
The Artemis Rover as an Example for Model Based Engineering in
Space Robotics

Jakob Schwendner1 and Thomas M. Roehr1 and Stefan Haase1 and Malte Wirkus1 and Marc Manz1

and Sascha Arnold1 and Janosch Machowinski1

Abstract— Future application of robotic missions in the space
context will require the systems to have both mobility and
manipulation capabilities. The limited direct communication
with the systems due to visibility, and severe time delays also
make it a requirement for the system to perform its actions
mainly autonomously. The increasing complexity of the task,
as well as the strict requirements for reliability and fault
tolerance pose a significant challenge to both engineering and
research activities. The SpaceBot Cup was held in November
2013 to probe those capabilities in the context of a competition.
In this paper we present the Artemis rover and its software
architecture as well as the competition results and lessons
learned. Special attention is given to the modular design
based on the Robot Construction Kit (Rock) framework – a
component based software framework, which uses a component
model based on the Orocos Real-Time-Toolkit (RTT).

I. INTRODUCTION

Since the days crewed space exploration was at its pinnacle
with the Apollo program, robotic systems have replaced
humans as the agents for the exploration of our solar system.
The main advantage of these systems is that they are much
more applicable with regards to the type of environment they
can sustain. Even though artificial intelligence development
has come a long way since the days of the Lunokhod [1],
which was purely remote controlled, the latest systems to
explore planets [2] or the return to the lunar surface [3] are
still limited in what they can do on their own. In general it
is preferable to have a human in the loop. It will be a fair
while – if ever – until computers will be able to outmatch
humans in coping especially with unforeseen situations. A
difficult communication environment with delays and only
limited connection windows pose limitations to the mission
design. Advancing the level of autonomy of space systems
improves the options available for difficult missions – usually
the ones that are scientifically most interesting [4], [5], [6].

One way of supporting the advance of technologies is to
use competitions. These type of events are suitable to foster
creative ways of solving current problems, and generating
new questions and engineering challenges [7]. One such
competition was held by the German Space Agency (DLR)
in Rheinbreitbach, Germany in 2013 [8]. The challenge of
the SpaceBot Cup was to develop an autonomous mobile
manipulation system within 8 months, and then show its
capabilities in a 1 h mission. The task was to find and
collect two objects in an unknown 21 m by 21.5 m area,

1German Research Center for Artificial Intelligence,
DFKI Bremen, Robotics Innovation Center (RIC), Germany
firstname.lastname@dfki.de

Fig. 1. The Artemis rover – shown at the SpaceBot Cup competition area
– is a six wheeled system with a mass of 87 kg (including lander setup) and
a size of 830 mm x 1300 mm x 500 mm (width x length x height).

and transport them to a third location and then return to the
origin. Communication with the robot was severely limited,
with a 2 s communication delay and multiple scheduled
communication outages.

In this paper we describe the design process of Artemis
(see Figure 1) to fulfill the functional requirements of
hardware and software in order to perform the full mission
scenario of the SpaceBot Cup.

In a first step the functional decomposition for each of the
tasks was detailed. Subsequently, this decomposition allowed
to distribute the work and to assign it to corresponding
system experts in the fields of mechanical, electronic and
software engineering. A fundamental requirement for the
mission was autonomous navigation. In order to achieve this
capability a further decomposition was performed into the
following functional modules: 1) locomotion, 2) mapping,
3) and navigation comprising path planning and trajectory
following. Since a coarse map was provided before the com-
petition an exploration module has been considered optional
– forwarding an a-priori list of waypoints for exploration
was a valid approach that satisfied the needs of the mission
scenario.

A critical functional element was the management of
the autonomous activities, i.e. the integration layer for all
functional components that were needed to fulfil the mission
requirements. This management of Artemis is performed by
the supervision [9] – a component dedicated to manage the
activities of Artemis based on previously modelled high-
level functionality which relies on a set of functional single-



purpose modules.
This paper presents Artemis as one approach of solving the

complexity of the SpaceBot Cup scenario both on a hardware
and software level. In addition to the description of Artemis
and its design process, we describe the competitions results
and provide a selection of the lessons learnt throughout the
development and the competition.

