
Modular Software for an Autonomous Space Rover

Sylvain Joyeux**, Jakob Schwendner*, Thomas M. Roehr*

*Robotics Innovation Center, DFKI, Germany
e-mail: firstname.lastname@dfki.de

** e-mail: sylvain.joyeux@m4x.org

Abstract

The increasing difficulty of space exploration mis-
sions, human support and maintenance of infrastructure
push the expectations for future robotic systems. Com-
plex software systems are required to autonomously per-
form mobile manipulation and interaction tasks in a ro-
bust fashion. Component based software development and
software frameworks provide a way for efficient imple-
mentation. This paper introduces the Rock framework,
which uses a model driven approach to handle the com-
plexity of component networks which can reconfigure at
run-time. The Artemis Rover, which participated at the
SpaceBot Cup competition is used as an example where
the Rock framework has been successfully applied to a
mobile manipulation system.

1 Introduction

Robots are an effective tool for the exploration of our
solar system. They can be scaled to the mission, and are
much more resilient when it comes to the harsh environ-
ments of planetary surfaces and interplanetary travel. The
only resource they require for ongoing operation is energy,
which can either be taken with them using a Radioisotope
Thermoelectric Generator (RTG) or generated using solar
power. On-board instruments can be used for in-situ sci-
ence. All in all, robots have a number of advantages over
human exploration. What they currently lack is the intelli-
gent decision making abilities of humans. While artificial
intelligence research has come a long way and software
systems can beat humans in certain restricted settings, AI
systems are currently no replacement for direct human in-
tervention. However, the communication latencies and
visibility restrictions involved for most space exploration
targets often make it difficult to tele-operate the systems.
Autonomy is a key enabling factor to improve the abilities
and ultimately usefulness of robots in space exploration.

As the number of elements in a software system
grows, the number of potential interactions between these
elements increases at least quadratically. Thus software
complexity is a significant time and cost factor which does
not scale linearly with mission requirements. On the other
hand, software has the potential for cost savings as well.

Unlike hardware, parts of the software can be reused over
different missions. The key is to use appropriate soft-
ware engineering methods which allow breaking down the
complexity into manageable parts, which can be reused in
different contexts, and even be shared with different do-
mains of robotic applications.

One of the defining factors of software for space is
reliability. Strict development, testing and qualification
guidelines are currently used for flight software. The
question is if these procedures scale well with the com-
plexity of the system, and if this approach can be held up
with increasing amount of AI that comes into the system.
Even when the components are modularized, the integra-
tion needs to take the interactions and the different states
of the system and its modules into account.

Frameworks can help to manage the complexity of
software. By imposing standards for development and
providing tools, it becomes easier for software developers
to design and implement software modules that work well
together. These software frameworks have so far mostly
been used in the development process of robotic systems
for space, and not for actual flight systems. This is not ex-
clusively true anymore [1], and frameworks and software
component libraries are actively evaluated for their suit-
ability for flight systems. The research on software frame-
works is very active, and mobile outdoor robots pose an
interesting problem set. One could argue that most parts
of robotics itself is the art of integration. Frameworks are
the tools to do this on a software level.

The first part of this paper presents a short overview
on existing frameworks for the integration of robotics soft-
ware. Then an overview of the design rationales for the
Robot Construction Kit (Rock) is given. Frameworks are
developed to improve application development and the
second part of this paper illustrates the benefit of Rock
using the Artemis rover as an example. This rover was
developed for the Spacebot Cup [9] – a robotic competi-
tion organized by the DLR, which took place in 2013.

2 State of the Art

The idea of component systems dates back to 1968,
where [15] argues for strong similarities between hard-

ware and software industry. Although, object-oriented
programming significantly improved the reusability of
software, in 2002 [23] stated that ”modelling of
component-based systems is still a largely unsolved prob-
lem”. This situation has changed and component-based
development and model-based engineering found broad
application including robotics research.

The main driver for building systems from compo-
nents is efficiency. Clear encapsulation along with clear
interfaces allows developers to be more productive by
reusing already existing software modules or components
in general [5].

