
A Detailed Comparison of Seven Approaches for the Annotation of
Time-Dependent Factual Knowledge in RDF and OWL

Hans-Ulrich Krieger

German Research Center for AI (DFKI GmbH)
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany

krieger@dfki.de

Abstract
Representing time-dependent factual knowledge in RDF and OWL has become increasingly important in recent times. Extending
OWL relation instances or RDF triples with further temporal arguments is usually realized through new individuals that hide the range
arguments of the extended relation. As a result, reasoning and querying with such representations is extremely complex, expensive, and
error-prone. In this paper, we discuss several well-known approaches to this problem and present their pros and cons. Three of them are
compared in more detail, both on a theoretical and on a practical level. We also present schemata for translating triple-based encodings
into general tuples, and vice versa. Concerning query time, our preliminary measurements have shown that a general tuple-based
approach can easily outperform triple-based encodings by several orders of magnitude.

Keywords: temporal annotation; synchronic & diachronic relations; binary vs. N-ary representation schemata for factual state-
ments.

1. Introduction
Representing temporally-changing information becomes
increasingly important for reasoning and query services de-
fined on top of RDF and OWL, for practical applications
such as business intelligence in particular, and for the Se-
mantic Web/Web 2.0 in general. Extending binary OWL
ABox relation instances or RDF triples with further tem-
poral arguments translates into a massive proliferation of
useless “container” objects. Reasoning and querying with
such representations is extremely complex, expensive, and
error-prone.
In this paper, we critically discuss several well-known ap-
proaches to the encoding of time-dependent information
in RDF and OWL. We present seven approaches and ex-
plain their pros and cons. Three of them are then com-
pared in more detail, both theoretically and practically w.r.t.
space consumption and answer time for simple queries.
Two of the three approaches stay within the existing RDF
paradigm, whereas the third proposal argues for replacing
the RDF triple by a more general tuple in order to ease rea-
soning and querying, but also to come up with ontologies
that have a smaller memory footprint when compared to
semantically equivalent triple-based encodings.

In order to make the measurements for the three approaches
comparable, we have used the rule-based semantic reposi-
tory HFC (Krieger, 2013) that we have developed over the
last years and which is comparable to popular engines, such
as Jena, OWLIM, or Virtuoso. We also present schemata
for translating temporal triple-based encodings into general
tuples, and vice versa. Concerning query time, our prelim-
inary measurements have shown that a general tuple-based
approach can easily outperform a triple-based encoding by
1 to 5 orders of magnitude.

2. Synchronic and Diachronic Relations
Linguistics and philosophy make a distinction between syn-
chronic and diachronic relations in order to characterize

statements whose truth value do (or do not) change over
time. Synchronic relations, such as dateOfBirth, are rela-
tions whose instances do not change over time, thus there
is no direct need to attach a temporal extent to them. Con-
sider, e.g., the natural language sentence

Tony Blair was born on May 6, 1953.

Assuming a RDF-based N-triple representation (Grant and
Beckett, 2004), an information extraction (IE) system
might yield the following set of triples:

tb rdf:type Person
tb hasName "Tony Blair"
tb dateOfBirth "1953-05-06"ˆˆxsd:date

Since there is only one unique date of birth, this works per-
fectly well and properly capture the intended meaning.
Diachronic relationships, however, vary with time, i.e.,
their truth value do change over time. Representation
frameworks such as OWL that are geared towards unary
and binary relations can not directly be extended by a fur-
ther (temporal) argument. Consider the following sentence:

Christopher Gent was Vodafone’s chairman un-
til July 2003. Later, Chris became the chairman
of GlaxoSmithKline with effect from 1st January
2005.

Given this, an IE system might discover the following time-
dependent facts:

[????-??-??,2003-07-??]: cg isChairman vf
[2005-01-01,????-??-??]: cg isChairman gsk

Applying the synchronic temporal representation schema
from above gives us

cg isChairman vf
cg hasTime [????-??-??,2003-07-??]
cg isChairman gsk
cg hasTime [2005-01-01,????-??-??]