II. SYSTEM DESCRIPTION

The SpaceBot Cup scenario requests capabilities in mul-
tiple fields of robotics, which led to three parallel lines
of development: 1) navigation – the ability to get to a
specific location 2) manipulation – the ability to manipulate
objects 3) exploration and object detection – finding the
target locations for navigation and manipulation. Each of
these capabilities depends on development of hardware and
software, while eventually both need to be managed by the
supervision component. The following sections describe the
approaches for each of the three development lines:

A. HARDWARE

The first main design driver for Artemis were the expected
terrain characteristics with slopes up to 30◦, loose surfaces
with a variety of sand and stone fields. The second design
driver was the required manipulation capability. The Space-
Bot Cup participants had to find, identify and manipulate
three different objects. The strategy of the Artemis team was
to collect both mobile objects and directly transport them to
the stationary third object. To cope with the demands the
hardware development targeted a highly mobile platform to
enable the system to traverse each part of the contest area.
Additionally, the platform was equipped with a six degree
of freedom manipulator and several sensors (Figure 2). In
order to implement these capabilities with only one arm, the
system was further equipped with storage devices for the cup
and the battery.





































Velodyne HDL-32E

XSens IMU MTi 10
AVT Prosilica

W-Lan Modem

Battery Storage
Cup Storage

Wheel Module
Elastic WheelSix DoF Arm

Intel Core i7 
Computer

Fig. 2. The Rover with all subsystems (CAD drawing).

Passive suspension: Artemis locomotion platform con-
sists of three single rockers, each is equipped with two fully
actuated wheel modules. This enables the rover to drive in
every direction from within any orientation and using fully
actuated wheels facilitates the manipulation of objects with a
six degree of freedom manipulator whilst retaining the pos-
sibilities offered by a seven degree of freedom manipulator.
The chosen suspension is based on the 3-Bogie design which
was proposed for the ExoMars rover [10]. This concept
allows for a relatively light weight as well as for higher
static stability compared with other concepts like the CRAB,
RCL-E, and the Rocker-Bogie [11]. High static stability was
a crucial precondition for the placement of a sensor mast
at the top of the system. The final system reaches a static
stability of > 45◦ in each direction.

Sensors: The sensor setup for the system is geared
towards the individual requirements of the different software
modules. The odometry requires the wheel encoder readings
as well as an AHRS. Local obstacle avoidance is performed
using a tilting laser range finder unit located before the front
axis of the system to reduce sensor shadowing. The same unit
is used – together with a small camera for color information
– for the near range object identification and positioning
system. The rotating laser range finder located on the mast
of the system is used for the mapping subsystem. The three
cameras which are also located on the mast are used for the
long range identification of the objects. See Figure 2 for the
exact sensor placements and models.

B. SOFTWARE COMPONENTS & SUPERVISION

The software development approach for Artemis has been
model-based and component-based. Components in Rock
are so-called oroGen components, i.e. Orocos components
which have been generated from a specification file which
describes the component’s interface. The specification mainly
defines input and output ports, operations and configuration
parameters of a task. Based on this specification a binary - a
so-called deployment - can be composed using various task
models. This strategy is useful in multiple ways. Firstly, it
speeds up the development process since framework specific
code is automatically generated and a code skeleton is pro-
vided that allows to easily embed functionality that resides
in framework independent libraries. Secondly, components
are designed modularly and for reuse, e.g., a component
for retrieving images from a camera or a path planning
component can be easily used in different contexts.