Developing a component system is not trivial and
even reuse of components cannot be considered straight
forward [5]. The identification of generic and thus
reusable components can be challenging and even in-
volves significant additional cost – three to four times
compared to developing components for a single applica-
tion context [23]. However, the benefit of a component-
based system should become clear when integrating a
complex system. The effort spent should be minimal and
focused on linking components to form assemblies with
high-level functionality. Nevertheless, there is no free
lunch for building a system from components and several
processes need to be in place to support the development
of components.

A workflow has to account for different develop-
ment phases, i.e. design, deployment and runtime phase.
[11] suggests further that in the design phase components
should be templates which are applied in the deployment
phase to construct new so-called composite components.
In addition to this staged development process they ex-
pect tools to support this process. [11] limit their focus
on the first two phases and assign reconfiguration of a
component-based systems to the runtime phase. Exist-
ing visual programming environments such as LabVIEW
give additional insight of what is required in a component-
based system such as a component catalogue as well as
standardized interfaces and standardized datatypes. While
such tools allow modelling with components they are also
limited to design and deployment phases – management
and reconfiguration of the component-based system at
runtime is not considered in the modelling.

These days, Robot Operating System (ROS)[17] is the
most popular development framework in robotics research
community. Though it is a component-based system its
development workflow does not rely on the usage of a well
defined component model specification. ROS provides a
general interface for components (aka nodes), but it does
not provide an explicit specification – the specification can
only be inferred when running a node. [4] intends to close
this modelling gap, but at the same time shows that current
practices of developing with the ROS lack modelling and
follow a rather ad-hoc development approach. ROS offers

a low-resistance workflow and a fast-path to a component
based systems, but the system design capabilities remain
less scalable – without explicit modelling ROS does not
provide tooling to actively manage an increasing number
of components during the runtime phase.

In the following, this section will present, but not dis-
cuss, the main paradigms in modern robotic control soft-
ware. We will use some of the major names in robotic
software frameworks to illustrate these paradigms and
concepts:

• ROS [17], the leading robotic software framework in
the research community

• Orocos Real-Time Toolkit (RTT) [22, 21], a
middleware-agnostic component implementation
which is the basis for the Rock toolchain

• GenoM versions 2 [6] and 3 [13], a component de-
velopment tool developed at LAAS/CNRS that sees
some general use, including in the space domain, es-
pecially at ESA

It is interesting to note that Robonaut 2 [1] - the only
system that has flown in an actual space mission with a
state-of-the-art robotic framework – runs a mix of ROS
and RTT.

2.1 Middlewares, Software and Control
Architectures

In literature a distinction is often made between the
concepts of middleware, software architecture and control
architecture. However, while mentioned, the distinction
is rarely explained. This section will try to characterize
what is meant by each, and why – in our opinion – this is
a somewhat artificial distinction.

The Middlewares implement high-level APIs and pro-
tocols that allow to exchange information (messages,
procedure calls), inter-process, in a network transpar-
ent way1. Examples abound in the software engineering
world, such as CORBA, DDS, AMQP, or ZeroMQ. The
Robot Software Architecture defines software components
as well as a way to use a middleware (or multiple mid-
dlewares) to interface them. In effect, it is the definition
of the component in a system. Here comes a confusions:
some middlewares, such as CORBA, already have a con-
cept of components, and somebody’s robotic software ar-
chitectures (such as ROS) can be used as another’s mid-
dleware. The Robot Control Architecture defines how to
use components to control a robot – the components being
implemented in a Robot Software Architecture.

In theory, a given robot control architecture can apply
to more than one robot software architecture (and vice-
versa). In practice, however, software architectures de-
fine how to interact to components, but define it loosely.

1http://en.wikipedia.org/wiki/Middleware

http://en.wikipedia.org/wiki/Middleware

The control architecture is what defines how to write these
components in practice. The components therefore end up
being specific to the control architecture, even though the
software architecture is not.

In other words, in practice, control and software ar-
chitectures are often tied (one could say that the control
architecture is the model for the software architecture).
The middlewares is what can be reused in various imple-
mentations.

2.2 Data Flow
What has long been specific to robot software ar-

chitectures, when compared to more “software engineer-
ing” component-based systems is that the main interac-
tion paradigm is the data stream: robot software is a real-
time processing system, in which algorithms process data
as it is sensed in order to perform planning and actuator
commands. One of the main issue is to let data flow be-
tween processing algorithms. A central question is there-
fore how one defines the way which data stream goes into
which component. The two leading paradigms are pub-
lish/subscribe and point-to-point. Another less applied
method is the tuplespace (or blackboard), which is used
e.g. in Cougaar [20].