However, the resulting RDF graph mixes up the association
between the original statements and their temporal extent

[????-??-??,2003-07-??]: cg isChairman vf

*[2005-01-01,????-??-??]: cg isChairman vf

*[????-??-??,2003-07-??]: cg isChairman gsk
[2005-01-01,????-??-??]: cg isChairman gsk

as the second and third association is not supported by the
above natural language quotation.

3. Approaches to Diachronic Representation
Several well-known techniques of extending binary rela-
tions with additional arguments have been proposed in the
literature.

3.1. Equip Relation With Temporal Arguments
This approach has been pursued in temporal databases
(called valid time) and the logic programming community.
For instance, a binary relation, such as worksFor between
a person p of type Person and a company c of type Com-
pany becomes a quaternary relation with two further tem-
poral arguments s and e, expressing the temporal interval
[s, e] in which the atemporal statement worksFor(p, c) is
true (instants are represented by stating that s = e):

worksFor(p, c) 7−→ worksFor(p, c, s, e)

Unfortunately, OWL and description logic (DL) in general
only support unary (classes) and binary (properties) rela-
tions in order to guarantee decidability of the usual in-
ference problems. Thus forward chaining engines (such
as OWLIM and Jena) as well as tableaux-based reasoners
(e.g., Racer or Pellet) are unable to handle such descrip-
tions.

We note here that this approach is clearly the silver bullet of
representing binary factual statements, since it is the easi-
est and most natural one, although a direct interpretation
is incompatible with RDF and almost all currently avail-
able reasoners. We will favor this kind of representation in
the second part of the paper when presenting the measure-
ments, using HFC (Krieger, 2013).

3.2. Apply a Meta-Logical Predicate
McCarthy & Hayes’ situation calculus, James Allen’s in-
terval logic, and the knowledge representation formal-
ism KIF use variants of the meta-logical predicate holds.
Hence, our worksFor(p, c) relation instance becomes
holds(worksFor(p, c), t). McCarthy & Hayes call a state-
ment whose truth value changes over time a fluent (Mc-
Carthy and Hayes, 1969). The extended quaternary rela-
tion from the previous subsection can be seen as a rela-
tional fluent, whereas the holds expression here, however,
embodies a functional fluent, meaning that worksFor(p, c)
is assumed to yield a situation-dependent value.

Such kinds of relations are not possible in OWL, since de-
scription logics limit themselves to subsets of function-free
first-order logic and because only a weak form of relation
composition is possible in OWL. However, we can reify the
atemporal fact worksFor(p, c) in RDF, so that the above

holds relation instance can at least be encoded by intro-
ducing a new individual o, represented as an RDF blank
node. We note that in the original calculus, situations were
defined at an instant of time, thus we use only a single tem-
poral argument t here.

holds(worksFor(p, c), t) 7−→ ∃o .holds(o, t) ∧
type(o,AtemporalFact) ∧ subject(o, p) ∧
predicate(o,worksFor) ∧ object(o, c)

As an alternative, we might turn the worksFor relation into
a class:

holds(worksFor(p, c), t) 7−→ ∃o .holds(o, t) ∧
type(o,WorksFor) ∧ subject(o, p) ∧ object(o, c)

However, this would require to always introduce a new
class for the representation of each diachronic relation.

3.3. Reify the Original Relation
Reifying a relation instance again leads to the introduction
of a new object and five additional new relationships. In
addition, a new class needs to be introduced for each rei-
fied relation, plus accessors to the original arguments, very
similar to the approach directly above. Furthermore, and
very important, relation reification loses the original re-
lation name, thus requiring a massive modification of the
original ontology.

Coming back to our worksFor example, we obtain
(WorksFor is the newly introduced class)

worksFor(p, c, s, e) 7−→ ∃o . type(o,WorksFor) ∧
person(o, p) ∧ company(o, c) ∧
starts(o, s) ∧ ends(o, e)

It is worth noting that this encoding can be seen as a kind
of “owlfication” of Neo-Davidsonian semantics (Parsons,
1990), as the original relation is turned into an event.

3.4. YAGO’s Fact Identifier
The approach YAGO (Hoffart et al., 2011) takes is related
to Approach 2 and 3 directly above, as it is a kind of ex-
ternal reification. YAGO uses its own extension of the N3
plain triple format, called N4, which associate unique iden-
tifiers i with each time-dependent fact.

