

The CAPIO Active Upper Body Exoskeleton

Poster Contribution to the Workshop 'RoboAssist', ICRA 2014

Martin Mallwitz, Luis Vaca Benitez, Bertold Bongardt, Niels Will

DFKI Robotics Innovation Center (RIC), Bremen, Germany – headed by Prof. Dr. Frank Kirchner –

Upper Body Exoskeleton for Teleoperation

DFKI Robotics Innovation Center (RIC)

- A young institute (since 2008), part of the DFKI (since 1988)
- Approach: robotics + artificial intelligence
- Projects in space and underwater robotics, search & rescue, electric mobility, brain reading
- Website: http://robotics.dfki-bremen.de

Usage of exoskeletons

- Teleoperation of remote controlled target systems
- Manipulation of virtual environments
- Robotic rehabilitation

VI-Bot Project (2008-2010)

- · An exoskeleton for the right arm
- · Actuation system: hydraulics
- · Virtual immersion for teleoperation of robotic arms

Potential applications of exoskeletons.

Operator wearing the VI-Bot exoskeleton.

CAPIO Project (2011-2013)

- · Active multi contact exoskeleton for the human upper body
- · Large cover of human workspace: back, arms, and hands
- Teleoperation of complex robotic target systems
- Rich force feedback experience: contact points at hip, shoulders, upper and lower arms
- Perspective application: rehabilitation

Control

- Safe and comfortable operation
- Strategies for the integration of biological signals (EMG)

Teleoperation

- Following a generic modeling approach, based on kinematics and Cartesian mappings
- Effective teleoperation of robots using mental capabilities of the human

Serial kinematic arm concept.

Serial kinematic back concept.

Passive study for validating kinematic setup.

Results – Hardware

Kinematic structure

- Eight active DOF at each arm, four active DOF at the back
- · Four passive DOF and five adjustment DOF
- Novel open joint concept at shoulder and wrist joints

Lightweight materials

· High tensile aluminium, Carbon-fiber-reinforced-plastics

Actuators

- · All actuators equipped with serial-elastic elements
- Example shoulders and elbows: brushless DC motor, gear system, spring element, position sensors combined: highly integrated design, high power-weight ratio

Sensors and electronics

- Using deflection of elasticities as sensor for control tasks
- Precise magnetic sensors based on nonius principle
- Inhouse developed FPGA based power electronic

The CAPIO active upper body exoskeleton.

Operator wearing the CAPIO exoskeleton.

Lower arm structure, open joint concept.

Results – Software and Applications

Workflow

- Using the inhouse software CAD2SIM
- · Kinematic-dynamic modeling based on originary CAD data
- Output kinematics and visualization: OpenRAVE
- Output dynamics: 'rigid body dynamics library' (RBDL)

Control

- Low-level distributed torque control of actuated joints
- Mid-level combination of approaches in joint space and in Cartesian space (multi body dynamics)
- · High-level selection of the modes for operation

Teleoperation

- Inhouse operation of several platforms: AILA humanoid, Mitsubishi PA-10, and Schilling ORION 7P
- Teleoperation of a robot in > 3000 km distance (Bremen, DE – Magnitogorsk, RU)

Rehabilitation

• Elbow orthosis integrating EMG signals into control

Workflow scheme for the conversion tool CAD2SIM.

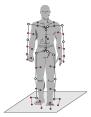
An integrated actuator at the shoulder.

Teleoperation of the RIC humanoid robot AILA.

Future Work

System

- Reduction of system weight
- Systematic evaluation of system
- · Improvements in actuators, structure and software
- · An exoskeleton for the whole human body


Applications

- · Systematic evaluation of approaches for teleoperation
- Control of further robotic systems: e.g., rovers equipped with arm manipulators
- · Applications to real world industrial applications
- · Applications to real world rehabilitation

A scheme for an application in rehabilitation.

A sketch of a full-body multi-contact exoskeleton.

Roy Featherstone. Rigid Body Dynamics Algorithms. Springer, 2008.

Rosen Diankov. Automated Construction of Robotic Manipulation Programs. PhD thesis, Carnegie Mellon University, Robotics Institute, 2010.

Martin Felis. Rigid Body Dynamics Libary (RBDL). http://rbdl.bitbucket.org, 2011.

►

Publications

- Luis M. Vaca Benitez, Marc Tabie, Niels Will, Steffen Schmidt, Mathias Jordan, and Elsa Kirchner. Exoskeleton technology in rehabilitation: Towards an emg-based orthosis system for upper limb neuromotor rehabilitation. Journal of Robotics, 2013.
- Luis M. Vaca Benitez, Niels Will, Marc Tabie, Steffen Schmidt, Elsa Kirchner, and Jan Albiez. An EMG-based assistive orthosis for upper limb rehabilitation. In *Biodevices*, 2013.
- Bertold Bongardt. CAD-2-SIM Kinematic Modeling of Mechanisms Based on the Sheth-Uicker Convention. In ICIRA 2011, LNAI 7101, pages 465–477, 2011.
- Bertold Bongardt. Sheth-Uicker Convention Revisited A Normal Form for Specifying Mechanisms. Technical report, RIC, DFKI, Bremen, 2012.
- Bertold Bongardt. Sheth–Uicker convention revisited. Mechanism and Machine Theory, 69:200 229, 2013.
- Bertold Bongardt. Geometric Characterization of the Workspace of Non-Orthogonal Rotation Axes. Journal of Geometric Mechanics, accepted, 2014.
- Seyedshams Feyzabadi, Sirko Straube, Michele Folgheraiter, Elsa Kirchner, Su Kyoung Kim, and Jan Albiez. Human force discrimination during active arm motion for force feedback design. IEEE Transactions on Haptics, 2013.
- Michele Folgheraiter. Dual-arm upper-body exoskeleton for telerobotics and rehabilitation. In Proceedings of Robotica 2011, Humanoid and Service Robots. Artenergy Publishing, 2011.
- Michele Folgheraiter, Mathias Jordan, Jan Albiez, and Frank Kirchner. A Bio-inspired Control System for a Wearable Human-Machine Interface. In International Conference on Adaptive Behaviour, 2012.
- Michele Folgheraiter, Mathias Jordan, Sirko Straube, Anett Seeland, Su-Kyoung Kim, and Elsa Andrea Kirchner. Measuring the improvement of the interaction comfort of a wearable exoskeleton. International Journal of Social Robotics, 4(3):285–302, 2012.
- Mathias Jordan, Luis Manuel Vaca Benitez, Steffen Schmidt, Michele Folgheraiter, and Jan Albiez. Model-Based Control and Design of a Low-Pressure Fluid Actuation System for Haptic Devices. In Hubert Borgmann, editor, Proceedings der Actuator 2012. International Conference on New Actuators (ACTUATOR-12), pages 295–298, 2012.
- Elsa Andrea Kirchner, Jan Albiez, Anett Seeland, Mathias Jordan, and Frank Kirchner. Towards assistive robotics for home rehabilitation. In Mireya Fernández Chimeno, Jordi Solé-Casals, Ana Fred, and Hugo Gamboa, editors, Proceedings of the 6th International Conference on Biomedical Electronics and Devices (BIODEVICES-13), pages 168–177. SciTePress, 2013.
- Marc Table and Elsa Andrea Kirchner. EMG onset detection comparison of different methods for a movement prediction task based on EMG. In Sergio Alvarez, Jordi Solé-Casals, Ana Fred, and Hugo Gamboa, editors, In Proceedings of the 6th International Conference on Bio-Inspired Systems and Signal Processing (BIOSIGNALS-13), pages 242–247. SciTepress, 2013.