In publish/subscribe systems, components separately
announce that they publish and/or subscribe to some
data stream, the data streams being globally identified.
Identifiers are commonly human-readable names such as
/left hand/camera. The rationale behind this scheme
is that one should reason in terms of which data a certain
component needs, not how this data gets generated. ROS
is a well-known implementation of this scheme, which is
also the basis for widely used middlewares such as DDS
or RabbitMQ.

In point-to-point systems, the data flow is established
explicitly between the outputs and inputs of components,
i.e. one would link the camera driver to the image pro-
cessing component. This is the paradigm used by RTT.
It is interesting to note at this point that one can easily
build a publish/subscribe system on top of a point-to-point
one, (OpenDDS is for instance built on top of CORBA),
but emulating a point-to-point system on top of a pub-
lish/subscribe one is not fully feasible: a topology where
A feeds data to X, B to X and B to Y for instance cannot be
represented. Such topologies have already been encoun-
tered in practice by the authors.

2.3 Remote Procedure Calls
In parallel to the dataflow, one needs to control the

components’ execution. The oldest and most widely used
method for this is to implement some form of Remote
Procedure Call (RPC). An RPC is a mechanism to per-
form procedure calls (in the programming language sense)
in an inter-process, network-transparent way. This is a

very common paradigm to allow cross-process interac-
tion. CORBA is for instance built on this, and it is also
the underlying paradigm for ROS services and RTT oper-
ations.

2.4 Task-State Pattern
The task-state pattern [12] could be summarized as

asynchronous remote procedure call with progress track-
ing. This is the pattern that GenoM requests and ROS
actionlib implements, and is present as well in other ma-
jor frameworks. When using a task-state, one first sends
a request to start a given task (with parameters). Said
task will then be started asynchronously, and the remote
component that implements it will report about the ex-
ecution progress. Additionally, the caller often has the
ability to request an interruption of the task. The core
idea behind the task-state pattern is to make the compo-
nent layer provide an interface that high-level coordina-
tion paradigms (state machines, planning) know about. In
other words, task-state implementations are meant as a
way to glue dataflow-based paradigm (components) with
task-oriented control (planning, state machines).

2.5 Configuration
All major robotic frameworks offer a configuration in-

terface. ROS for instance has a “parameter server” and
RTT is using properties. Configuration is separated from
the dataflow in that the configuration values are mostly
static (discussed later in this section), and are read at
startup by the components. Separating the configura-
tion interface from the dataflow interface also makes clear
what is being processed by the component (the dataflow)
and what defines how the processing should be done (the
parameters).

2.6 Dynamicity
When looking at state of the art frameworks, one sees

that the ability to reconfigure, i.e. change the shape and
parametrization of a component network is often an after-
thought. Changing parameters is commonly handled by
using RPC mechanisms creating two parallel ways to con-
figure a component, e.g., ROS’ functionality for dynamic
reconfiguration works by standardizing a certain service
that gets called when a dynamic parameter is set.

The ability to change the dataflow is often non-
standard, and ends up being embedded in the compo-
nents themselves. In GenoM with pocolibs and ROS, one
can implement hand-written requests that allow to change
which streams the component is subscribed to or pub-
lishes. Because of the practical complexity of the tech-
nique, as well as its non-standard nature, it is seldom used
(and cannot be embedded in tooling). RTT is different
in this respect, as components’ ports can be disconnected
and reconnected at will, even while the component is run-
ning.

Figure 1. Key parts of the Rock framework

2.7 Model-Driven Development

Regardless of the framework of choice, everyone un-
derstands nowadays that building the software of a com-
plete robot is no small task, and leads to a quite complex
system with a lot of “moving” parts. The leading path to
tame this complexity has been to integrate Model-Driven
Development (MDD) within the robotic software devel-
opment workflow. However, there is really no mainstream
model-driven toolchain in the robotic domain. GenoM
was first to use code generation, but the source model used
by the code generator has not been used anywhere else.
The version 3 of the GenoM tool used the same approach
to offer cross-framework component development (at this
time, it supports LAAS’ own middleware pocolibs, ROS
and BIP [2]). In the RTT world, the BRIDE tool [4] got
developed within the BRICS project [3], with the same
goal of being cross-framework. On the one hand, while
the tool itself is cross-framework, the component devel-
oper targets a given framework. In other words, unlike in
GenoM3 where a component developed for pocolibs can
be deployed in ROS, a component developed in BRIDE
for ROS cannot be reused within RTT. On the other hand,
BRIDE also targets deployment, i.e. the creation of com-
ponent networks, in addition to pure component develop-
ment (something that GenoM completely leaves to the tar-
get software frameworks).

