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Abstract

Workflow knowledge comprises both explicit, verbalizable knowledge and im-

plicit knowledge, which is acquired through practice. Learning a complex work-

flow therefore benefits from training with a permanent corrective. Augmented

Reality manuals that display instructive step-by-step information directly into the

user’s field of view provide an intuitive and provably effective learning environ-

ment. However, their creation process is rather work intensive and current techno-

logical approaches lead to insufficient interactivity with the user.

In this thesis we present a comprehensive technical approach to algorithmically

analyze manual workflows from video examples and use the acquired information

to teach explicit and implicit workflow knowledge using Augmented Reality. The

technical realization starts with unsupervised segmentation of single work steps

and their categorization into a coarse taxonomy. Thereafter, we analyze the single

steps for their modalities using a hand and finger tracking approach optimized for

this particular application. Using explicit, work step specific generalization we are

able to compensate for morphological differences among different users and thus

to reduce the need for large amounts of training data. To render this information

communicable, i.e., understandable by a different person, we present the further

processed data using Augmented Reality as an interactive tutoring system.

The resulting system allows for fully or semi-automatic creation of Augmented

Reality (AR-)manuals from video examples as well as their context-driven pre-

sentation in AR. The method is able to extract and to teach procedural, implicit

workflow knowledge from given video examples. In an extensive evaluation, we

demonstrate the applicability of all proposed technical components for the given

task.



Kurzzusammenfassung

Handlungswissen umfasst neben explizitem und verbalisierbarem Wissen auch im-

plizites, prozedurales Wissen, dessen Aneignung durch Übung geschieht. Das

Erlernen eines entsprechenden Arbeitsablaufes bedarf daher eines ständigen Kor-

rektivs. Augmented Reality Handbücher, die schrittweise Anleitungen direkt ins

Sichtfeld des Benutzers einblenden, bieten ein intuitives und nachweislich ef-

fektives Lernumfeld. Bislang ist deren Erstellung allerdings mit hohem Arbeit-

saufwand verbunden und die Systeme haben, bedingt durch den grundsätzlichen

technologischen Ansatz, eine begrenzte Interaktivität mit dem Benutzer.

In dieser Thesis wird ein umfassender technischer Ansatz vorgestellt, um manuelle

Arbeitsprozesse aus Videobeispielen zu erfassen und daraus abgeleitetes explizites

sowie implizites Handlungswissen mittels Augmented Reality zu schulen. Die

technische Umsetzung beginnt mit der unüberwachten Segmentierung einzelner

Handlungsschritte und deren Einteilung in eine grobe Taxonomie. Darauffolgend

werden die einzelnen Handlungen durch ein, für diesen Anwendungsfall opti-

miertes, Hand- und Fingertracking Verfahren auf die genaueren Ausführungsmo-

dalitäten hin untersucht. Durch die präzise Erfassung dieser konkreten Ausprägung

des impliziten Handlungswissens, kann der Externalisierungsschritt umgangen wer-

den. Um die hierbei aufgezeichneten Inhalte schulbar, d.h. für einen Menschen

wieder erfassbar zu machen, werden die Daten aufbereitet und mittels Augmented

Reality in Form eines interaktiven Tutor-Systems dargestellt. Im Gegensatz zum

gängigen Stand der Technik auf diesem Gebiet erfasst dieses System präzise den

aktuellen Kontext des Benutzers und überwacht und korrigiert Ausführungsfehler.

Die Übertragung auf die Morphologie des Anwenders geschieht hierbei über eine

explizite handlungsschrittspezifische Generalisierung der Trainingsdaten.

Das entstehende Gesamtsystem ermöglicht das voll- und teilautomatische Erstellen

von Augmented Reality (AR-)Handbüchern aus Videobeispielen und deren vollstän-

dig kontextgetriebene Präsentation in AR. Das Verfahren ist in der Lage, prozedu-

rales, implizites Handlungswissen aus Videobeispielen zu erfassen und zu schulen.

In einer umfassenden Evaluierung wird die Eignung der vorgestellten technischen

Komponenten für die Aufgabenstellung nachgewiesen.
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1

Introduction

Workflow knowledge comprises both explicit, verbalizable knowledge and implicit knowledge,

which is acquired through practice. While the first type can be well presented in the form of

traditional paper documentation, the second requires or at least benefits from training with a

permanent corrective. Augmented Reality (AR) which denotes the augmentation of virtual

information into the sensory perception of reality has proven to be promising in this regard:

Augmented Reality manuals that provide context-aware step-by-step instructions directly in

the field of view have been an important use case and selling proposition for AR in general.

Although the conceptual idea for these systems has already been proposed in 1992 [1]

and in spite of their often reported usefulness [2, 3, 4], these systems are in no way widely

used. Besides ergonomical problems related to the required hardware, significant factors are

the complex technical requirements that make their creation sophisticated and expensive. These

requirements can be categorized into authoring and tracking:

Authoring is the process of creating visual overlays and associating those with certain ob-

ject parts or process steps, which requires a script-like description of the task structure. To

be able to visualize these overlays on top of the associated object parts, a tracking system is

required. Although there are marker-based and markerless approaches, both require intensive

planning. Either because markers need to be placed or markerless tracking needs to be trained

to detect single parts and object states.

All current approaches require a complex, time-consuming, and scenario-specific creation

process with two specific consequences: Due to its complexity, the creation process cannot

generally be conducted by a domain expert like a maintenance worker or mechanic but has

to be supported by a person with technical knowledge in AR. While this is certainly a cost

1



1. INTRODUCTION

(a) Google Glass [5] (b) Vuzix STAR 1200 [6]

Figure 1.1: The intended display devices, including all necessary sensors.

driver the main problem is that the solutions do not scale well with the problem size. Due

to the considerable effort to implement a system for a single scenario, it becomes increasingly

infeasible to provide AR-based assistance to a growing number of scenarios. Considering there

might be hundreds or even thousands of different maintenance workflows at a single factory

or garage, the implementation of comprehensive AR assistance is prohibitive following the

current state of the art.

1.1 Aims

We aim to provide a set of algorithms to create interactive Augmented Reality assistance sys-

tems for procedural tasks from video examples. The goal is not only to grandly mitigate the

technical effort but in fact to remove it entirely by eventually allowing authoring from in-situ

observation of a workflow. To be of practical applicability, we deliberately avoid excessive in-

strumentation of the user and constrain the hardware requirements to a very lightweight system

consisting of a single consumer-grade RGB camera, a display, and a mobile computer. The

low hardware requirements comply with the sensor and performance specifications of current

mobile phones, tablets, and most prominently, Google Glass [5], when supported by a remote

PC for offloading parts of the computation. Therefore, the only necessary body-worn hardware

can be reduced to a very lightweight, integrated combination of camera and display, shown in

Figure 1.1.