Eventually, since each component comes with an explicit
specification further modeling strategies can be applied.
The previously mentioned supervision component allows to
create high-level functionality using composition of multi-
ple components. This additional modeling involves defining
dependencies and data connections between components.
Hence, compositions represent subnetworks of components
and the supervision can manage these subnetwork during
runtime to minimize side-effects of having subnetworks run
in parallel and to optimize resource usage. Furthermore,
the supervision also allows to perform model based vali-



dation of connections and can automatically compute the
size of connection buffers using information given on a
components update frequency. The supervision provides an
abstract modeling layer and thus does not only apply to
oroGen models, but also for ROS Nodes. ROS does not
explicitly provide a specification for nodes but since ROS
uses well defined interfaces the specifications have been
extracted from existing nodes. Having interface specifications
for both component types allowed to manage oroGen and
ROS Nodes in parallel in the supervision.

C. NAVIGATION

The capability to accurately perform localization and
mapping is crucial for a good performance in navigation. To
model the environment and localize the robot, a pose-graph
based approach for Simultaneous Localization And Mapping
(SLAM) is used. As graph SLAM back-end we rely on the
g2o graph optimization framework [12].

Since we do not model environment features separately,
the graph only consists of pose vertices and edges repre-
senting constraints between poses. Each pose is associated
with a full static 360◦ laser scan of the environment. New
poses will be added depending on the euclidean distance the
robot travels from its last known pose in the graph. Possible
sensor movements during scan acquisition are corrected
using odometry based transformation, so that a static 360◦

scan can be created for a single robot pose. Due to the high
speed of the Velodyne laser scanner (10 Hz) the odometry
error is acceptably small.

The transformations between the vertices, represented by
edges, are optimized by an Iterative Closest Point (ICP)
algorithm, using the known odometry based transformation
as a starting point. In particular we use Generalized-ICP
(GICP) [13], which has proven to perform quite well on 3D
lidar data. After adding a new vertex additional edge candi-
dates to the existing vertices are identified, depending on a
maximum euclidean distance (dmax). The edge candidates are
prioritized and processed continuously from the top of the
list. If GICP produces a valid solution for a candidate edge
this edge will be added to the graph. To achieve a sufficiently
connected graph dmax should be at least three times the size
of dmin, in which dmin is the euclidean distance between
consecutive poses. The size of dmax on the other hand is
limited by the ability of GICP to perform valid matches in
time.

The global graph optimization is executed every time a
predefined number of new edges has been added to the
graph. Through the strongly connected graph it is possible
to reduce the impact of poor ICP alignments. Adding an
outlier detecting approach like [14] or [15] can reduce this
impact even more. To limit the memory consumption, older
laser scans are deleted on basis of a 2D grid in which the
scans are indexed based on the position where they were
taken. Deleting older entries in an index cell limits the total
number of scans, but assures sufficient number of scans in
less covered areas.

As a runtime safety feature it is also possible to continue
the SLAM from the latest known location. The current state
of the graph is stored at shutdown of the SLAM module
and loaded again on startup. If the robot has only moved
slightly (< dmin), while the SLAM module was stopped, it
is possible to continue mapping without losing information
or increasing pose uncertainty.

As an additional benefit the SLAM module is real-time
capable and can operate nearly independently of the en-
vironment type. However, it cannot be applied to strongly
ambiguous environments where the ICP algorithm tends to
fail. To integrate well with the overall navigation an abstract
map out of the aligned point clouds is generated on demand,
e.g., when the global planner needs a new map, though this
cannot be done in real-time. A result from the mapping
module created during the competition run is shown in
Figure 3. The generated map uses an extended version of the
multi-level surface map (MLS) [16], [17] for representation.

(a) Multi-level surface map with col-
orized z-height.

(b) Traversability map, increasing
costs are visualized by a color chang-
ing from green to red.

Fig. 3. Maps of the SpaceBot Cup competition area.

To effectively use the generated maps for navigation,
we use a hierarchical approach for path planning, i.e. the
developed path planning consists of a global planner using
D* Lite [18] and a local planner using VFH* [19].