3 The Robot Construction Kit

The design of Rock was based extensively on our crit-
ical analysis of the state of the art in robotic frameworks.
This section will present the various drivers for Rock’s
design and development, and will compare Rock to the
state of the art. Not all parts of Rock will be discussed in
the following section, but Figure 1 tries to provide a gen-
eral categorization and overview on the parts that form the
overall framework.

The main design drivers in Rock were:

Application Agnostic the ability to reuse a component
across applications, adapting it at deployment time to the
requirements of the application.

Single-Purpose Components Components should be
designed to do one thing and do it well.

Composability the ability to build subsystems using
components, as well as build bigger (sub)systems using
these already defined subsystems. In addition, the ability
to reuse subsystems across platforms and applications.

Adaptation and Robustness the ability to reconfigure a
running component network at will, in order to always use
“the right tool for the job”. The driver here is to be able
to safely change algorithms to fit the situation the system
is in, instead of trying to develop an universal component
that can do a certain thing in any situation.

3.1 Application Agnostic
At the component level, the main philosophy behind

Rock’s design are the separation of concerns between the
development aspects of the “4Cs”: Computation, Config-
uration, Connection and Communication [16, 18]. A Rock
component is the pure representation of a Computation,
i.e. the encapsulation of an algorithm that processes a set
of input data and produces output data, using some param-
eters (Configuration interface) to define what it should do.
Where the data comes from and goes to (Connection), as
well as how (Communication) are left out of the compo-
nent writer. This choice is made at deployment time, i.e.
are made considering the actual application.

Since RTT already separates the 4Cs while offering
all the capabilities a state of the art robotic framework of-
fers, it has been chosen as Rock’s underlying component
implementation. To improve usability and standardization
of components Rock offers the oroGen code generation
tool. A component writer that uses oroGen needs to know
about 12 method calls and no C++ RTT-specific declara-
tions (which – like ROS – is very template-heavy). In ad-
dition, because written components have very little RTT-
specific code, the code generation tool provided the ability
to migrate across one major revision of RTT (version 1 to
2), as well as updates to the Rock tooling, without requir-
ing any change from the component’s developer (a gain
any well-designed code generation tool such as GenoM
provides).

The second use of the code generator is to provide
sane defaults. While the 4Cs is a key design driver within
the Rock toolchain, its “pure” use makes it actually harder
to discover new components. Indeed, one needs to not
only know what the component does, but also should de-
termine how it should be deployed. oroGen components

provide sane defaults for the configuration and commu-
nication aspects, allowing new users to only care about
the connections (make the data flow across components).
These defaults can then be overriden to better fit the appli-
cation’s requirements.

Additionally, Rock leverages RTT’s design as a pure
encapsulation of the Computation aspect. oroGen as
well as Rock’s tooling only have to target the RTT API
since RTT already provides the means to simultaneously
interface with multiple middlewares (separation of the
Communication concern). One can for instance use
CORBA, ROS and POSIX Message Queues simultane-
ously to transfer data within the same system. This offers
true interoperability: Rock components can run alongside
unmodified ROS nodes, both types of components be-
ing controlled by Rock tooling. This is in stark contrast
to other code generation approaches, such as GenoM3,
where the framework is truly the code generator plus
the underlying runtime platform, e.g. GenoM3+ROS or
GenoM3+pocolibs. GenoM3 by itself is not a a software
framework.