To achieve our general aim, we need to address a number of sub-problems. First, we need

to automatically analyze and assess the task structure. This involves discovering the number

of work steps that are comprised in the workflow, the possible step orders (which might vary

between different performances), and possible variants of the workflow. Additionally, we need

to decide whether an observed step needs to be conducted precisely, approximately, or whether

2



1.1 Aims

it has been performed unintentionally. Our framework then needs to create expressive visual

representations to instruct the user while using the system. The according approach further-

more has to cope with a moving, head-worn camera, which is required for in-situ authoring.

Also, to allow for field scenarios, the approach may not require dedicated tracking aids like

markers or any kind of control over the infrastructure.

During run-time, we aim to present the information extracted during the authoring phase in

a deeply interactive, context-aware form to the user: Current approaches to AR manuals have

merely concentrated on migrating the paper manual paradigm to Augmented Reality (e.g., [2,

3, 4]). This has resulted in systems that allow the user to display instructions for a certain work

step until the user manually requests the next instruction. The didactic gain of these systems

is principally unchanged in comparison to paper manuals with the difference of omitting the

cognitive load needed to associate a textual explanation or an instructive sketch with the current

work environment.

In our approach we aim at full awareness of the user by tracking his or her progress within

the workflow. Being able to track the user’s actions allows improving on two fronts: Firstly, to

make the running system follow the user automatically while performing the task. Secondly, it

allows to provide real-time feedback on the quality or (whenever possible) the correctness of

the task execution. Figure 1.2 summarizes and illustrates our main contributions to authoring

and run-time usage.

In order to achieve these goals, we do make a couple of assumptions regarding the environ-

ment that are however naturally met by many real-world industrial scenarios: We assume that

the environment dominantly consists of a single (not necessarily connected) rigid object that

is suitable to provide a frame of reference to the tracking system and the procedural model.

This reference object may change in each work step, but needs to remain the same during

the course of each individual step. The location of the user’s activities in relation to this ob-

ject is taken to be meaningful. For example, fastening a certain screw on a machine is well

met by this assumption. Categories of counterexamples would be (1) everything dealing with

non-rigid and organic objects, e.g., performing surgery or placing a medical injection, (2) rigid

objects undergoing unconstrained out-of-plane rotations that were not observed within at least

one of the reference recordings, e.g., the assembly of a hand-held object, and (3) if the rigid

object is so small in one or all dimensions that it is not suited to provide a rough camera pose,

e.g., assembling a syringe.

3



1. INTRODUCTION

(a) Automatic task segmentation and analysis

(b) Automatic authoring (c) Explicit generalization (d) Content-adaptive hand tracking

(e) Markerless workflow tracking (f) Enactive feedback (g) Optical validation

Figure 1.2: Illustration of our main contributions.

4



1.1 Aims

What we deliberately do not assume is texture or sufficient structure for using point-features

for tracking, neither during authoring nor at run-time. Though, as we do not require any addi-

tional sources of geometrical information like CAD models, we require the viewpoint during

run-time to be roughly the same as during authoring.

Figure 1.3: Simplified authoring process pipeline.

The simplification of the entire creation process (see Figure 1.3) up to the extent of au-

tomation opens up new usage scenarios: For industrial companies, the benefits lie in the much

reduced price and the possibility to create AR-based documentation without disclosing con-

fidential assembly steps to an external service provider. Aside from the scope of assistive

systems, it can be used to document and protocol conducted work steps, for example in the

context of safety-critical maintenance operations. Further applications are found in (1) qual-

ity management by instantaneously signaling omitted or incorrectly conducted work steps, (2)

control, by automatically triggering certain actions when a work step is conducted, and (3)

safety, e.g., by displaying warning messages when hazardous work steps are executed.

Since no tracking aids as well as only commodity hardware are required, the system could

be used by consumers to create ad-hoc documentations (e.g., office scenarios like printer main-

tenance or general smaller assembly tasks). That there is a need for this kind of documentation

is clearly reflected in the uncountable do-it-yourself videos found on the web. The topic is

becoming particularly relevant (as reflected in [7]) with the current advent of less obstruc-

tive, consumer-targeted first-person vision cameras in combination with head-up displays like

the Vuzix M100 and most prominently Google Glass. While it is hardly possible to foresee,

whether these will have a permanent impact on the consumer market, the systems set a new

standard for ergonomics of related hardware and substantially lower the entry price.

From a conceptual perspective on Augmented Reality, this work includes the user’s context

as a major driver in the perception of reality by incorporating temporal tracking and action

recognition into the information selection process. This is an extension to the widespread

5



1. INTRODUCTION

definition of Augmented Reality [8] that is focused on the spatial association with objects as

the sole cue and driver for interactivity.

1.2 Approach

We build upon unsupervised temporal segmentation of the reference video sequences as a first

step. Since we aim for manual workflows viewed from the user’s perspective, we generally

have to deal with close-up images and with frequent or even permanent occlusion of large parts

of the observed image by the hands of the user. As we cannot assume observability of tools or

interaction objects, a profound scene analysis is often infeasible as the already difficult object

detection is additionally hindered. Instead, we propose a novel measure derived from image

distance that evaluates image properties jointly without prior interpretation. One of the main

challenges of using image distance functions is that function results do not always coincide with

the perceived similarity between two images. Therefore, it is not straight forward to formulate

suitable compactness criteria based on this.

We use whole-image distance or more general dissimilarity functions of the sort d(Si,S j)→
R, where Si and S j are two arbitrary images of an ordered image sequence S. In order to cope

with lighting changes and small perspective deformations, d(Si,S j) is implemented using the

DOT region descriptor [9]. To further minimize cross speaking due to small camera move-

ments, the function is explicitly made invariant to small affine image transforms. The main

premise is the following: While it is not decidable whether dissimilar images were produced

by the same or different actions, it is relatively safe to assume that very similar pairs were

produced by the same action.