The above quaternary relation instance then is represented
as follows:

worksFor(p, c, s, e) 7−→ ∃i . i : worksFor(p, c) ∧
occursSince(i, s) ∧ occursUntil(i, e)

Note that the association i : worksFor(p, c) has the disad-
vantage of not being part of the triple repository (as it is
a quadruple technically; we guess that there exists a sepa-
rate extendable mapping table). Thus, entailment rules and
queries will never have access to these quadruples, unless
some custom functionality has been implemented in the se-
mantic repository. Nevertheless, this is a valid and proper
annotation schema, however not expressible in OWL.

Rather, such a kind of association can be seen as an exten-
sion of the idea behind annotation properties in OWL in

that not only classes, properties, and individuals can be an-
notated with information, but also binary relation instances
(= triples), thus occursSince and occursUntil from above
can be regarded as relation instance annotation properties.
Unfortunately, we are not aware of such an extension.

3.5. Wrap Range Arguments
Wrapping the range arguments of a relation instance, i.e.,
grouping them in a new object, allows us to keep the orig-
inal relation name, although the approach still requires to
rewrite the original ontology:

worksFor(p, c, s, e) 7−→ ∃o .worksFor(p, o) ∧
type(o,CompanyTime) ∧ company(o, c) ∧
starts(o, s) ∧ ends(o, e)

Again, a new object (o), a new class (CompanyTime), and
new accessors (company, starts, ends) need to be intro-
duced. W3C suggests this obvious pattern to be used to
encode arbitrary N-ary relations (Hayes and Welty, 2006).
Alternatively, instead of defining a new class for each range
type of the original relation, one might define a general
class, say RangePlusTime, together with three accessors
value, starts, and ends, in order to avoid a reduplication
of the original class hierarchy on the property level. We use
the latter refinement in our measurements below.

3.6. Encode the 4D View in OWL
(Welty and Fikes, 2006) have presented an implementation
of the 4D or perdurantist view in OWL, using so-called time
slices (Sider, 2001). Relations from the original ontology
no longer connect the original entities, but instead connect
time slices that belong to those entities. A time slice here is
merely a container for storing the time dimension of space-
time. At least, the original relation name is kept, although
such a representation requires a lot of rewriting and even
introduces two new container objects:

worksFor(p, c, s, e) 7−→ ∃t, t′ .worksFor(t, t′) ∧
type(t,TimeSlice) ∧ hasTimeSlice(p, t)
type(t′,TimeSlice) ∧ hasTimeSlice(c, t′)
starts(t, s) ∧ ends(t, e) ∧
starts(t′, s) ∧ ends(t′, e)

We note here that this approach and the approach below
only work for binary relations. This restriction, however, do
no harm to RDF-encoded OWL ontologies, since an RDF
triple encodes a binary relation.

3.7. Interpret Original Entities as Time Slices
In (Krieger et al., 2008), we have slightly extended and at
the same time simplified the perdurantist/4D view from di-
rectly above. p and c from the example above are still first-
class citizens, now called perdurants which possess time
slices, explaining the behavior of an entity within a certain
temporal extent (e.g., being a Person or a Company) and
are able to group multiple facts that stay constant within the
same period of time. In the extended relation instance, p
and c are then replaced by new IDs p′ and c′ (similar to the
approach above), but these new individuals are still typed
to the original classes, here: Person and Company, resp.

Keeping the original typing thus allows us to superimpose
the original class hierarchy with the notion of a time slice.

worksFor(p, c, s, e) 7−→ ∃p′, c′ .worksFor(p′, c′) ∧
type(p′,Person) ∧ hasTimeSlice(p, p′)
type(c′,Company) ∧ hasTimeSlice(c, c′)
starts(p′, s) ∧ ends(p′, e) ∧
starts(c′, s) ∧ ends(c′, e)

The nice thing with this reinterpretation is that it does not
require any rewriting of the TBox and RBox of an ontol-
ogy and makes it easy to equip arbitrary upper and domain
ontologies with a concept of time, supplied by an indepen-
dent time ontology (e.g., OWL-Time) that only needs to
talk about instants and/or intervals; see (Krieger, 2010).
Perdurants p and c above only need to be introduced
once, independent of which time slice they are linked to.
For example, assuming perdurant p possesses three time
slices for worksFor(p′, c′, s, e), worksFor(p′′, c′′, s, e),
and hasWorkAddress(p′′′, a′, s, e). Since the starting and
ending time coincide in the three statements, p′, p′′, and
p′′′ can be identified, and the temporal extent needs to be
specified only once (and not three times).

