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PROBLEM OVERVIEW
• The appearance properties for opaque materi-

als are effectively described using the Bidirec-
tional Reflectance Distribution Function (BRDF).

• BRDF describes how much light from an inci-
dent direction is reflected to an outgoing direc-
tion.

• We assume that we are provided with a
%sparse, %irregularly sampled set of angular
BRDF measurements containing%outliers.
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! Task: Robustly reconstruct the complete BRDF that accurately de-
scribes the sparsely measured behavior.

CONTRIBUTIONS
• A common approach to non-parametric BRDF estimation is the ap-

proximation of the sparsely measured input using basis decomposition.

• We introduce the novel concept of correction functions which
greatly improves the overall fitting accuracy of such methods.

• We also introduce a basis to efficiently estimate novel, dense BRDF
correction functions from sparse measurements.

• Our algorithm is the first to explicitly address outliers and computes
physically meaningful solutions.

• Further, the method is invariant to different error metrics which al-
leviates the error-prone choice of an appropriate one for the given
input.

• Real and synthetic experiments show that our method can outper-
form other state-of-the-art basis decomposition methods by an or-
der of magnitude in the perceptual sense.
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! Measured values directly
represented

! No error metric needed
% Physically implausible
% Noise and outliers directly

represented

! Physically plausible
! Relatively robust w.r.t. out-

liers
% Dependent on error met-

ric
% Low flexibility

! Large flexibility
% Dependent on error met-

ric
% Physically implausible
% Not robust w.r.t. outliers

Our Method

Linear Logarithmic

0.20 0.19

! Physically plausible
! Independent on error

metric
! Large flexibility
! Robust w.r.t. outliers

BASIS DECOMPOSITION
• Idea: Express BRDF function using suitable basis Ψi:

ρ(~x) ≈
∑
i

αiΨi(~x)

• Global basis: Ψi non-zero for a large range of parameters.

• Local basis: Ψi zero for a large range of parameters.

• Estimate coefficients αi by fitting to the measurements.

• How to define a good fit? → Choose error metric.

% Quality of result is highly dependent on this choice!

Measured Global basis of 99 Linear Root Logarithmic Our Method
material measured materials [3] 17.55 18.10 13.36 0.62

OUR METHOD
• Operate using global bases→ robust w.r.t. sparse data.

• Key idea: Avoid the inflexibility and reduced accuracy of a global
basis by iteratively applying different corrections to an initial estimate.

• Explicitly identify and exclude outliers during iterative process to
converge to true solution.

1. Initialize dense estimate % from sparse measurements ρi ≈
ρ(θhi, θdi, φdi) using basis of 100 measured materials Mi [3]:

ρ(θh, θd, φd) ≈ %(θh, θd, φd) =
∑
i

αiMi(θh, θd, φd)

2. Formulate a BRDF correction function σ that represents the error of
this estimate using scaling factors:

ρ(θh, θd, φd) = σ(θh, θd, φd)%(θh, θd, φd)

% Problem: Dense σ is unknown and must be estimated!

3. Compute sparse set of correction factors σi:

σi =
ρi

%(θhi, θdi, φdi)

4. Assign a low weight to correction factors where measured input ρi
and estimate %i = %(θhi, θdi, φdi) differ largely to detect outliers:

wi = e
−γ |ρi−%i|%i

5. Estimate correction function from σi using suitable global correction
basis Ci:

σ(θh, θd, φd) =
∑
i

βiCi(θh, θd, φd)

! Suitable correction basis is introduced within the next section.

6. Correct current estimate:

%(θh, θd, φd) := σ(θh, θd, φd)%(θh, θd, φd)

7. Stop if sigma is almost constantly one, otherwise continue from 2.

CORRECTION BASIS
• Our intuition was that novel correction functions can be well de-

scribed using a basis of previously generated correction functions.

• Idea: Generate global basis of correction functions Ci from set of 100
measured materials Mi [3]:

1. For each BRDF Mi from this database, compute an approximation
using the remaining 99 materials as a basis:

Mi(θh, θd, φd) ≈ %(θh, θd, φd) =
∑
j,j 6=i

βiMj(θh, θd, φd)

2. Compute dense correction function Ci as:

Ci(θh, θd, φd) =
Mi(θh, θd, φd)

%(θh, θd, φd)

• Characteristics of such generated scaling correction functions Ci:

! Values of each correction function are distributed within a narrow
range.