Whenever a frame cannot be safely assigned to an action, formally introduced as a dissim-

ilarity threshold between carefully selected frame pairs, we call it a novelty. The segmentation

is then based on minimizing the shortest-path, i.e., finding a set of frames with the least amount

of novelties that connects between the start frame and the current frame of the segment. For

example, a scene with little visual change will produce a small shortest path as well as a scene

with a very high but repetitive change. As soon as the visual change increases or alters in move-

ment pattern, this will result in a strong lengthening of the shortest path which we interpret as

a segment boundary. After determining the segment boundary, the length of the shortest path

in relation to its theoretical maximum is used to distinguish segments with user actions from

static segments.

6



1.2 Approach

After the unsupervised segmentation, we establish a tracking model of each work step both

for camera tracking and for tracking the user. Creating this model is challenging as the environ-

ment is susceptible to change drastically due to user interaction, and camera motion may not

provide sufficient translation to robustly estimate geometry. We propose the relevance plane

transform: a piecewise homographic transform that projects the given video material onto a

series of distinct planar subsets of the scene. These subsets are selected by segmenting the

largest planar image region that contains a given region of interest determined through estimat-

ing the focus of attention within each of the temporal segments. This results in a piecewise

two-dimensional, spatiotemporal model of dynamic, changing environments. As this fits 2D

coordinate frames into the workspace, it is viable to directly apply 2D descriptors or to anchor

2D information associated both spatially and temporally with the time-evolving 3D workspace.

In our experiments, we use this to sample 2D probability maps of the hand location and to ex-

tract instructive snippets within the recorded video from a moving camera. As it elegantly

handles cases of incomplete observation, it does not require any prior knowledge of 3D scene

geometry, explicitly copes with dynamic, changing environments, and works with uncalibrated

cameras.

As free-hand activities introduce a large amount of visual variance to the observation, a

single recording is generally not sufficient for our non-parametric classification approach. To

overcome the resulting problem, such as high user dependency, we need to generalize the

model. Ideally, this is achieved through training the classifiers with additional reference per-

formances. In order to make the system work reliably from a single reference performance, we

propose an image-based rendering (IBR) approach to explicitly generalize the reference mate-

rial through a model-guided approach. Figure 1.4 shows a schematic of the data flow during

the authoring process.

The IBR approach is further used as a hand appearance model for hand and finger tracking.

We can show that this allows the formulation of a pixel-wise objective function that signif-

icantly outperforms the state of the art in monocular hand tracking with a generative model.

Using particle swarm optimization (PSO) to solve the proposed function we are able to estimate

the 26 DoF posture of the hand. We use this to gain a 3D understanding of hand positions and

postures that are characteristic for a certain task and to identify grasping positions. Further, we

are able to identify work steps that need to be processed accurately and distinguish important

steps from erratic motion by comparing several reference recordings.
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Figure 1.4: Data flow diagram of the authoring process: After applying the relevance plane
transform (RPT) to the distinct segments, the workspace state before and after each user action is
used to train the classifiers and to process the visual overlays. Further, the sequence is analyzed
using hand and finger tracking to provide enactive feedback and to explicitly generalize the training
data through image-based rendering.

In contrast to the current state of the art in the field of computer-aided assistance and AR-

based manuals, our system is able to automatically follow the progress of the user without

the use of markers or other tracking aids. We distinguish several phases in the course of each

work step. These are used to further filter the theoretically available information, e.g., to hide

the procedural overlay when the user is already executing the instruction. In exchange, the

user is provided with visual feedback for reassurance whether the task is currently conducted

correctly. Figure 1.5 shows examples of the provided visual feedback and Figure 1.6 illustrates

the schematic data flow during run-time.

We carefully designed the entire approach to not crucially depend on a fragile high level

feature or preprocessing step. The core of our approach is based on very robust methods and

all fragile building blocks are consequently incorporated in an extending but optional way:

While their successful completion will improve the accuracy or the level of understanding, the

working result is still usable without these steps. Examples of this are the incorporation of 3D
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Figure 1.5: Examples from an automatically authored AR-manual: The half-transparent overlays
(left column) were automatically extracted from the reference sequence. The green coloring indi-
cates that the current step is conducted correctly, red indicates a wrong posture or position. The
augmented tools have been manually added (lower right).

hand tracking results and the approach to camera tracking that improves with the availability

of point features but is not dependent on it.

To accommodate for incomplete training data, we also consequently support incremen-

tal learning to adapt and extend the models during usage. Again, this is most notable in the

proposed approaches to camera and hand tracking but also valid for the temporal workflow

tracking. The entire framework affords to continue to adapt to the observation during run-time.

The resulting system is comprehensive and allows the fully automatic creation of Augmented

Reality manuals from video examples as well as their context-driven presentation in AR.

1.3 Organization of the thesis

After having presented our principal aims and summarizing our approach, we will conclude

this chapter with an overview over the thesis structure, followed by a comprehensive list of the

contributions of this work in the following section.

In Chapter 2 we are reviewing related literature for the various conceptual and technical

aspects of our work. The discourse starts with a brief overview over topics that are important

for Augmented Reality in general. We then survey previous applications and surfaced concepts,
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Figure 1.6: Data flow diagram of the run-time process: Using the set of classifiers, the temporal
segment is determined. When possible, the resulting rough camera pose is refined using point
descriptor matching and used to back project the relevance planes, in order to display the overlays.

related to our approach. As our work touches rather widespread fields of research, we have

categorized the technical aspects into activity recognition, descriptors and models, and hand

tracking.

In Chapter 3 we present our temporal segmentation approach based on image distance

functions. The presentation begins with a detailed introduction to how we define robust dis-

similarity functions based on region descriptors. After that, we show how these functions are

extended to the proposed frame-to-frame distance measure, the shortest-path distance and how

we use this distance measure to derive online evaluable compactness criteria for unsupervised

temporal segmentation. Then, the approach used to infer the focus of attention is explained and

the chapter concludes with the evaluation of the segmentation performance and its repeatability.

Chapter 4 describes our approach to camera and temporal tracking as well as the offline

temporal alignment of multiple reference recordings. We first introduce the so-called relevance

plane transform in detail that projects the time-evolving 3D workspace onto a series of distinct,

spatially continuous 2D frames. We continue describing the 2D region descriptors and the hand

location maps that are applied to the 2D frames and used for temporal tracking. While this

concludes the online tracking (for tracking the user while performing the task), we show how
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we can improve at the offline case, i.e., temporally and spatially aligning multiple recordings to

extract workflow variants. The chapter ends with an evaluation of the tracking and alignment

performance.