4. Theoretical Considerations
Within this section, we will consider three of the above
seven approaches (Sections 3.1.–3.7.) which we find to be
the most promising ones. On a theoretical level, we will
count how many bytes, tuple elements, and triples/tuples
overall are needed to represent a diachronic relation in-
stance, using approaches 1, 5, and 7.
During the last years, we have gained some experience with
all three formats in several German and European projects.
In the European project NIFTi and TrendMiner, we have
applied Approach 1 (Krieger and Kruijff, 2011; Krieger
and Declerck, 2014). The German TAKE project has used
Approach 5 to store biographical knowledge. The ontol-
ogy which backs up the LT-World language portal had been
rewritten to adhere to Approach 5, as it lacked an explicit
treatment of time. In MUSING, we have used Approach 7
to equip the PROTON upper ontology with a notion of time
(Leibold et al., 2010). For the MONNET project, we have
also chosen Approach 7 to represent the Web content of
companies, listed on Deutsche Börse’s DAX and NYSE’s
Euronext.
In the following, we will restrict ourself to quaternary re-
lations p ⊆ D × R × T × T , where T is used to describe
the starting and ending point of a fluent. The reason for
this is that approach 7 (and 6) only works for binary re-
lations that are extended by one or two further temporal
arguments. Thus a quaternary diachronic relation instance
p(d, r, s, e) encodes a truth value for p(d, r) within inter-
val [s, e]. We are neutral as to whether temporal intervals
are convex (i.e., contain “holes”) or whether the temporal
metric utilizes N, Q, or R for T—this is unimportant for
the presentation above and the measurements below. We fi-
nally note that T can be easily extended by a further disjoint
element, say ?, in order to permit left-open or right-open
temporal intervals. Given this, comparison operators over
time instants or the Allen relations over intervals, however,

no longer will be Boolean, but instead become three-valued
relations.

4.1. Approach 1: Quintuples
The quaternary relation instance p(d, r, s, e) is represented
as a tuple in HFC by an extension of the plain N-triple for-
mat (Grant and Beckett, 2004):

d p r s e

This tuple consists of 5 elements/arguments and requires
(at least) 20 (= 5 ∗ 4) bytes, assuming an (internal) int[]
representation with 4 byte integers (which is the case in
HFC). Using integer arrays is a common way to represent
triples/tuples internally, since the external representation of
URIs and XSD atoms needs to be addressed only during
input and output. Overall, we obtain 1 object (the inte-
ger array) to represent the whole tuple. This last number
is very important, since it is desirable to access informa-
tion directly in a semantic repository, instead of “fiddling”
around with helper structures (container objects) that blow
up the memory. In addition, the overall number of ele-
ments is equally important, since triple repositories usually
build up large index structures to efficiently access all those
triples that match a specific element at a certain position in
a triple.

4.2. Approach 5: W3C’s N-ary Relations
As we have indicated in Section 3.5., the triple repre-
sentation of the quaternary relation instance results in 5
triples/complex objects:

d p o
o rdf:type nary:RangePlusTime
o nary:value r
o nary:starts s
o nary:ends e

Overall, 5 triples translate into 15 (= 5 ∗ 3) elements or 60
(= 5 ∗ 12) bytes. Furthermore, for each p, we might need
an additional class for the type of o, as well as accessors
value, starts, and ends. Since these tuples need to
be specified only once, we do not count them here. This
approach introduces one brand-new individual o (a blank
node) which turns out to be problematic, since it might lead
to a non-terminating closure computation during the appli-
cation of entailment rules; not covered here, see (Krieger,
2012).

