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Applying Brain Activity in Robotics

The DFKI RIC and the Robotics Lab of the University of Bremen, Germany, build different kinds of
robots, like underwater robots, space robots, exoskeletons, robotic cars, rescue robots, or humanoid
robots. These robots are to a certain degree autonomous. However, any robot needs the interaction
with a human to share control, to make use of human cognitive resources, or to support humans that
are for example disabled or work in very demanding environments.
Our work group works to improve human-machine interaction by inferring upcoming interaction behav-
ior based on the analysis of biosignals and technical data. Especially brain activity is of high interest
for us, since its analysis enables to uncover preconscious intentions like movement intention.

Embedded Brain Reading

”Embedded Brain Reading (eBR) empowers a human-machine interface (HMI), which can be a robotic
system, to infer the human’s intention and hence her/his upcoming interaction behavior based on the
context of the interaction and the human’s brain state. The upcoming interaction behavior can be
supported even before its execution is detected and in case that the user is disabled. [5, 4]”
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To enable support of human-machine interaction by eBR, an automatic context recognition or gen-
eration as well as online, single-trial brain signal decoding, i.e., brain reading (BR) for the detection
of specific brain states, are required. For our purposes, we define BR as: ”The decoding of brain
activity into information on the user’s brain state, independent of whether this brain state is correlated
with conscious or unconscious processes. The detected brain states are not artificially produced by
the interacting human for, e.g., communication purposes, but naturally and passively ”evoked” during
interaction behavior”.
Error-free function must be supported or possible misclassification of brain states must be handled
such that malfunctioning is avoided. Concepts for eBR can be evaluated based on a formal model [4].
Depending on the demands of interaction in (robotic) applications, such as tele-manipulation [12, 10]
or rehabilitation [2, 1, 6], eBR can be applied to either adapt or to drive HMIs, i.e., can be used for
passive or active support.

Embedding Brain Reading in Applications

To make use of BR in real applications it must be embedded:
• brain activity should be analyzed by systems that are embedded into the robotic system or

interface [7]
can be achieved by means of FPGA based analysis systems and software [13] — see poster ”reSPACE”

• brain signal analysis is embedded in multimodal signal analysis to improve performance and to
reduce the risk of malfunctioning [6]

biosignals, like eye movements, electromyogram, heart rate, movement data can be combined with other
non-biosignals like technical data of the interface or robotic system
both types of signals give insight into the human state or intention as well as the context of interaction
the correctness of predictions about the state and intention of the user and context of interaction can be improved
by using more than one signal type

Applications
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everyday situation

⦁ movement preparation detection
⦁ possible movement trigger

⦁ prediction of users desire 
⦁ movement path estimation
⦁ possible movement trigger 
in very early rehabilitation 
phase after brain lesion

⦁ user assistance / control
⦁ movement planning (fwd. kinematics)
⦁ active movement execution
⦁ force feedback application

⦁ physical movement detection
⦁ confirmation of eeg-based movement prediction
⦁ movement pattern prediction
⦁ possible movement trigger in later rehabilitation phase

⦁ full virtual immersion
⦁ visual feedback
⦁ force feedback computation
⦁ semantic control and supervision
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Single Trial Signal Analysis - Optimizations for Applications

To make use of BR in real applications
• single trial analysis must be performed:

the signal processing and classification framework pySPACE for systematic evaluation and online classification was
developed [8] — see poster ”pySPACE”

• training data must be recorded in applications that may not produce a sufficient amount:
classifier training can be performed on similar brain patterns [5, 3, 12]
transferred classifier can be adjusted to the new class [9]
runtime adaptation, e.g., of the classifier, can be performed [14, 11]

optimize 
training

gain 
knowledge

References
[1] Luis Manuel Vaca Benitez, Marc Tabie, Niels Will, Steffen Schmidt, Mathias Jordan, and Elsa Andrea Kirchner.

Exoskeleton Technology in Rehabilitation: Towards an EMG-Based Orthosis System for Upper Limb Neuromotor Rehabilitation.
Journal of Robotics, 2013, Nov 2013.

[2] Michele Folgheraiter, Mathias Jordan, Sirko Straube, Anett Seeland, Su Kyoung Kim, and Elsa Andrea Kirchner.
Measuring the improvement of the interaction comfort of a wearable exoskeleton.
International Journal of Social Robotics, 4(3):285–302, 2012.

[3] Su Kyoung Kim and Elsa Andrea Kirchner.
Classifier transferability in the detection of error-related potentials from observation to interaction.
In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, SMC-2013, Manchester, UK, October 13-16, pages 3360–3365, Oct 2013.

[4] Elsa Andrea Kirchner and Rolf Drechsler.
A Formal Model for Embedded Brain Reading.
Industrial Robot: An International Journal, 40:530–540, 2013.

[5] Elsa Andrea Kirchner, Su Kyoung Kim, Sirko Straube, Anett Seeland, Hendrik Wöhrle, Mario Michael Krell, Marc Tabie, and Manfred Fahle.
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[8] Mario Michael Krell, Sirko Straube, Anett Seeland, Hendrik Wöhrle, Johannes Teiwes, Jan Hendrik Metzen, Elsa Andrea Kirchner, and Frank Kirchner.
pySPACE - a signal processing and classification environment in Python.
Frontiers in Neuroinformatics, 7(40), Dec 2013.
https://github.com/pyspace.

[9] Jan Hendrik Metzen and Elsa Andrea Kirchner.
Rapid adaptation of brain reading interfaces based on threshold adjustment.
In Proceedings of the 2011 Conference of the German Classification Society, (GfKl-2011), page 138, Frankfurt, Germany, Aug 2011.

[10] Anett Seeland, Hendrik Woehrle, Sirko Straube, and Elsa Andrea Kirchner.
Online movement prediction in a robotic application scenario.
In 6th International IEEE EMBS Conference on Neural Engineering (NER), pages 41–44, San Diego, California, Nov 2013.

[11] Marc Tabie, Hendrik Woehrle, and Elsa Andrea Kirchner.
Runtime Calibration of online EEG based Movement Prediction using EMG Signals.
In In Proceedings of the 7th International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS-14), pages 284–288, Angers, France, March 2014. ScitePress.

[12] Hendrik Woehrle and Elsa Andrea Kirchner.
Online Detection of P300 related Target Recognition Processes During a Demanding Teleoperation Task.
In Proc. International Conference on Physiological Computing Systems, (PhyCS 2014), pages 13–19, Lissabon, Portugal, 2014. ScitePress.

[13] Hendrik Wöhrle, Johannes Teiwes, Elsa Andrea Kirchner, and Frank Kirchner.
A framework for high performance embedded signal processing and classification of psychophysiological data.
In APCBEE Procedia. International Conference on Biomedical Engineering and Technology (ICBET-2013), 4th, May 19-20, Kopenhagen, Denmark. Elsevier, 2013.
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