Chapter 5 describes our proposed hand tracking approach to extract key postures, trajecto-

ries, and velocities of the user’s hands during each work step in order to analyze and explicitly

generalize the recorded reference material to reduce user dependency. First, the image-based

appearance model is presented that is also used to synthesize additional reference material for

the model guided explicit generalization. After that, we introduce the adaptive tracking ap-

proach that is used for tracking the user’s hands with a kinematic model with 26 degrees of

freedom and allows adapting to the observed material. Again, the reconstruction accuracy and

tracking performance, as well as the results of explicit generalization are evaluated at the end

of the chapter.

In Chapter 6 we explain how we sample instructive snippets from the video, and extract and

generate the set of overlays, completing the tool set for the automatic authoring of AR manuals.

We first discuss some general properties and difficulties related to Augmented Reality, and

then explain the extraction of procedural overlays that illustrate the current instruction, and the

generation of annotational overlays. We then lay out our approach to provide interactive visual

feedback on the correctness of the task execution during run-time. To enable domain experts

to extend the set of augmentations, we present our authoring tool that entirely abstracts from

all 3D considerations typically required for authoring AR content.

Since we used a very dedicated approach to realizing the entire framework, which has a

crucial impact on performance and portability, we cover the implementation aspects in Chap-

ter 7. We present our approach to automatic parallelization by means of a component-based,

data-driven programming model. After that, we show how we exploited some of the further

properties of our approach, in order to systematically study different workloads between a re-

mote server and a mobile client. We give an overview of the building blocks that comprise the

presented framework and extensively evaluate the run-time behavior.

The thesis ends with a discussion of the results in Chapter 8 and the conclusions drawn

from it. This chapter also identifies directions of future work and straight-forward extensions

also aside of the principal use case of workflow assistance.
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1.4 List of Contributions

The most important conceptual contributions of this work are the two following. Firstly, in

extension to the general paradigm of AR, where augmented information is only spatially asso-

ciated with real objects, we add context, visually inferred from the user’s activities as a major

driver for interactivity in the application. Secondly, we contribute a novel approach to the

authoring process of procedural assistance systems through analyzing example videos of ac-

cording activity sequences. To the best of our knowledge, this is the first system to achieve such

a level of user-awareness in any Augmented Reality application without using additional track-

ing aids. This contribution is important, as it strongly alleviates the content creation problem

that has been a key challenge for procedural assistance with AR.

The technical contributions in pursuit of these main contributions are

• A framework to derive robust, online evaluable criteria for unsupervised temporal seg-

mentation from image dissimilarity functions. In principle, our segmentation framework

is not limited to a computer vision context. It could be generally applicable to derive

compactness criteria when no suitable distance function for arbitrarily distant entries in

time series data exists.

The presentation is based on the conference paper:

Nils Petersen and Didier Stricker, Learning Task Structure from Video Examples

for Workflow Tracking and Authoring, in the Proceedings of the International Sym-

posium on Mixed and Augmented Reality (ISMAR), 2012

• A robust, piecewise homographic transform that we call relevance plane transform (RPT)

that projects the given video material onto a series of distinct planar subsets of the scene.

These subsets are selected by segmenting the largest planar image region that contains

a given region of interest. This results in a piecewise two-dimensional, spatiotemporal

model of a dynamic, changing environment.

The presentation is based on the conference paper:

Nils Petersen, Alain Pagani, and Didier Stricker, Real-time Modeling and Tracking

Manual Workflows from First-Person Vision, in the Proceedings of the International

Symposium on Mixed and Augmented Reality (ISMAR), 2013
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• A comprehensive method to automatically generate Augmented Reality manuals from

video examples, comprising

– The segmentation of states and state transitions.

– An approach for authoring descriptive AR overlays.

– The identification of object states before and after manipulation for optical valida-

tion.

– Establishing a tracking model using explicit generalization to mitigate user depen-

dency.

• A method to automatically assess certain correctness indicators and means of visualizing

them to the user during the workflow.

The presentation is based on the conference papers:

Nils Petersen and Didier Stricker, Learning Task Structure from Video Examples

for Workflow Tracking and Authoring, in the Proceedings of the International Sym-

posium on Mixed and Augmented Reality (ISMAR), 2012

Nils Petersen, Alain Pagani, and Didier Stricker, Real-time Modeling and Tracking

Manual Workflows from First-Person Vision, in the Proceedings of the International

Symposium on Mixed and Augmented Reality (ISMAR), 2013

• A content-adaptive hand tracking scheme, based on an image-based appearance model,

which is used to analyze the workflow video and to generalize the tracking model, com-

prising

– An extension to billboard-rendering that we call 2.5D billboards that well describes

ellipsoid 3D objects that is used to reproduce hand and finger segments.

– An efficient morphing technique to minimize ghosting and preserve shape in pres-

ence of elastic deformation and model alignment errors.

– An objective function resulting from this approach that significantly outperforms

state of the art methods on RGB images.

– The design of a database structure to store tracking-related information, leading to

an increasing adaption to the image content over time.

13
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– A method to quickly establish locally optimal search-trees within this database for

each tracker state allowing the system to run at interactive frame rates in spite of

very large databases.

The presentation is based on the journal article:

Nils Petersen and Didier Stricker, Morphing Billboards - An Image Based Ap-

pearance Model for Hand Tracking, In Computer Methods in Biomechanics and

Biomedical Engineering: Imaging & Visualization (accepted), 2014

and on the conference papers:

Nils Petersen and Didier Stricker, Morphing Billboards for Accurate Reproduction

of Shape and Shading of Articulated Objects with an Application to Real-time Hand

Tracking, in the Proceedings of Computational Modeling of Objects presented in

Images (CompImage), 2012 (Best paper award)

Nils Petersen and Didier Stricker, Adaptive Search Tree Database Indexing for

Hand Tracking, in the Proceedings of Computer Graphics, Visualization, Computer

Vision and Image Processing (CGVCVIP), 2012

Nils Petersen and Didier Stricker, Fast Hand Detection Using Posture Invariant

Constraints, in the Proceedings of Advances in Artificial Intelligence (KI), 2009

• A method to follow the actions of the user while performing a workflow, allowing

context-aware playback and temporal alignment of multiple workflows for learning pur-

poses.

• A robust, markerless camera tracking approach that deteriorates gracefully with lack of

image features.

• A highly selective presentation technique that adapts the amount of visualized informa-

tion to the current user context and the current phase of execution.

The presentation is based on the conference paper:

Nils Petersen, Alain Pagani, and Didier Stricker, Real-time Modeling and Tracking

Manual Workflows from First-Person Vision, in the Proceedings of the International

Symposium on Mixed and Augmented Reality (ISMAR), 2013
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• An implementation method that supports auto-parallelization and load balancing in com-

bination with a mobile device without changing the program definition.