3.2 Single-Purpose Components

As mentioned, the task-state pattern’s goal was to en-
sure that a component-based layer (dataflow-driven) pro-
vides an interface that matches what is expected by tra-
ditional task-based coordination mechanisms (plan-based
systems, state machines, . . .). However, its introduction
has in practice complexified the task of the component
developer tremendously. Not only components are meant
to process data in one particular way, but must also pro-
vide all the modes that all applications that could use this
component need at the task level. This complexity was
required by the fact that the dataflow was assumed to be
static (no coordination mechanism really knows how to
deal with the component’s connection network). Ways
to change the component network’s behaviour therefore
have to be provided through the task-state pattern. It is the
experience of the authors that the components’ code end
up being complex, having seldom-used tasks that were
needed by some applications in the past, and that under-
standing the state of a running network is near impossible:
it depends on both the component’s configuration, but also
which tasks are currently running and sometimes to which
tasks have run in the past.

Interestingly, RTT components do not have the abil-
ity to provide multiple tasks within the components. In-
stead, in a Rock system, one component is one task. The
system’s behaviour is therefore determined by (1) which
components are currently running, (2) the components
configuration (the values of their properties) and (3) how
they are connected. In practice, it allows to think of com-
ponents as having to do one single thing (they are single-
purpose), simplifying the component’s code and the user’s

understanding of its role.

3.3 Composability
Another major advantage of using a code generation

tool such as oroGen as well as a development paradigm
that gets rid of the task-state pattern is that components
are fully standardized (the only important bits are the run-
time state machine, which is identical to all components,
as well as its input and configuration interfaces). A com-
ponent that can be run by simple deployment tools can be
run by Syskit [7], Rock’s advanced model-based system
deployment tool, without modification. Systems based
on the task-state pattern would probably have to add new
tasks to it to fit the needs of their new application(s).

Syskit is a model-driven tool that allows to define
compositions of components in isolation, and then a
correct-by-construction way to combine them together. A
key aspect of Syskit is that the composition is done with
sharing, thus truly allowing to define compositions in iso-
lation. A trajectory following composition that includes
an IMU device does not need to know that another com-
position also uses the IMU. The tool will detect this and
make sure that the IMU device (and its postprocessing al-
gorithms) are present only once in the final network. This
is a major advantage during the system’s engineering as
subsystems can be designed separately but still run to-
gether. Finally, the usage of a point-to-point connection
model ensures that changing one component’s interface
cannot affect the rest of the system without the designer’s
intervention.

This is in contrast with the way nodes are composed
in ROS. Compositions in ROS (often called “stacks”) is
based on a set of conventions on the naming of topics
(ROS’ nodes input/outputs) and services. The stack is
then “made” by putting the stack’s nodes in a separate
namespace, to isolate their topics from the topics of the
rest of the system. When a single stack is present, this
is obviously an elegant solution. As soon as stacks are
mixed, and parts get reused across stacks this elegance
breaks. Moreover, it does not handle change in the nodes
very well (if at all), since the creation of a new topic in a
node can in principle collide with an already existing topic
name and cause significant interference. Finally, nothing
in a publish/subscribe system like ROS can warn at startup
time that a publisher / subscriber got mislabelled (because,
for instance, of a typo): (i) having a publisher-without-
subscriber or subscriber-without-publisher is a normal sit-
uation when the system is being setup and (ii) getting the
wrong provider for a subscriber simply cannot be detected
if the types match.

3.4 Adaptation and Robustness
An autonomous robot needs to adapt to its situation.

This is the very thing that will make it autonomous. More-

over, given the complexity of the task at hand, it is an
illusion to think that we can build a single perfect versa-
tile algorithms that will solve one of robotic’s problems
(let’s say “localization”) and cover every possible situa-
tions. The key to having robust autonomous systems is
therefore, in the authors’ point of view, to allow for seam-
less switching – at runtime – between different component
networks.

Here, again, the design of Rock components as well as
the use of oroGen to provide models for the components
allow to adapt the component network without requiring
any application-specific change to the components. Using
Syskit, networks of components are designed statically,
the tool being able to adapt from any state of a component
network to a desired component configuration. Given that
the start state can be arbitrary, it is possible to transition
from non-nominal states, i.e. recover from component
faults. Syskit allows to combine these composed network
definitions within higher-level coordination models such
as a state machine, through the use of the Roby [8] plan
manager.