The global planner creates the shortest trajectory from
start to goal avoiding high slopes and obstacles. It is a grid
based planner that works on traversability maps, which are
generated from MLS maps by dividing the cells into cost-
classes according to their slopes. Steeper slopes correnspond
to higher costs and slopes with an inclination above 31 ◦ are
regarded as obstacles. In the global content the dimensions
of the robot is assumed to be a circle. Therefore obstacle
growing can be applied to provide a computational fast way
to implement safety areas around non-traversable regions.
For performance reasons the movement model of the robot
is also simplified. It is assumed that the robot can move
directly into all eight neighbor cells, next to cell representing
the robot’s position, at uniform movement cost. Although the
global planner should be triggered at a low frequency, the
D* Lite algorithm is used for fast and efficient replanning.

The local planner is designed to loosely follow the tra-
jectory generated by the global planner. In contrast to the
global planner it is not grid based, uses a complex motion
model and takes the shape of the robot into account. To be
able to perform the trajectory generation in real time, the



Fig. 4. Modular architecture of the navigation stack.

local planner only computes a trajectory to a horizon that is
perpendicular to the vector from the robot to a target location
on the global trajectory. The target location is computed
by finding the nearest location to the robot on the global
trajectory and advancing a certain distance on it. Additional
speedup is achieved by only computing the traversability map
for the local surrounding of the robot and by using the VFH
algorithm to reduce the sample space of the local planner.

To avoid oscillations during the trajectory execution,
caused by a ’jumpy’ position provider, the local trajectory is
transformed into the odometry coordinate system (OCS). An
additional benefit this approach allows for a higher update
rates of the local trajectory, which results in a smoother
movement for the trajectory following.

The global planner is only run if the SLAM map changed,
the user changed the goal position, or if the local planner
failed. The failure of the local planner is a nominal case, as
the global planner may plan through unknown terrain, which
might turn out to be non traversable. In this case the global
planner is rerun and should change the global trajectory
in a way that it can be followed by the local planner. It
should be noted, that both local and global planner have to
be properly configured to avoid lockouts (see Section IV).
The local planner runs almost continuously as it is triggered
by position changes of the robot and new sensor input to
the local traversability map. If it is triggered, the horizon
is determined from the global trajectory and subsequently
the local motion planning is performed. In contrast to the
global planner the local planner treats unknown areas as
obstacles. In the case that repeatedly no motion towards the
horizon could be performed the local planner reports a failure
to the global planner. Figure 4 shows the integration of all
components of the navigation stack.

D. EXPLORATION & OBJECT-DETECTION

The strategy for solving the SpaceBot Cup challenge was
to use different modules for the identification of objects from
a distance, and an extraction of the objects full pose in the
near field. The rational for this is that searching for items
is performed more effectively in the visual domain, while

extracting a precise pose for manipulation is better solved
using 3D localization methods. The object detection method
uses the images from the mast camera on which a blob
extraction algorithm is applied. Regions with colors similar
to the target color are marked as candidates. After simple
consistency checking of the blobs using their apparent size,
the candidates are projected into a grid map of the environ-
ment. Each occurrence of candidate leads to incrementing a
candidate related counter in the cell. The cell with the highest
count is used as the most likely position of the object.

Once the object is located, the 3D-pointclouds from the
front laser scanner are used to find the pose of the object in
the scene. This is done by looking for parts of the shape, e.g.
planes or curved surfaces and then rate how these elements
could be part of the wanted object. The extracted pose is
then forwarded to the manipulation subsystem.

E. MANIPULATION

The SpaceBot Cup scenario requires manipulation skills to
handle two types of objects: a block-like battery of 1 kg and
cylindrical drinking cup holding approx. 0.2 kg of distilled
water. The objects have to be grasped and put into their
respective stow position on the rover. At the final location
the objects need to be retrieved from their storage position
respectively and assembled with the so-called base object
– a custom-made scale. Figure 2 shows the battery in the
manipulator hand and the cup in its stow positions.

We decomposed the different manipulation tasks into five
basic abilities: a) motion planning to Cartesian and joint
space goals, b) following joint trajectories, c) move the end-
effector towards an attractor pose in Cartesian space, and
d) execution of different grasps suitable for the different
objects involved in the task.