4.3. Approach 7: Time Slices
As described in Section 3.7., perdurants d and r need only
be introduced once, so we do not take them into account.
As is the case for approach 5 above, new individuals d’
and r’ are introduced here; in fact, two for each fluent we
like to represent:

d’ p r’
d’ rdf:type ... ;; domain/range of the
r’ rdf:type ... ;; original relation p
d’ fourd:starts s
d’ fourd:ends e
r’ fourd:starts s

r’ fourd:ends e
d fourd:hasTimeSlice d’
r fourd:hasTimeSlice r’

This representation utilizes 9 triples, leading to 27 elements
or 108 bytes per fluent in the worst case. We note here that
r’ only needs to be equipped with a temporal extent and
linked to perdurant r iff p is an OWL object property, i.e.,
not mapping to XSD atoms (best case: 5 triples). The below
measurements assume the worst case.

4.4. Comparison: When to Apply Which Approach
Let us now summarize the pros and cons of the three ap-
proaches.

Approach 1. This is—for us—the most intuitive ap-
proach: ABox relation instances are simply extended by
two further temporal arguments. Existing ontologies (TBox
and RBox) can be easily equipped with a treatment of time.
RDFS/OWL entailment rules as well as custom rules are
more intuitive, easier to formulate, and less error-prone
when compared to approach 5 and 7. Approach 1 per-
forms best in terms of memory consumption and query-
ing/reasoning time. Contrary to approach 5 and 7, it does
not introduces new individuals, a precondition for guaran-
teeing the termination of the materialization process; see
(Krieger, 2012).

Approach 5. This approach, recommended by the best
practice group of W3C, is able to encode arbitrary n-ary
relations (as is trivially the case for approach 1). The en-
coding is worth to consider if ontologies are defined from
scratch and require time-dependent relations. Contrary to
approach 1, approach 5 is compliant with the triple model
of RDF. Unfortunately, standard RDFS and OWL reasoning
is no longer possible which is also the case for approach 7.
This approach introduces a new blank node for each ABox
relation instance.

Approach 7. This treatment is great if an ontology is al-
ready given, but misses a notion of time. The approach does
not require to rewrite the TBox and the RBox of an ontol-
ogy (contrary to approach 5) and also stays inside RDF. The
time slices are possessed by perdurants view is attractive,
but is the worst of the three approaches in terms of memory
consumption. Two further individuals are introduced here.

5. Practical Measurements
In order to compare the three approaches on a practical
level, we need a semantic repository that is able to directly
encode arbitrary n-ary relations (in our special case: quin-
tuples). Popular engines, such as RACER, Pellet, Jena,
OWLIM, or Virtuoso which are geared towards binary re-
lations/RDF triples can thus not be applied here. As men-
tioned in Section 1., the experiments were performed using
HFC, a forward chaining engine and semantic repository
that we have developed over the last years and that is used
in our lab.

5.1. Initial Numbers
The numbers below are computed against the mid-size on-
tology that backs up an earlier version of the LT-World

Figure 1: Rewrite schema for obtaining data sets for ap-
proaches 1, 5, and 7.

size [MB] #tuples RAM [GB] time [s]
1 53 548,132 0.42 4.3
5 129 2,740,660 1.67 14.3
7 273 4,360,428 2.15 25.9

Figure 2: Initial numbers for approaches 1, 5, and 7.

language portal (www.lt-world.org). The measure-
ments are obtained on a 64bit Intel Core i7 (2.8 GHz),
using Java 1.6 with an initial heap of 4GB. The unex-
panded ABox consists of 204,959 RDF triples. Fully
materialized, 548,132 triples are obtained. Since tempo-
ral information is missing, we randomly attach tempo-
ral starting and ending points to ABox relation instances
through XSD int atoms which we let vary between 0
and 1,000 using a random generator (implemented by
java.lang.Math.random()). This synthetical data
(without the original triples) is used for approach 1.

We have then produced two further meaning-preserving
data sets by rewriting the quintuples to RDF triples, com-
pliant with the formats that are used in approach 5 and 7
(see Figure 1).
For approach 5, we have used blank nodes of type Range-
PlusTime to group the original value and the starting and
ending time of each ABox relation instance. To address ap-
proach 7 properly, we have chosen the subject and object
URIs of the original triples as names for the perdurants and
have attached ascending integers to the original names in
order to generate new URIs for the time slices themselves.