! Each correction function itself is a relatively smooth function.

→ In sharp contrast to usually rapidly changing BRDF functions!
→ Space of correction functions is less complex than space of BRDFs.
→ Finding good approximations is more easy in this space.

% Open question: Is generated basis expressive enough to model
novel correction functions?

Test: How well is each Ci (top) described using the remaining 99 func-
tions (bottom)?

! Average scaling deviation of only 0.076 units.
2D projected for visualization

SYNTHETIC EVALUATION
• State-of-the-art methods: (10% data, 40% outliers)

Linear Logarithmic Linear Logarithmic

26.88 23.21 47.79 13.67 8.83

Sparse Ground Global Global Local Local Tabular
Input Truth [4, 6, 5, 1] [4, 6, 5, 1] [7, 6] [7, 6] [4, 2]
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SYNTHETIC EVALUATION (CONT.)
• Our method: (10% data, 40% outliers)

23.21 5.00 1.91 0.72

Ground truth / Initial- Iteration Iteration Iteration
Sparse input ization 1 2 10

• Average perceptual errors:

Data ratio
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0.00 0.28 0.29 0.29 0.29 0.31
0.20 0.36 0.37 0.44 0.41 0.49
0.40 0.73 0.72 0.75 0.78 0.92
0.60 2.06 2.10 2.05 2.23 2.31
0.80 4.86 4.89 4.83 4.81 4.83

Data ratio

Loc 1.0 0.7 0.5 0.3 0.1
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ut
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r
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o

0.00 4.11 4.11 4.13 4.15 4.17
0.20 6.85 6.78 6.96 7.12 7.74
0.40 9.74 9.98 9.79 10.41 11.04
0.60 12.49 12.63 12.49 12.56 13.45
0.80 15.18 15.32 15.28 15.16 15.92

Data ratio

Glo 1.0 0.7 0.5 0.3 0.1
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o

0.00 4.88 4.89 4.91 4.96 5.05
0.20 6.32 6.58 6.76 7.57 7.59
0.40 7.97 8.22 7.93 8.32 9.03
0.60 9.64 9.74 9.46 9.59 9.53
0.80 11.33 11.16 11.05 11.05 10.61

Data ratio

Tab 1.0 0.7 0.5 0.3 0.1
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ut
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o

0.00 0.00 0.09 0.20 0.46 2.14
0.20 17.32 15.59 17.28 14.00 12.30
0.40 26.12 26.38 24.80 24.35 22.90
0.60 33.32 34.90 32.71 32.13 28.22
0.80 39.86 41.70 40.75 38.94 34.09

! Outperformed other methods by an order of magnitude in the per-
ceptual sense for outlier ratios up to 40%.

• Sensitivity towards error metric:

Our Global Local
Linear Root Logarithmic Linear Root Logarithmic Linear Root Logarithmic

0.44 0.31 0.28 13.39 5.05 4.88 24.14 3.32 4.11

! Method is invariant w.r.t. different error metrics.

REAL DATA EVALUATION
• Evaluation using 16 newly measured materials:

0.54 0.41 0.19

Sparse Global Local Tabular Our
Input [4, 6, 5, 1] [7, 6] [4, 2]

Method

Glo Loc Our
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1 0.37 0.31 0.19
2 0.49 0.35 0.21
3 0.53 0.47 0.23
4 0.51 0.29 0.18
5 0.58 0.29 0.19
6 0.54 0.41 0.19
7 0.37 0.34 0.19
8 0.45 0.38 0.19
9 0.57 0.37 0.19

10 0.48 0.36 0.18
11 0.47 0.41 0.23
12 0.56 0.40 0.18
13 0.54 0.55 0.20
14 0.49 0.39 0.18
15 0.61 0.44 0.19
16 0.49 0.31 0.15

Avg. 0.50 0.38 0.19

1.0

0.0

! Achieved a significantly lower perceptual error.