For each of those abilities we separately developed com-
ponents in Rock, mainly by integrating functionalities from
existing software libraries, e.g. such as Reflexxes[20] for
developing a trajectory controller.

In order to pick or place an object, a motionplanner has
to compute a path which is free from self-collisions and
collisions with its environment. For the motion planning
task MoveIt! [21] software is used, which runs on the ROS
framework. The motionplanner uses the current state of
the robot and the environment information for generating
the collision free path. These informations are given to
the motionplanner node from Rock components, since the
supervision component can manage ROS nodes and Rock
components. Figure 5 shows the software components in
ROS and in Rock in use on Artemis.

The gripper component provides the interface to two
different grasps types, a flat and a spherical grasp for round
objects. A grasp is defined by its type, the hand opening
diameter and a reference force to be applied to the object.
By observing motor torques and thresholding them, we detect
successful grasps.

We implemented a Cartesian control component that uses
the weighted damped least squares (WDLS) inverse kinemat-
ics solver of the KDL library [22] to generate joint motion



Fig. 5. Motionplanning as complementary activity of ROS nodes and Rock
components

commands towards a Cartesian target.
Based on these components, we implemented the core

abilities as parametrizable actions. As a bridge between
the data-driven component networks and actions we need
a mapping of the component network state (defined by the
data that is on the network’s ports) to discrete events. In
addition, we require to influence system behavior at a given
moment in time. To achieve this, we used the following syn-
chronization primitives: a) port writers trigger a behaviour
of the component network by writing data to a specific port,
b) port readers read from a port of component network and
store data for later reuse in a state-overlapping memory, and
c) monitors trigger an event when a configurable condition,
which is a description of data on the ports of a component
network, is fulfilled.

The discrete action for Cartesian control ”move arm cart”
serves as example to illustrate the application of the syn-
chronization primitives. This action takes the goal pose,
tolerance boundaries, and a validation time as arguments.
It instantiates the corresponding component network and
triggers the desired behavior by writing the goal pose to the
setpoint port of the Cartesian control component. In order
to determine whether the desired pose is reached a monitor
is attached to the control error port of the same component.
It emits a success event when the absolute control error is
inside the given tolerance boundaries for the given validation
time. The algorithm used for Cartesian control can get stuck
in local minima and a monitor is applied to observe the
joint positions and detect this situation during execution. A
failure event is triggered if joint positions do not change
significantly for some time.

Artemis manipulation strategy builds upon fixed, taught-in
movements wherever possible. To do so, we defined a home
configuration – i.e. a joint configuration that is used as start-
and/or end-point for most of our actions. Picking up objects
in our approach is a sequence of approaching the object,
preparing the grasp and after moving further towards the
object closing the grippers. Similarly, the assembly of objects
is performed as a sequence of planned movements to two
target poses defined relative to the base object. Table I gives

Name of action Dependencies Explanation
Primitive actions

exec arm traj – Execute a given trajectory
move arm cart – Move to a given target pose using

Cartesian controller
move arm cart p exec arm traj,

move arm cart
Plan and execute a trajectory to
a given goal pose. Optionally use
move arm cart if planning fails.

Planned movements with pre-defined goals
move home move arm jnt p Plan and execute movement to

home configuration
Tought in movements

manip store arm exec arm traj Move arm to its store pose
manip unstore arm exec arm traj Move arm from store pose to home
gripper open – Open the gripper

Complex operations
execute grasp move arm jnt p,

gripper open,
move arm cart p,
gripper grasp,
move home

Pre-grasp and grasp pose are given
as arguments. Move arm to a pre-
grasp pose, open gripper, move to
grasp pose, grasp and lift object.

move bat to store move home,
exec arm traj,
gripper open

Transports object in hand to bat-
tery holder using a pre-defined tra-
jectory

unstore bat exec arm traj, grip-
per grasp

Remove object from battery holder
using a predefined trajectory

Top-level operations
store bat move home,

execute grasp,
move bat to store

Grasp and store battery

assemble bat move home,
unstore bat,
move arm cart p,
gripper open

Unstore battery and insert into
base object.