The presentation is based on the conference papers:

Nils Petersen, Julian Pastarmov, and Didier Stricker, ARGOS - a Software Frame-

work to Facilitate User Transparent Multi-threading, in the Proceedings of the

MARC Symposium, 2011

Philipp Hasper, Nils Petersen, and Didier Stricker, Remote Execution vs. Simpli-

fication for Mobile Real-time Computer Vision, in the Proceedings of the Interna-

tional Conference on Computer Vision Theory and Applications, 2014

Previously unpublished results are:

• An approach for the explicit generalization of the training data using image-based ren-

dering.

• An approach for content-adaptive hand tracking using image-based rendering.

The resulting system allows the fully automatic creation of Augmented Reality manuals

from video examples as well as their context-driven presentation in AR. In contrast to the

current state of the art in this area, our system is able to automatically follow the progress of the

user, particularly without using markers or any other tracking aid. Due to the visual feedback

that is provided while following the procedural instructions, it can be used as an interactive

tutoring system that also conveys feedback over the assessed correctness of the execution.
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Related work

In this chapter we will discuss previous approaches and thematically related work with re-

spect to the various aspects of our work. We start with an introduction to task assistance using

Augmented Reality, which includes an overview of related applications. After that we discuss

general presentation concepts and our main field of contribution, the authoring process. Fol-

lowing this, we review related work for aspects that are technical prerequisites of our approach.

This begins with a more technical view on the state of the art in unsupervised, supervised, and

real-time activity recognition in Section 2.3. In Section 2.4.2 we discuss image cues and fea-

tures that we use to model the dynamically changing scene in the course of a workflow. As the

most prominent cue for monitoring manual activities is the movement of the user’s hand, we

review the state of the art in hand and finger tracking in Section 2.5.

2.1 Augmented Reality for task assistance

Augmented Reality (AR) denotes the overlay of virtual information onto the user’s percep-

tion of the real environment. In principle, auditory or haptic feedback [10, 11] may serve as

modalities of augmentation but in this work, the term AR is used synonymously with visual

augmentation. There has been extensive work on the general use case of procedural assistance

using Augmented Reality since the early work of Caudell and Mizell [1] promoted this use

case for head-up displays, thereby coining the term itself.

Classically, this is realized through head-mounted displays (HMD) that directly augment

the user’s field of view. Though, due to the ergonomic shortcomings of head-worn displays,

this kind of presentation still plays a niche role. The principle issues with head-worn displays
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are addressed by a new generation of highly integrated, lightweight devices like Google Glass

[5] or Vuzix M100 [12] that trade certain display properties for ergonomic acceptance. While

these displays do not directly augment the field of view but rather display information in the

peripheral vision of the user, they are absolutely suitable to be worn for an extended period of

time.

In the next subsection, we will briefly introduce the current research and commercial land-

scape, discuss the various display approaches applicable to our use case, and then survey appli-

cations of AR related to task assistance in Section 2.1.3. Following to that, we review presen-

tation and design approaches and in particular approaches for creating the necessary content

and tracking models in Section 2.2.

2.1.1 Development landscape

The general topic of Augmented Reality was subject to several large scale research projects

such as the ARVIKA project [13, 14], followed by ARTESAS [15], AVILUS/AVILUS+ [16,

17, 18], and the upcoming project ARVIDA. In addition to these projects that are largely dedi-

cated to AR, the use case of workflow assistance was pursued in several related research initia-

tives. Examples would be the Cognito project [19], the Skills project [20], and even themati-

cally far off projects like the software cluster [21] that is mainly focused on business software.

At the very latest since the appearance of smartphones, AR is also of commercial interest

beyond industrial pilot projects. The so-called Reality Browsers like Wikitude [22], Layar [23],

and Junaio [24] were the first large-scale, general audience commercial offers of Augmented

Reality. The technology has the potential of high-order growth and market research firms

have already identified the mobile Augmented Reality market as a stand-alone market [25].

Independent from its own commercial success, the consumer-targeted Google Glass will further

promote applications and substantially raise the general awareness and acceptance of AR.

2.1.2 Display approaches

There are basically four configurations possible to display AR content:

ST-HMD See-through head-mounted display, e.g., Vuzix STAR 1200. This configuration can

be further subdivided into optical see-through (OST), using a half-transparent display

and video see-through (VST), with mediated vision using a camera close to the gaze

direction.
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PV-HMD Peripheral view head-mounted display, e.g., Google Glass, highly related to the

general category of head-up displays.

HHS Hand-held screen with rear-side cameras, e.g., smartphone/tablet. Hand-held displays

follow the metaphor of augmenting the world like a magic lense to look through.

SS Stationary screen with unconstrained camera positioning, if both screen and camera are

directly facing the user, this configuration is also called magic mirror.

The approaches have different strengths and weaknesses. Although ST-HMDs are closest

to the ideal notion of Augmented Reality, they suffer from ergonomic issues, since the user’s

vision is permanently obstructed by the display. In case of a VST-HMD, where the user per-

ceives the environment through a camera, geometrical offset and time delay due to processing

may lead to symptoms, similar to motion sickness. Using an OST-HMD, the user sees the

actual environment. The problem is that the optics of most current devices display the virtual

content at a fixed focal distance, typically set to several meters away. This is a problem for

applications like task assistance, as the focus plane is within hand’s reach of about 30-60 cm.

This means that the eye is not able to simultaneously focus on the environments and the virtual

augmentation and needs to permanently reaccommodate, referred to as the dual focus prob-

lem. This leads to a benefit of video see-through (VST). As the virtual and real information

get composited into a single image, the VST approach leads to a more seamless experience, in

particular towards the eye accommodation issue. Although the PV-HMD configuration equally

suffers from the accommodation issue, the impact on ergonomics is not as severe, as the user’s

view is not obstructed by unfocused visual clutter.

The impact on ergonomics was covered in several related studies. The authors of [26]

evaluated the impact of hardware and tracking precision on ergonomics in an industrial context.