4 The Artemis Rover

The SpaceBot Cup [9] challenged 10 teams to per-
form a mission scenario with constraints similar to a space
mission. The autonomous mobile manipulation systems
had to be developed within 8 months. In the competition
the robotic systems (ground-based or flying vehicles) were
given a task to find, retrieve and transport objects in an
unknown, mars like, rough terrain. A low-resolution el-
evation map was provided before the competition. Three
objects were distributed in a 21 m × 21.5 m area at un-
known locations. Two of them had to be collected and as-
sembled with the third object. After assembly the system
had to return to the starting point. Communication with
the deployed robotic system was limited to three commu-
nication windows of 5 minutes each. Only during these
control points direct control was possible and in general
communication with the remote system suffered a delay
of two seconds in either direction. The full mission had to
be completed within 1 h.

4.1 Software Architecture
The developers of the software architecture in

Artemis had to start with the most important choice first,
i.e. deciding for the framework to use. An equal part of
functionality existed in either framework ROS and Rock.
The final decision was made to use Rock for the core
development due to previous experiences with Rock and
the following observations: (i) flexible and open meta-
build system with support for a variety of Version Con-
trol System (VCS) and package build systems, (ii) in-
herent model-based development workflow, (iii) a clear

Figure 2. Artemis’ component architecture

component-model with easily manageable specifications
using a domain specific language (DSL), and (iv) close
integration with Syskit allowing for runtime management
of components.

Since Rock also supports a mix-in of ROS nodes, the
final architecture also includes ROS nodes – mainly for
manipulation – which have also been managed by the su-
pervision along with Rock components. Using ROS nodes
in the supervision is only possible using a belated intro-
duction of specifications for already existing nodes – a sig-
nificant different workflow compared to the model-based
construction of Rock components.

Artemis’ set of components covered the following ca-
pabilities: localization, mapping, locomotion, navigation,
manipulation and object detection. Figure 2 illustrates the
general relationships between the components.

Artemis’ locomotion and navigational capabilities
have been identified as the most critical part for the com-
petition. Locomotion capabilities significantly benefit
from a robust hardware design – here a Rocker-Bogie plat-
form with a set of flexible wheels. Each wheel is con-
trolled by an identical set of driver components which feed
its status to a component called ’joint dispatcher’ which –
based on its configuration – allows multiplexing of motion
commands and statuses. A motion controller component
for Ackermann vehicles serves as the first level of abstrac-
tion for controlling the rover. Localization and mapping
are based on the application of a Velodyne laser scanner
which provides a 360◦ scan at 10 Hz. The scans are com-
bined with odometry information in a SLAM backend for

global map consistency. Navigation of Artemis relies on
the localization and mapping results for global planning –
applying the D* Lite [10] algorithm – and use input from
an additional laser scanner mounted at the front of Artemis
to allow for local planning – using VFH* [24].

Further details on the individual hard- and software
components can be found in [19] and [14].

4.2 Control Architecture

A robotic system has to perform a variety of tasks, yet,
has to operate resourcefully. Resources should only be
used when needed for the current tasks or if essential for
monitoring, e.g., the manipulation capability of Artemis
is of no use for navigation. For Artemis this observation
led to the design of different mutual exclusive operation
modes: exploration, collection of objects, and assembly.
Continuously running tasks were simultaneous localiza-
tion and mapping, and long-range object detection. Nav-
igation had been designed as fundamental capability and
was available upon request in either operation mode.

Each operational mode corresponds to a network of
components and a corresponding data flow. The super-
vision evaluates all existing constraints existing for com-
ponents’ configuration and connection, validates the com-
patibility of a running and to-be-run component network,
and eventually runs the minimal sized component network
that fulfills the requirements.

The mutual exclusion of operation modes is not only
a result of safety and resource optimization, but modes
come with contradicting or incompatible constraints. For
instance, to collect an object a high resolution point cloud
is required to get the exact object location. Thus, the
front laser scanner is operated with a very low sweep-
ing speed to maximise the resolution of the point cloud.
Meanwhile, local navigation can deal with lower resolu-
tion point clouds so that the front laser scanner is operated
with much higher speed. This is a good example for the
reconfiguration of a component at run-time as explained
in Sec. 3.4.

Furthermore, the model-based approach allows to
perform offline validation of component networks (and
thus of the control architecture) which have been designed
in the supervision. Except for manipulation, all compo-
nents are the result of the model-based workflow and the
supervision uses the components specification for this of-
fline validation. In order to validate the data-flow between
Rock and ROS’ components, a specification has been ex-
tracted from existing nodes, mapping ROS topic publish-
ers and subscribers to equivalent Rock input and output
ports.