TABLE I
HIERARCHY OF ACTIONS TO MODEL MANIPULATION TASKS FOR

HANDLING THE BATTERY

an example of how manipulation tasks have been created for
handling the battery.

III. COMPETITION RESULTS

The SpaceBot Cup was held over two consecutive days
and the teams where given one day before to prepare at
the given competition location and test their communication
infrastructure. Teams where not allowed to test their robot
in the competition site before the competition, but where
bound to test on a small scale test-bed nearby. In the final
competition each team got a time-slot of one hour to perform
the full mission. Each team had three checkpoints where
communication with the system was available for 5 minutes
with a 4 s round-trip latency.

No team was able to complete the full mission, and the
jury decided to not announce a winner. However, Artemis
demonstrated outstanding locomotion capabilities. Though
manipulation and object detection had also been prepared,
we focus on locomotion and navigation in this result section.
Since the exploration site was roughly known through low-
resolution maps provided by the organizers, an exploration
strategy had been predefined. The main strategy was to
explore the site and meanwhile use the robot’s and operators’
object detection capabilities to locate the target objects. A
coarse waypoint sequence was given to the robot in order to
perform exploration and after reaching a waypoint the robot
tried to advance to the next waypoint. Artemis started off
by autonomously traversing large parts of the exploration



Fig. 6. Artemis negotiating an obstacle while navigating autonomously.

Fig. 7. Traversability map built during the run, with the travelled path
during competition: (1) location of getting first time stuck, (2) location of
getting a second time stuck and official end, and (3) end of autonomous
navigation after exceeding the official competition time.

site (also cf. [23]). The site consisted of sandy terrain with
rocky sections. Artemis easily overcame a section of loose
soil (cf. Figure 1) where the flexible wheels showed their
advantage. Subsequently, Artemis moved over a stone with
a size of about two thirds of a wheel’s diameter (cf. Figure 6)
– compensated by the passive locomotion platform. Finally,
Artemis reached a trench. While the global planner computed
a plan which led through the trench, the local planner did
not allow traversing of the trench and eventually Artemis
became stuck since the global planner did repeatedly lead
the robot into a situation where the local planner prevented
further movement.

Previous to the competition Artemis had been tested to
climb up to 35◦ of inclination. Experiments after the com-
petition using manual operation confirmed the outstanding
locomotion capabilities. However, to fully exploit the capa-
bilities the planning parameter required tuning which needed
to be done during the run. Issues with the communication
infrastructure eventually prevented parameter adaptation and
showing off the full capabilities of the system during the
competition.

IV. LESSONS LEARNT

There is much to be learnt from a competition and host as
well as participants gain experience and can reflect on de-

velopment strategies, design choices and the implementation
with respect to the final performance. Thus, the following
discussion will take a critical look at the performance of
Artemis in the competition and the decisions made during
and prior to the competition.

Incremental goals and the critical path: The decisions
made prior to the competition were influenced by an opti-
mistic and ambitious attitude and the goal to complete the
full mission – not just parts of it. While resource limitations
existed only small time buffers could be accounted for, reduc-
ing integration and test time for the fully integrated system
to a minimum. The initial focus was put on designing the
high-level functionality of Artemis to allow for autonomous
operation. However, the competition showed that manual
interaction with the operator remains a critical and substantial
element for error handling. Eventually, remote operation
of the system was a single point of failure of Artemis.
While the development targeted a fully autonomous system
the risk of not achieving this goal was high. A dedicated
approach for risk mitigation would have identified operations
as an element of the critical development path leading to a
(re)prioritization of the implementation task for operations.

Maintain a robust development procedure: The model-
based development approach throughout all development
phases proved to be highly beneficial – thanks to a well
structured and proven workflow of Rock. Package manage-
ment facilitated integration of external packages as well as
the management of existing ones, and the general encapsu-
lation of functionality in libraries served for good reusability
of existing functionality. Furthermore, auto-generation of
component’s framework code allowed to easily maintain
the framework specific (oroGen) components and create
interface contracts using well defined input and output types.
Finally, creating components with standardized interfaces
using Rock allowed to apply a proper system management
tool.