Recently, a similar study was performed by [27], comparing different HMD setups and AR-

based presentation to traditional instructions. The results indicate a generally good result of

the AR-based presentation and the user’s preference towards a monocular HMD instead of

a binocular one. The issues with ergonomics are further increased with the potential need for

additional sensors. Figure 2.1 shows a current setup from [28] which combines an RGB camera

adjacent to the gaze direction, an over-head mounted Kinect camera and a body-worn IMU

sensor network for body movement reconstruction. While the setup delivers comprehensive

sensory data to follow and instruct the user during a workflow, it is prohibitively complex for

everyday usage.
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Figure 2.1: Required instrumentation of the user for the approach developed in the Cognito project
[19]. The system incorporates readings from a body-worn IMU sensor network, a chest-worn
spherical camera, a head-mounted front-facing camera, and an RGBD camera mounted over the
head, looking down.

In order to circumvent the ergonomic shortcomings of current HMDs, several approaches

employ stationary [29, 30, 31] or hand-held displays [32, 33]. For the case of hand-held dis-

plays, the benefits are the easy handling and, of course, the large spread and established user

acceptance of the most prominent representatives: smartphones and tablets. The disadvantage

is that this hinders hands-free operation. Stationary screens solve this issue but are typically

constrained to one physical position and therefore not suited for mobile applications.

Congruent displays need to be calibrated in order to allow for a pixel-precise overlay of

virtual information. For OST-HMDs, the calibration for the wearer’s visual system requires to

actively align real-world landmarks with virtual ones, e.g., single-point active alignment [34].

This process can be supported by a pre-calibrated sensor for calibration, typically a HMD-

mounted camera [35] or by a camera looking through the OST optics, directly [36].

2.1.3 Applications and case studies

The assistance of manual manufacturing processes has already been identified as one of the

most important fields of application in the fundamental work of [1], which has also coined the

term Augmented Reality. Since then, a variety of related work demonstrated the applicabil-
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Aerospace [37, 38, 39, 40, 41] Automotive [30, 42, 43]
Data center [44] Electrics [32]

Furniture assembly [45] General factory [46]
Instrument playing [47] Library services [48]

Medical [49, 50, 51] Military [4, 52]
Warehouse [53, 54]

Table 2.1: Application domains for Augmented Reality assistance.

ity and advantages of AR-based assistance systems in industrial environments within various

domains, see Table 2.1.

These systems assist various different industrial tasks, mostly assembly and maintenance

[43, 55, 56, 57] but also process control [32, 58], inspection and quality control [33], picking

tasks [53, 54], and virtual discrepancy checks [59]. The tracking is mostly still based on fidu-

cials [60] or tracking of tools [61, 62]. However, there also exist markerless approaches based

on CAD models [63].

Besides the usage of AR as a method for a computer-aided instruction (CAI) system, there

also exist additional applications in the manufacturing or assembly domain, e.g., manufacturing

planning [64]. Here, the user can plan the placement of the various machines and production

systems using markers and review the final layout in Augmented Reality. Another category

includes general supportive systems that may also be combined with a CAI approach. For

example, [65] aims to facilitate understanding by augmenting occluded tools when operating

a CNC (computer numerical control) machine. Henderson et al.in [66] use hand tracking and

locate graphical user interface (GUI) elements on salient parts of real objects in AR to make

use of their haptics. Particularly interesting are systems that combine and augment the classical

paper paradigm with interactive functionality through AR, like [67, 68], though again not in an

immediate context of CAI. The combination with the approach described in [68] is one of the

directions of future work and will be sketched in Section 8.2.3.

A strong research emphasis was set on the comparison to classical instructional methods

like paper manuals and videos [2, 4, 51, 69, 70] which clearly demonstrates the benefits of AR

but also discovers several principle-related difficulties, which we will discuss and address in

Section 6.1. Already when using mobile devices, aside from the immediate AR focus, there is a

trade-off between benefits and risks, as [30] point out in their case study on mobile device usage
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in the automotive manufacturing domain. [50] analyze the effect of augmented visual feedback

from a virtual reality simulation system on manual dexterity training. The study investigates

the impact of Virtual Reality (VR) feedback on the learning process of novel motor skills for

novice dental students. The study shows a significant overall improvement for the test group

training with the VR feedback if combined with tutorial input. One clear benefit that many

studies (e.g., [4, 71]) identify is reduced physical strain, when using an AR setup.

Since the field of related studies is quite vast, several publications focus on summarizing

the field or identifying current and future research directions. A survey of Augmented Reality

in manufacturing applications is found in [72, 73], whereas [8, 74] contain a more general

overview over the topic itself. Further categorization methods for AR are found in [75], as

well as in [76] for multi-sensory AR, and most recently [77] with a focus on applications.

Furthermore, several authors [78, 79, 80] have sketched ideas and concepts that illustrate future

research paths and applications on the way to a general adoption, while [81] lists the ”lessons

learned” in previous activities.

An interesting further reading is also [82] that defends the general idea of procedure fol-

lowing, which is key to the step-by-step paradigm adopted by most approaches.

2.2 Design and authoring concepts

In this section, we will discuss the current approaches for realizing Augmented Reality man-

uals. The section first covers all the presentational aspects and afterwards the conceptual and

technical approaches to creating the necessary content and models.

2.2.1 Presentation and interaction

Two aspects define the experience when using interactive manuals: the explanatory power of

the presented content and the means of interaction. In the following, we discuss the current

approaches and the literature in thematically related fields.

The explanatory power of the presentation, i.e., the ease of understanding an instruction,

is obviously a very important factor. There is a large body of literature on design guidelines

for AR presentations and visualization [27, 83, 84, 85, 86], procedures [87, 88], and visual

communication [89].

For workflow assistance, the dominant procedure employed by virtually every assistance

system is based on a step-by-step presentation. This denotes that for each step, separately,
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the system communicates the intended action along with an indication of associated locations.

While this not only intuitively seems to be the straight-forward approach, it is also backed by

scientific examination [82]. Though, the approaches differ greatly in the actual means of pre-

sentation and level of detail. As we intend to automate the entire process of creating interactive

AR-based manuals, including the authoring of instructive overlays, a thorough study of the

available principles is indicated.

The visual presentation may consist of isolated occurrences or combinations of text [2],

diagrams [90], pictures [2], arrows [52], videos [91], and guiding cues, e.g. to guide the user’s

attention to a certain location or vantage point [53, 92]. Further, approaches may include side-

information like the necessary tools or equipment for a step [42, 52]. Generally, the displayed

information can be categorized into congruent (associated with objects using camera tracking)

and contextual (no tracking).

An example of a presentationally rich AR training system is described in [93]. The authors

discuss various aspects of skill transfer, AR-based training, and tele-consultation. In addi-

tion to adaptive visual aids that are adjustable with respect to their guidance level, they also

apply additional haptic feedback using a vibrotactile bracelet. Their approach builds on pre-

authored multimedia content, which is additionally complemented and extended by a remote

expert, whereas we propose to extract this type of information from video examples showing a

reference performance.