5 Results

Artemis successfully participated at the SpaceBot
Cup and managed to perform a number of autonomous
navigation tasks. No ranking was given for the competi-
tion, since none of the participants managed to complete
the full mission. The functionality of the system was how-
ever validated on various other occasions. The competi-
tion illustrated the possibility of applying Rock to design,
implement and run a complex robotic system, even under
severe time constraints.

Designing high-level control for a mission as given
in the SpaceBot Cup is a serious challenge given the time-
frame of less than a year for developing hardware and soft-
ware. Only using an already established framework such
as Rock made it possible to tackle all given challenges of
the competition.

The component-based approach allowed a reuse of al-
ready existing software driver components, e.g., for mo-
tor controller, laser scanner and camera. Meanwhile, a
number of components had to be continuously improved,
e.g., the ones for navigation. The overall Rock workflow
made it possible to reliably perform updates with mini-
mal impact, i.e. continuous improvement of components
and high-level integration of these single-purpose com-
ponents could be easily performed. In parallel, complex
tasks could be implemented in the supervision consider-
ing nominal operation as well as error handling strategies.
Rock’s workflow provided a strong guidance and support
for developers, so that a high level of efficiency could be
achieved. The possibility of including ROS nodes into the
run-time system also proved to be helpful in balancing the
solution in terms of realisability in the given time-frame
over model conformance.

Components provide encapsulation on one level as
do task networks or rather composition on another. This
modularity allows to start development following a top-
down approach. In practice and for Artemis, the devel-
opment turned into a mixture of bottom-up and top-down
design in order to maximise the reuse of existing compo-
nents. The support for distributed development, however,
showed some drawbacks. The robot’s special capabilities
such as object recognition and navigation, and high-level
integration could be developed by separate teams from the
people building the high-level task in the supervision –
designing and orchestrating complex interactions in the
supervision requires a special expertise which component
developers do not necessarily have. However, this sep-
aration comes with a communication gap which needs
to be seriously managed to provide a seamless integra-
tion path from single-minded components to component
networks for performing complex tasks. This experience
also showed that Rock can further improve by providing a
seamless path from component development to high-level
integration.

6 Conclusions & Future Work

The demanding requirements of space missions gen-
erate a strong requirement for autonomy and complex
software in future robotics systems. Software frameworks
will likely play an increasingly important role in this con-
text. We have shown that the Rock framework provides
the fundamental principles for being able to manage this
complexity. It is available as open source2, and ready for
deployment in complex systems with large development
teams, as was demonstrated on the Artemis rover. Rock
has already been integrated to a number of ground sys-
tems, and has a strong support for autonomous underwa-
ter systems. While the software is already very usable, a
lot of research is still required to improve the integration
between the different levels of the system.

Acknowledgements

The authors would like to thank all team members for
their contribution to the development of the Artemis rover.
The work presented here has been part of the Project
”SpaceBot”, which has been funded by the Federal Min-
istry for Economics and Technology (BMWI) through the
German Space Agency (DLR) grant number 50RA1318.

References

[1] J. M. Badger, S. W. Hart, and J. D. Yamokoski. To-
wards Autonomous Operation of Robonaut 2. In AIAA In-
fotech@Aerospace, volume 2, 2012.

[2] A. Basu, M. Bozga, and J. Sifakis. Modeling Heteroge-
neous Real-time Components in BIP. In IEEE Software
Engineering and Formal Methods, 2006.

[3] R. Bischoff, T. Guhl, E. Prassler, W. Nowak, G. Kraet-
zschmar, H. Bruyninckx, P. Soetens, M. Haegele, A. Pott,
P. Breedveld, J. Broenink, D. Brugali, and N. Tomatis.
Brics - best practice in robotics. In ISR/ROBOTIK, 2010.

[4] BRICS. {BRIDE - BRICS Integrated Development Envi-
ronment}. Retrieved April 24 2014, from http://www.best-
of-robotics.org/bride.

[5] I. Crnkovic and M. Larsson, editors. {Building Reliable
Component-Based Software Systems}. Artech House, Inc.,
1rst edition, 2002.

[6] S. Fleury, M. Herrb, and R. Chatila. Genom: A tool for
the specification and the implementation of operating mod-
ules in a distributed robot architecture. In IEEE/RSJ IROS,
pages 842–848, 1997.