Given apporach 1, 5, and 7, Figure 2 then describes the
three ontologies in terms of space (file size, number of
triples/quintuples, main memory requirement) and loading
time in order to set up HFC as a repository on which queries
are carried out, as described in the next section.

Given these “offline” numbers, approach 1 seems to be far
superior. The next section amplifies this judgment through
further numbers obtained from “online” measurements for
relatively easy queries.

5.2. Querying the Ontologies
This section presents measurements for six SPARQL-like
queries posted in HFC, given approach 1, 5, and 7. The

queries were originally written for approach 1 (see Figure
3) and were transformed manually to the format required by
approach 5 (see Figure 4) and 7. No translation is depicted
here for approach 7 (this would require a further half page).

The first and second query obtains the starting as well as
the starting and ending times over all fluents. Query three
selects those objects whose fluents are true intervals (fil-
ter: start 6= end). The next query searches for subjects
in symmetric relation instances that might differ in their
starting and ending time. Query five simply accesses all
time-stamped information for a specific individual (here:
ltw:obj 68081). Finally, query six finds those subjects
that have an ending time equal to a specific instant (here:
936).
As can be seen in Figure 4, the queries for approach 5 (as is
the case for approach 7) are no longer easy to read and take
much longer to complete; in some cases this divergency can
make a difference between doable and intractable applica-
tions which employ such kind of queries.

5.3. Comparison
As can be easily recognized from the measurements de-
picted in Figure 5, approach 1 easily outperforms approach
5 and 7 by 1 to 5 orders of magnitude.
We are not only convinced that querying is faster, intu-
itive and less error-prone for approach 1, but have shown
in (Krieger, 2012) that the same happens, even drastically
for a more complex case, viz., reasoning over a temporal
extension of the RDFS and OWL entailment rules (Hayes,
2004; ter Horst, 2005).

6. Summary
We hope to have shown that a general tuple-based approach
for annotating time-dependent factual knowledge on the
Web is far superior to triple-based approaches. We are con-
vinced that the time is ripe to move towards this conserva-
tive extension of the RDF data model. We note here that
even ontologies that utilize approaches 2 to 7 can be easily
rewritten to format 1. Due to space requirements, neither
are we able to depict and explain any temporal RDFS and
OWL entailment rules (Krieger, 2012), nor complex cus-
tom rules in the different formats. We are certain that a
closer comparison of such rules would even amplify our
position, since Semantic Technologies not only are inter-
ested in accessing already externalized information (this
paper), but also require inferential capabilities to make im-
plicit knowledge explicit.

The attentive reader of this paper might ask him-/herself
how we address instantiations of the above schemata in a
different external representation format, such as XML, and
how we handle relations with more than two arguments. We
will speculate about this in the next two addenda.

7. Addendum 1: XML Representation
In order to use harvested data from the Web outside the
RDF universe and a specific reasoner (in our case: HFC),
it might be interesting to have an XML exchange represen-
tation for the above approaches. Unfortunately, due to the
additional degree of freedom in XML to specify a value,

(1) SELECT DISTINCT ?start
WHERE ?subj ?pred ?obj ?start ?end

(2) SELECT DISTINCT ?start ?end
WHERE ?subj ?pred ?obj ?start ?end

(3) SELECT ?obj
WHERE ?subj ?pred ?obj ?start ?end
FILTER ?start != ?end

(4) SELECT DISTINCT ?subj
WHERE ?subj ?pred ?obj ?start1 ?end1 &

?obj ?pred ?subj ?start2 ?end2
(5) SELECT *

WHERE ltw:obj_68081 ?pred ?obj ?start ?end
(6) SELECT DISTINCT ?subj

WHERE ?subj ?pred ?obj ?start "936"ˆˆxsd:int

Figure 3: Queries for approach 1 (quintuples).