Due to the high costs (discussed in the following section) of authoring instructive visual

assets to illustrate a work step graphically, many approaches rely on textual information with

only visualizing a locational or directional graphical annotation. Some more practical systems

complement the AR experience with technical 2D or 3D sketches and video sequences illus-

trating a certain work step, e.g., [93]. The presentation of additional content, not following the

AR presentation principle, comes at the ergonomical costs of an increased cognitive burden,

as indicated by [4, 52, 69, 94]. Nevertheless, there exist approaches that incorporate explo-

sion diagrams in Augmented Reality [95] as well as methods to alleviate the creation process

[96, 97].

The authors of [91] propose to overlay the previously recorded video directly onto the

AR-workspace. Users in their study reported that the overlaid video instructions were easy

to very easy to follow. We propose a combination of video-overlays and additional, spatial

annotations. The topic of multimedia teaching and learning is widely researched and also

covered in ”hands-on” literature, e.g., [98]. [99] investigate the so-called Multimedia effect.
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Their findings indicate that the understandability of procedural tasks strongly benefits from

adding multimedia information like text and pictures. In particular, this effect is strongest for

procedural tasks, compared to conceptual or causal tasks. Further, the effect of animation and

graphics were studied by [100] and there is a strong body of general research on cognitive

aspects during manual assembly, see [31] for further reading.

Due to a general predetermination as visual or verbal learner (as studied by [101]) there

is work that investigates how to combine language and visuals [102], studying the impact of

verbal presentation [103], and comparing pictorial [104] or animated [105] demonstrations to

texts and following a user-centric approach [106] to identify according design principles in a

user study.

Also for basic, schematic overlays such as arrows there are several studies. [107] inves-

tigate arrows as diagrammatic, explanatory devices in technical sketches. In particular, their

findings show that when users are asked to annotate sketch-based instructions, arrows are fre-

quently used as an element to explain the functional nature of a machine part, whenever there is

a dynamic, time-progressing aspect involved. [108] investigate diagrammatic communication

with schematic figures.

Few approaches provide real-time feedback to the user during the actual psychomotor-

phase. Henderson et al. [109], use object-attached markers to provide visual feedback for pre-

cisely aligning components. Kotranza and Lind [49] propose a Mixed Reality training system

for training clinical breast exams that display the palpation pressure, which is read in real-time

from pressure sensors within the training dummy.

The control of the system, foremost the navigation to the next procedural step, is most

often effected by means of manual triggers like button presses [91], speech commands [33], or

certain gestural changes of the gaze direction [110, 111]. There are few exceptions that perform

the transition to the next procedural step autonomously and the author is not aware of a single

system that provides the same level of autonomy and integration as the work presented in this

thesis without using markers.

The approach that comes closest is [109] that relies on fiducial markers for tracking and

derives the procedural state from the appearance and movement of markers. In contrast to

this, our approach is able to autonomously follow the user through a workflow using solely

vision-based action recognition.
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2.2.2 Authoring and model creation

Several groups have presented graphical tools for authoring, [45, 112, 113]. The authors of

[45] propose an interesting low-cost Mixed Reality approach using a computer mouse with

fiducial markers as tangible tool. The user can use this tool to set up the location, orientation,

and scaling of a certain AR-annotation or record an animation by moving it in free space.

[114] continues this work and describes a more comprehensive authoring tool including guided

calibration procedures. The general idea of a mixed reality application development framework

is also described in [115]. There also exist approaches for alleviating certain sub-problems

in content creation such as the early work in [116] for automated pictorial explanations, 3D

exploded view diagrams [117], or automated assembly planning [118].

Furthermore, several approaches have been proposed using non-graphical authoring and

development tools. Standard formats have been proposed or adapted to this end, like VRML

and X3D [119, 120] with dedicated frameworks for display and interaction, e.g., Instantreality

[121]. [122] have presented an XML-based authoring language that also comprises interac-

tion aspects. In [123] a hierarchical representation of assembly steps is proposed as input for

authoring.

An alleviation of the authoring process to a state that allows domain experts rather than AR

experts to conduct the content creation is not only interesting for cost reduction. That domain

knowledge is beneficial for creating understandable and didactic teaching material is not only

an intuitive assumption but also scientifically supported. [124] investigated the impact of do-

main knowledge in a proband’s ability to identify usability problems. They compare novice

evaluators, regular specialists (with competence in the general field), and double specialists

(with competence in the field and the specific domain). Their findings indicate that the double

specialists performed best at identifying usability problems, which underscores the advantages

of closely involving the domain expert in the content creation.

We will review three publications in more detail as they are representative for the three

different approaches to the simplification of the authoring process:

Simplified manual authoring: The authors of [112] address the sophistication of manual

authoring of AR documentation. They propose a set of predefined basic animated overlays

(e.g., release screw or connect-tool-with-part) that can be positioned in 3D using an editor or

a script. The problem is that although authoring of standard tool interaction is alleviated in

some respect there would still be a need for workflow-specific 3D modelling of object parts.
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Additionally their approach does not address the tracking aspects at all, as it builds on markers

for spatial tracking with user-triggered step progression.

Domain-specific automatisms: Given the 3D models of an assembled object and all contained

parts, the system described in [55] automatically generates assembly and disassembly instruc-

tions. These are deduced from the geometry data using path-planning. During run-time, the

system is able to track the object using markerless tracking with edge, junction, and point fea-

tures. This strongly alleviates the authoring overhead for certain assembly workflows, given

that all necessary information like the CAD models is available in a directly processable form.

Performance reproduction: Recently, [91] have proposed using instructional videos as AR

overlays. These videos require including a visible marker which is afterwards removed through

image inpainting. Additionally, the instructional videos have to be manually segmented into

instructional steps and during run-time, the user manually changes the currently displayed work

step by pushing a (virtual) button. Since their approach also needs a marker during run-time

it is only applicable in training scenarios, when there is full control over the infrastructure.

In contrast to this system, our approach does not rely on markers and allows the automatic

authoring from geometrically more complex scenes than the mostly planar workspaces their

approach requires. A conceptual discussion about the automation of the authoring process

along with example implementations is presented in [125].