Rock facilitates many tasks when developing a robotic
system, but additional complexity arose using Rock compo-
nents and ROS nodes in parallel. The supervision module
was capable of handling both component types, yet this
functionality was a recent development and as such did
not have a perfect integration in the existing development
workflow. We did not enforce the workflow early on all
developers for testing and smoothing the process and suffered
debugging efforts in later stages of the development. Thus,
maintaining a robust and reliable workflow when developing
complex systems should be given high priority.

The human factor in a component-based development
approach: The theoretical benefit of a component-based
system is the ease of integration. Artemis development
showed that this assumption does directly depend on the
maturity of the components, i.e. when interfaces including
configuration properties require frequent updates integration
becomes much harder. In contrast to the previously men-
tioned robust workflow for the component design, Artemis’
integration workflow to create high-level functionality from
these components as part of the supervision showed some



weaknesses with respect to communication between system
specialists and system integrators. System specialists used a
different set of tools for performing small integration testing
than the system integrator which led to some redundant
work and a communication gap. The workflow for creating
and testing high-level functionality should be homogeneous
and allow to communicate and propagate requirements and
semantics of components more clearly – ideally in a model-
based fashion to allow verification.

Top down versus bottom up: A top down approach
seems to be desirable for developments that focus only on
a given mission scenario. Developing for Artemis started
with a top down approach, but soon turned into a mixture
of bottom up and top down approach. The mixed approach
originated from reusing existing components with new ex-
perimental components where details of the implementation
were unforeseen. From our experience, an experimental
development approach seems to favour a bottom-up strat-
egy in combination with an agile development approach.
However, componentization and modularization is motivated
by fostering reusability and a top down view will still
be beneficial to identify generic, reusable parts. From our
experience as soon as the development turns experimental
the impact of a top down approach is severly limited and
top down development efforts can stay on an abstract level
without detailing interfaces precisely.

Testing: At the time of development we missed ad-
vanced offline unit-test facilities in the supervision to evalu-
ate high-level functionality. Since these runtime tests had to
be performed either in simulation or on the real system this
led to a development slow-down. This stressed that unit-tests
should not be missed at any level of hardware and software.
Main parts of the initial development for Artemis relied on
software simulation and the complementary application of
simulation and real world testing led to an increase of the
team’s efficiency and allowed to cope with the short time
frame for integration testing, since faulty behaviour of the
real system could be fixed using simulation.

V. CONCLUSIONS & FUTURE WORK

The result of the competition showed that handling a
complex navigation and manipulation scenario autonomously
is more than putting the parts together. Although the indi-
vidual parts required for the activities have been extensively
researched in the past, the application of the individual skills
in an integrated scenario provides additional challenges with
many interesting open questions. On the software level the
relation between task components, operations and failure
management is likely a key element in the advancement
towards robust autonomy in complex real world settings.
Explicitly setting up the layout of the components of a
system does not scale very well in terms of complexity and
robustness. As an alternative, functional models of the com-
ponents and their connections can be used for decomposition,
validation and reconfiguration of the component networks.
The Rock framework already provides many tools for the
support of this approach, however there is much work to be

done in order to make it more accessible and robust. Events
like the SpaceBot Cup are a great way to probe the abilities
and force the evaluation of fully integrated systems and all
the problems that come with it.

ACKNOWLEDGMENT

The work presented here is part of the Project ”SpaceBot”,
which is funded by the Federal Ministry for Economics
and Technology (BMWI) through the German Space Agency
(DLR) grant number 50RA1318.

REFERENCES

[1] B. Harvey, Soviet and Russian Lunar Exploration, ser. Springer Praxis
Books. New York, NY: Praxis, 2007.

[2] J. P. Grotzinger, “Exploring martian habitability. Habitability, taphon-
omy, and the search for organic carbon on Mars. Introduction.” Science
(New York, N.Y.), vol. 343, no. 6169, pp. 386–7, Jan. 2014.