(1) SELECT DISTINCT ?start
WHERE ?blank rdf:type nary:RangePlusTime &

?blank nary:starts ?start
(2) SELECT DISTINCT ?start ?end

WHERE ?blank rdf:type nary:RangePlusTime &
?blank nary:starts ?start &
?blank nary:ends ?end

(3) SELECT ?obj
WHERE ?subj ?pred ?blank &

?blank rdf:type nary:RangePlusTime &
?blank nary:value ?obj &
?blank nary:starts ?start &
?blank nary:ends ?end

FILTER ?start != ?end
(4) SELECT DISTINCT ?subj

WHERE ?subj ?pred ?blank1 &
?blank1 rdf:type nary:RangePlusTime &
?blank1 nary:value ?obj &
?obj ?pred ?blank2 &
?blank2 rdf:type nary:RangePlusTime &
?blank2 nary:value ?subj

(5) SELECT ?pred ?obj ?start ?end ;; ’*’ would also show up ?blank
WHERE ltw:obj_68081 ?pred ?blank &

?blank rdf:type nary:RangePlusTime &
?blank nary:value ?obj &
?blank nary:starts ?start &
?blank nary:ends ?end

(6) SELECT DISTINCT ?subj
WHERE ?subj ?pred ?blank &

?blank rdf:type nary:RangePlusTime &
?blank nary:ends "936"ˆˆxsd:int

Figure 4: Queries for approach 5 (W3C’s N-ary relation encoding).

query [sec] 1 (1,001) 2 (293,880) 3 (544,115) 4 (1,585) 5 (37) 6 (1,398)
1 0.332 0.470 0.440 1.993 0.011 0.037
5 1.975 2.324 5.977 11.066 168.814 329.980
7 3.306 4.076 10.052 —— 728.242 284.730

Figure 5: Processing time for the three approaches w.r.t. queries 1–6. The numbers in parentheses at the head of the table
list how many results are returned by each query. Query 4 for approach 7 runs out of memory (4GB) after 96 seconds.
Queries 5 and 6 are performed 100 times to measure total time.

even more kinds of representations are possible here (ex-
amples are related to approach 1 and 3, given our running
worksFor example):

(1) <worksFor person="p" company="c" ...>
</worksFor>

(2) <worksFor>p c s e</worksFor>

(3) <RelationInstance pred="worksFor">
p c s e

</RelationInstance>

(4) <Event type="worksFor">
<person>p</person>
<company>c</company>
...

</Event>

(5) <WorksFor>
<person>p</person>
<company>c</company>
...

</WorksFor>

We take a liberal stance here as our interest is not in defin-
ing an “external” exchange format, but in deciding which
“internal” format performs best in terms of (i) memory con-
sumption, (ii) running time (querying and reasoning), and
(iii) human readability. Nevertheless, we would probably
opt for either the “external” solution (4) or (5) which are
related to the “internal” approach (3).

8. Addendum 2: Beyond Binary Relations
The approaches above were investigated on how well they
perform w.r.t. binary relations whose two arguments can
be considered to be obligatory. Such kind of relations are
the default case in today’s popular knowledge resources,
such as YAGO, DBpedia, BabelNet, or Google’s Knowl-
edge Graph.
In case more and especially optional arguments are in-
vestigated, our verdict concerning the different approaches
will probably turn into a different direction, so the repre-
sentation format needs to be updated (in the best case) or
changed (in the worst case). Consider the following exam-
ple, taken from (Davidson, 1967, p. 83)

Jones buttered the toast in the bathroom
with a knife at midnight.

The binary base relation butter (we assume a direct map-
ping of the transitive verb to the relation name here) now
needs to be split and/or extended by further optional argu-
ments, as the following sentences are perfectly legal:

Jones buttered the toast.
Jones buttered the toast in the bathroom.
Jones buttered the toast with a knife.
Jones buttered the toast at midnight.
Jones buttered the toast in the bathroom

with a knife.
Jones buttered the toast with a knife

in the bathroom.

Jones buttered the toast in the bathroom
at midnight.

.....

In principle, the number of adjuncts is not bounded, thus
adding a large number of potentially underspecified direct
relation arguments is probably a bad solution. Today’s tech-
nologies often address such “hidden” arguments through a
kind of relation composition, viz., defining further proper-
ties such as instrument (to access knife) or location (to
access bathroom) on the object (toast) of the relation in-
stance:

instrument ◦ butter
location ◦ butter

We think that modeling the optional arguments in such a
way is unsatisfactory as instrument or location “operate”
on the object of the binary relation instance and not on the
relation instance itself!
Our personal solution would model the obligatory argu-
ments, including (under- or unspecified) time and perhaps
space, as direct arguments of the corresponding relation in-
stance or tuple. A further argument, an event identifier, also
takes part in the relation. Optional arguments, however,
would be addressed through binary relations, now working
on the event argument. Applying this kind of Davidsonian
or event representation to the above example gives us (in-
formal relational notation)

