
company instances (specified on their website) in order to
establish a unified and better sector classification.
For instance, from the English info text found for adidas

The adidas Group is one of the global leaders within the
sporting goods industry ...

it should be feasible to find the class nace:nace 47.64
whose English label is

Retail sale of sporting equipment in specialised stores.
For the example from Section 3.1. (financial institutions),
the mapping is quite easy (at least for ICB , DAX , and
GICS ) as the English and German labels for the three on-
tology coincide (banks and Banken, resp.). Concerning
the NACE concept nace 64.1, the mapping between its



German description Zentralbanken und Kreditinstitute and
Banken is probably easier than it is for the English case
(NACE : monetary intermediation). Thus it is very useful to
have more than one language pair, and if in doubt, checking
other parallel language labels, if this is possible.

Using pairs of natural language texts (in our case: labels
and definitions for the concepts from the four ontologies)
to decide entailments T |= H between a text T and a hy-
pothesis H, methods from the (recognizing) textual entail-
ment (RTE) research field are of great importance here; see
(Chierchia and McConnel-Ginet, 2000; Dagan et al., 2006).

Some of the RTE approaches, e.g., (Wang, 2011), even
consider a non-Boolean classification scheme, by assuming
four textual semantic relations e, p, c, and c:

1. T eH — T entails H, H is entailed by T

2. T pH — H/T is a paraphrase of T /H

3. T cH — T and H are contradictory

4. T uH — the relation between T and H is unknown

This classification scheme fits nicely with the open-world
assumption in OWL. Assuming that T and H come from the
info text (label, definition) for the industry sector classes C
and D, we are allowed to generate the following description
logic axioms for the above four semantic relations:

1. C v D

2. C ≡ D

3. ⊥≡CuD

4. ⊥vCuD

Of course, the last axiom does not provide any more infor-
mation in an open world as the relation between T and H is
unknown at the time when the axiom was generated.

Computing the entailment relations between several lan-
guage pairs for the same two concepts will result in de-
scription logic axioms with a higher degree of being cor-
rect. For instance, when assuming English and German la-
bels (TE ,TG,HE ,HG) for the same two concepts C and D,
from

TE pHE & TG cHG

it is wise not to generate any description logic axiom in-
volving C and D; however,

TE pHE & TG eHG

either leads to a credulous axiom

C ≡ D

or to a more skeptical one

C v D

whereas the latter is always correct w.r.t. both textual en-
tailments.

6. Further Issues
We utilize this final section to present some of our findings
of what we believe are shortcomings of ontologies which
adhere to mere binary ABox relation instances.

6.1. Tuple- Vs. Triple-Based Representations
In TRENDMINER, the integrated ontology as well as the
complete ABox data is uploaded to the OWLIM seman-
tic repository (Kiryakov et al., 2005), hosted by Ontotext,
one of our partners in the project. Attentive readers of
this paper, however, will ask themselves how this goes to-
gether with the representation of company snapshot data,
as explained in Section 4. We demonstrated that snapshot
data is encoded via quintuples, whereas ordinary semantic
repositories (such as OWLIM or Virtuoso) always assume
a triple-based representation.
In order to make the snapshots accessible in OWLIM, we
perform a semantic-preserving quintuple-to-triple conver-
sion which is compatible with W3C’s N-ary Relations Best
Practice proposal (Hayes and Welty, 2006). A description
of further possible representation schemes can be found,
e.g., in (Krieger et al., 2008). The idea behind the reduc-
tion is quite simple: all arguments lying in the range of a
relation instance are hidden in a “container” object. The
hidden arguments, in our case the actual value of the atem-
poral binary fact, the starting and the ending time can be
obtained through pre-defined properties. Thus a quintuple

subj pred obj start end .

might equivalently be represented through 5 triples:

subj pred cont .
cont rdf:type nary:RangePlusTimeContainer .
cont nary:value obj .
cont nary:starts start .
cont nary:ends end .

Note that cont, the container object, is a brand-new indi-
vidual, usually a RDF blank node, that needs to be intro-
duced for each quintuple.
Given such a representation, we can now query useful in-
formation, say, the evolution of the total capital stock for
adidas, the company on which we focussed in Section 4.:

SELECT ?v ?s
WHERE {
?c dax:isin ?i .
?i nary:value "DE000A1EWWW0" .
?c dax:totalCapitalStock ?t
?t nary:value ?v .
?t nary:starts ?s .

}

Compare this relatively easy question with a query that
would directly operate on quintuples:

SELECT ?v ?s
WHERE {
?c dax:isin "DE000A1EWWW0" ?s ?e .
?c dax:totalCapitalStock ?v ?s ?e .

}



Not only are less clauses involved (5 vs. 2), but both the
repository representation as well as the query involves more
individuals, viz., the container objects bound to the vari-
ables ?i and ?t. The different representations not only re-
sult in different space requirements (only a constant factor
of 2.2 during practical measurements), but can have a mas-
sive influence on the runtime performance and termination
of the materialization process in a semantic repository: de-
pending on the size and quality of data, querying & reason-
ing operate on a scale between doable and intractable; see
(Krieger, 2012).

6.2. Going Beyond Binary Relations
The use of quintuples in HFC seems to indicate that the
additional arguments are only needed to add a temporal ex-
tent to an atemporal binary relation instance. This is not
true. Many seemingly binary relations (for the moment, we
forget about the two temporal arguments) come with hid-
den arguments that we have not addressed in the specifica-
tion of the relation, due to the fact that OWL in particular
and description logics in general adhere to at most binary
relations.
For instance, the binary relation obtains in the BIO ontol-
ogy between Person and Degree is missing at least one fur-
ther argument, viz., the educational organization (EduOrg)
from which the degree was obtained. We can circumvent
the problem by introducing a further binary property ob-
tainedFrom defined on Degree, mapping to EduOrg. This
modeling, however, loses the original connection to Person
here, thus such an ontology is hard to read for a human.
Clearly the relation composition

educatedAt≡ obtainedFrom◦obtains

would help to obtain the educational institution, but such a
definition is outside the expressive means of OWL. How-
ever, the following HFC rule is a direct encoding of the
above composite relation:

?p bio:obtains ?d
?d bio:obtainedFrom ?eo
->
?p bio:educatedAt ?eo

Such a kind of specification is only possible in seman-
tic repositories which offer a rule-based language (e.g.,
OWLIM or HFC ) that is open to the user and do not come
with (hidden) built-in rules, or even no rules at all. In order
to address such critical relations, ontology/schema model-
ing has several choices:

1. use several relations and use rules, if possible (see
above); example: educatedAt, obtainedFrom, obtains.

2. turn the relation into a class, expressing an event; ex-
ample: Obtaining event, together with new properties,
such as who, what, where, when.

3. be open to a direct encoding of arbitrary, possi-
bly underspecified N-ary temporal relations; exam-
ple in HFC : quinternary relation (sextuple) obtains⊆
Person×Degree×EduOrg×dateTime2.

We clearly opt for solution (3.) as it is natural, compact,
intuitive, and less error prone.
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