[3] E. Lakdawalla, “China lands on the Moon,” Nature Geoscience, vol. 7,
no. 2, pp. 81–81, Jan. 2014.

[4] C. Kunz, C. Murphy, and H. Singh, “Toward extraplanetary under-ice
exploration: Robotic steps in the Arctic,” Journal of Field Robotics,
2009.

[5] S. Bartsch and T. Birnschein, “Development of the six-legged walking
and climbing robot spaceclimber,” Journal of Field Robotics, vol. 29,
no. October 2008, pp. 506–532, 2012.

[6] R. J. Léveillé and S. Datta, “Lava tubes and basaltic caves as
astrobiological targets on Earth and Mars: A review,” Planetary and
Space Science, vol. 58, no. 4, pp. 592–598, Mar. 2010.

[7] J. Schwendner and S. Joyeux, “Classifying Autonomy for Mobile
Space Exploration Robots,” in i-SAIRAS 2010, Sapporo, Japan, 2010.

[8] T. Kaupisch and D. Noelke, “DLR SpaceBot Cup 2013 - A Space
Robotics Competition,” Künstliche Intelligenz, 2014.

[9] S. Joyeux, F. Kirchner, and S. Lacroix, “Managing plans: Inte-
grating deliberation and reactive execution schemes,” Robotics and
Autonomous Systems, vol. 58, no. 9, pp. 1057 – 1066, 2010, hybrid
Control for Autonomous Systems.

[10] S. Michaud, A. Gibbesch, T. Thueer, A. Krebs, C. Lee, B. Despont,
B. Schäfer, and R. Slade, “Development of the exomars chassis and
locomotion subsystem,” in i-SAIRAS 2008, 2008.

[11] N. Patel, R. Slade, and J. Clemmet, “The exomars rover locomotion
subsystem,” Journal of Terramechanics, vol. 47, no. 4, pp. 227 – 242,
2010.

[12] R. Kuemmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in IEEE Int. Conf.
on Robotics and Automation (ICRA), 2011.

[13] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp,” in Proc. of
Robotics: Science and Systems (RSS), vol. 25, 2009, pp. 26–27.

[14] N. Sunderhauf and P. Protzel, “Switchable constraints for robust pose
graph slam,” in IEEE/RSJ Intelligent Robots and Systems (IROS).
IEEE, 2012, pp. 1879–1884.

[15] P. Agarwal, G. D. Tipaldi, L. Spinello, C. Stachniss, and W. Burgard,
“Robust map optimization using dynamic covariance scaling,” in IEEE
Int. Conf. on Robotics & Automation (ICRA), 2013.

[16] R. Triebel, P. Pfaff, and W. Burgard, “Multi-level surface maps for
outdoor terrain mapping and loop closing,” in IEEE/RSJ Intelligent
Robots and Systems. IEEE, 2006, pp. 2276–2282.

[17] J. Schwendner, “Embodied Localisation and Mapping,” Ph.D. disser-
tation, Universität Bremen, 2013.

[18] S. Koenig and M. Likhachev, “D*lite.” in AAAI/IAAI, R. Dechter and
R. S. Sutton, Eds. AAAI Press / The MIT Press, 2002, pp. 476–483.

[19] I. Ulrich and J. Borenstein, “Vfh*: Local obstacle avoidance with
look-ahead verification.” in ICRA. IEEE, 2000, pp. 2505–2511.

[20] Reflexxes, “The reflexxes motion libraries,” 2013.
[21] A. Sucan and S. Chitta, “Moveit!” 2013. [Online]. Available:

http://moveit.ros.org
[22] R. Smits, “Kdl: Kinematics and dynamics library.” [Online]. Available:

http://www.orocos.org/kdl
[23] MrRheingold, “Spacebot Cup: Robotik Wettbewerb,” retrieved March

25 2014, from http://www.youtube.com/watch?v=vaDo4eMk2Go.