∃e .butter(e, Jones, toast, at midnight) ∧
location(e, bathroom) ∧
instrument(e, knife)

9. Acknowledgements
The research described in this paper has been financed by
the European project TrendMiner under contract number
FP7 ICT 287863. The author has profited from discussions
with Thierry Declerck and Bernd Kiefer—thank you guys!
Finally, I would like to thank the three reviewers for sug-
gestions and support.

10. References
Davidson, Donald. (1967). The logical form of action sentences.

In Rescher, Nicholas, editor, The Logic of Decision and Action,
pages 81–95. University of Pittsburgh Press.

Grant, Jan and Beckett, Dave. (2004). RDF test cases. Technical
report, W3C, 10 February.

Hayes, Patrick and Welty, Chris. (2006). Defining N-ary relations
on the semantic web. Technical report, W3C.

Hayes, Patrick. (2004). RDF semantics. Technical report, W3C.
Hoffart, Johannes, Suchanek, Fabian M. Berberich, Klaus, Kel-

ham, Edwin Lewis, de Melo, Gerard, and Weikum, Gerhard.
(2011). YAGO2: Exploring and querying world knowledge
in time, space, context, and many languages. In Proceedings
of the 20th International World Wide Web Conference (WWW
2011), pages 229–232.

Krieger, Hans-Ulrich and Declerck, Thierry. (2014). TMO—the
federated ontology of the TrendMiner project. In Proceedings
of the 9th edition of the Language Resources and Evaluation
Conference (LREC).

Krieger, Hans-Ulrich and Kruijff, Geert-Jan M.˙ (2011). Com-
bining uncertainty and description logic rule-based reasoning

in situation-aware robots. In Proceedings of the AAAI 2011
Spring Symposium “Logical Formalizations of Commonsense
Reasoning”.

Krieger, Hans-Ulrich, Kiefer, Bernd, and Declerck, Thierry.
(2008). A framework for temporal representation and reason-
ing in business intelligence applications. In AAAI 2008 Spring
Symposium on AI Meets Business Rules and Process Manage-
ment, pages 59–70. AAAI.

Krieger, Hans-Ulrich. (2010). A general methodology for equip-
ping ontologies with time. In Proceedings LREC 2010.

Krieger, Hans-Ulrich. (2012). A temporal extension of the
Hayes/ter Horst entailment rules and an alternative to W3C’s
n-ary relations. In Proceedings of the 7th International Confer-
ence on Formal Ontology in Information Systems (FOIS 2012),
pages 323–336.

Krieger, Hans-Ulrich. (2013). An efficient implementation of
equivalence relations in OWL via rule and query rewriting. In
Proceedings of the 7th IEEE International Conference on Se-
mantic Computing (ICSC), pages 260–263.

Leibold, Christian, Krieger, Hans-Ulrich, and Spies, Marcus.
(2010). Ontology-based modelling and reasoning in opera-
tional risks. In Kenett, Ron S. and Raanan, Yossi, editors, Op-
erational Risk Management: A Practical Approach to Intelli-
gent Data Analysis, chapter 3, pages 41–59. Wiley.

McCarthy, John and Hayes, Patrick J.˙ (1969). Some philosoph-
ical problems from the standpoint of artificial intelligence. In
Meltzer, B. and Michie, D. editors, Machine Intelligence 4,
pages 463–502. Edinburgh University Press.

Parsons, Terence. (1990). Events in the Semantics of English. A
Study in Subatomic Semantics. MIT Press, Cambridge, MA.

Sider, Theodore. (2001). Four Dimensionalism. An Ontology of
Persistence and Time. Oxford University Press.

ter Horst, Herman J.˙ (2005). Combining RDF and part of OWL
with rules: Semantics, decidability, complexity. In Proceed-
ings of the International Semantic Web Conference, pages 668–
684.

Welty, Christopher and Fikes, Richard. (2006). A reusable on-
tology for fluents in OWL. In Proceedings of 4th FOIS, pages
226–236.