[7] S. Joyeux and J. Albiez. Robot development : from compo-
nents to systems. In Control Architecture of Robots, 2011.

[8] S. Joyeux, F. Kirchner, and S. Lacroix. Managing plans:
Integrating deliberation and reactive execution schemes.
Robotics and Autonomous Systems, 2010.

2http://rock-robotics.org

[9] T. Kaupisch and D. Noelke. DLR SpaceBot Cup 2013 - A
Space Robotics Competition. Künstliche Intelligenz, 2014.

[10] S. Koenig and M. Likhachev. D*lite. In R. Dechter and
R. S. Sutton, editors, AAAI/IAAI, pages 476–483. AAAI
Press / The MIT Press, 2002.

[11] K.-K. Lau, L. Ling, and P. Velasco Elizondo. Towards
composing software components in both design and de-
ployment phases. In H. Schmidt et al., editor, Proc.
10th Int. Symp. on Component-based Software Engineer-
ing, LNCS 4608, pages 274–282. Springer, 2007.

[12] I. Lütkebohle, R. Philippsen, V. Pradeep, E. Marder-
Eppstein, and S. Wachsmuth. Generic middleware sup-
port for coordinating robot software components: The
Task-State-Pattern. Journal of Software Engineering in
Robotics, 2(September):20–39, 2011.

[13] A. Mallet, C. Pasteur, M. Herrb, S. Lemaignan, and
F. Ingrand. GenoM3: Building middleware-independent
robotic components. 2010 IEEE International Conference
on Robotics and Automation, pages 4627–4632, 2010.

[14] M. Manz, R. Sonsalla, J. Hilljegerdes, C. Oekermann,
J. Schwendner, S. Bartsch, and S. Ptacek. Design of a rover
for mobile manipulation in uneven terrain in the context of
the spacebot cup. In i-SAIRAS, 2014.

[15] M. D. McIlroy. Mass-produced software components. In
P. Naur and B. Randell, editors, Proceedings of {NATO}
Software Engineering Conference, pages 138–155. NATO
Science Committee, 1968.

[16] E. Prassler, H. Bruyninckx, and K. Nilsson. The Use
of Reuse for Designing and Manufacturing Robots, 2009.
White Paper.

[17] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote,
J. Leibs, E. Berger, R. Wheeler, and A. Ng. ROS: an open-
source Robot Operating System. In Workshop on Open
Source Software (Collocated with ICRA 2009), 2009.

[18] M. Radestock and S. Eisenbach. Coordination in Evolving
Systems. In Lecture Notes in Computer Science, volume
1161, pages 162–176. 1996.

[19] J. Schwendner, T. M. Roehr, S. Haase, M. Wirkus,
M. Manz, S. Arnold, and J. Machowinski. The Artemis
Rover as an Example for Model Based Engineering in
Space Robotics. In ICRA Workshop on Modelling, Estima-
tion, Perception and Control of All Terrain Mobile Robots.
IEEE, 2014.

[20] R. D. Snyder, D. Douglas, and C. Mackenzie. Robustness
infrastructure for multi-agent systems. In OCC, 2004.

[21] P. Soetens. A Software Framework for Real-Time and Dis-
tributed Robot and Machine Control. Phd, Katholieke Uni-
versiteit Leuven, 2006.

[22] P. Soetens and H. Bruyninckx. Realtime hybrid task-based
control for robots and machine tools. In IEEE ICRA, 2005.

[23] C. Szyperski. Component software: beyond object-
oriented programming. Addison-Wesley Longman Pub-
lishing Co., Inc., 2nd edition, 2002.

[24] I. Ulrich and J. Borenstein. Vfh*: Local obstacle avoidance
with look-ahead verification. In ICRA, pages 2505–2511.
IEEE, 2000.

	Introduction
	State of the Art
	Middlewares, Software and Control Architectures
	Data Flow
	Remote Procedure Calls
	Task-State Pattern
	Configuration
	Dynamicity
	Model-Driven Development

	The Robot Construction Kit
	Application Agnostic
	Single-Purpose Components
	Composability
	Adaptation and Robustness

	The Artemis Rover
	Software Architecture
	Control Architecture

	Results
	Conclusions & Future Work