2.3 Activity recognition and event segmentation

Our approach is based on temporal event segmentation as a first processing step during au-

thoring and defers exploiting information from scene analysis and hand tracking to subsequent

steps. While the connection between event segmentation and instructions is well backed by

cognition research [126] it is novel to the domain of Augmented Reality (AR) and computer-

aided instructions (CAI). The viability of our approach with respect to this cognitive model

has recently been experimentally proven by a follow-up work [127] of this thesis: Using the

authoring tools presented within this thesis (Chapter 6), participants of a user study were asked

to segment events within video examples of a workflow. These were then compared to analo-

gously user-provided pictorial and textual manuals. The results showed that the event segments

comply with borders from the instruction-creation task.

In the following subsections, we will review the literature for the unsupervised and super-

vised cases.
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2.3.1 Unsupervised segmentation

Our approach is based on a statistical examination of manual workflows to identify certain

characteristics occurring at times when an action changes. These characteristics are most dom-

inant in motion pattern cues that can be extracted without knowledge about the affordances or

goals of these actions. As psychological studies suggest [128, 129], these statistical cues also

contribute to human segmentation decisions, even dominantly with infants [128].

Many of the approaches rely on high-level hand, body, and object detection to be able to

exploit high-level relationships. Due to the highly error-prone process of object detection in un-

constrained, dynamic setups, most of the approaches rely on additional sensors and/or fiducial

markers. The authors of [130] use body-worn fiducial markers and inertial measurement units

(IMUs) to evaluate different supervised and unsupervised classification methods on movement

profiles in a kitchen scenario. In [131] body-worn fiducial markers are used to segment spatial

relations using an extension of hidden Markov models (HMM) with special treatment to handle

occlusions.

Although cognition research [128, 129] indicates that the exploitation of statistical proper-

ties plays a key role in how humans detect and segment actions, there is a relatively small body

of research on unsupervised methods. In [132] the authors propose mean-shift clustering and

slow feature analysis on super-pixels. In contrast to our approach, they require cyclic work-

flows, i.e., the tasks have to be conducted repeatedly in the same order for extraction. In our

approach we rely on motion and compactness cues that are ad-hoc and online evaluable.

Similar holds for [133] where low-level events are mined from multi-sensor data and rep-

resented using symbols from a finite alphabet. Frequent sequences of symbols are then scored

according to order consistency to recover actions.

Another interesting approach is based on statistical irregularities [134]. Though not directly

in the context of action detection, it could be adapted. They extract a patch-based representation

from an image sequence. A new image is then reconstructed using the patches in their database.

Using this, their method is able to identify untypical or salient image content. [135] discuss

three approaches for event modeling based on HMMs, formal grammars, and ontologies with

applications in event recognition, and temporal segmentation.

The authors of [136] reformulate activity detection as a binary classification problem by

dividing the sequence into hierarchical train and test intervals. By contrast, our approach ob-

serves the learning rate of an online trained classifier to determine activity change. This classi-
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fier is not determined on a specific internal distance measure and could in fact be realized with

various distance or dissimilarity measures, e.g., pixel-wise differences, histogram approaches,

or chamfer edge distance.

[110, 111] investigate the usefulness of eye movement towards action recognition and an-

ticipating the next task step. While we also exploit changes in gaze direction as a cue, we

further incorporate additional sources of information into the segmentation decision.

2.3.2 Workflow tracking

While camera tracking is typically sufficient for general AR, additional understanding of the

dynamic progression is necessary for our aimed level of interactivity in task assistance.

There exist various different approaches to camera tracking, including visual tracking with

markers [137], markerless/hybrid [138], with additional inertial sensor fusion [139, 140], SLAM-

based [141, 142, 143, 144], and recently, approaches that incorporate RGBD sensors [145, 146,

147]. In this section, we focus on approaches for tracking and internal representation of dy-

namically changing environments that are real-time capable. For a general overview of the

directly adjacent field of action recognition, see [148].

There are three dominant approaches: (1) based on object recognition and the position of

interaction objects, (2) based on hand and body trajectories, the position and posture of the

hands or pose of tool, and (3) based on general motion or similarity cues. Our approach is

clearly situated in the third category of approaches to bootstrap the procedure but then incor-

porates methods from both other categories to improve results in subsequent optional steps.

The first approach infers user activity and the state of the environment from the time-

progressing spatial relationship of recognized objects, e.g., [109] that use fiducial markers,

[149] that use multiple RGB and IR cameras to detect changes in size, shape, and position of

objects with a shape-from-silhouette approach, or [150, 151] that focus on textureless objects

using an RGBD camera in first-person perspective.

The second approach infers the state from observing the hand and body motion trajectories

over time [152, 153, 154] and recently, the two approaches often get combined as in [28, 130,

155, 156].

The third approach uses optical flow or general distance measures without prior identifica-

tion of single objects. For example, the authors of [157] use motion cues within a regular grid

to classify tasks in an industrial setting using echo state networks. Using the self-similarity

matrix (SSM) to effectively detect repetitive patterns was demonstrated in [158]. The SSM can
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also be used as a descriptor for entire workflows [159] as well as to relate two demonstrations

of the task, compensating speed fluctuations using dynamic time warping (DTW), which works

even under severe viewpoint changes.

However, the usage of tracking aids like fiducial markers to estimate the camera pose and

the pose of interaction objects is still the dominant approach [28, 91, 109, 160]. Tracking

the user’s hands is mostly realized through skin color segmentation [155, 161], but there also

exist approaches that, like us, estimate and exploit the full posture for analysis [156]. For

body motion as well as for hand motion, the use of body-worn sensor networks is also an

often pursued approach. Either without using cameras [152, 153] or in combination with first-

person vision [28, 154, 162] or body-mounted cameras [163]. While those approaches are all

”inside-out”, the classical approach to motion capture involves external cameras. A survey on

vision-based motion capture and analysis can be found in [164]. Additionally, the tracking

can be augmented with additional sensor readings, e.g., using a screwdriver with force torque

sensor, or using sensors built into the interaction objects [49].

Sun et al. [156] analyze the image using a combination of 27 DoF finger tracking, 3D

object tracking and camera tracking. They use a gaze-directed camera, where they perform

hand tracking using a 27 DoF kinematic model of the hand with a skin color and contour

based appearance model, rendered through quadrics. In contrast to our main premise they

require known objects, as their detection is based on 3D CAD models. Their output are the

3D trajectories of the user’s hand, the objects and the gaze direction. While a large focus of

our work lies on authoring, from a run-time and tracking perspective alone, this approach is

definitely one of the most similar.

[161] address the problem of learning object tracking models from egocentric video exam-

ples of everyday activities. Additionally, their approach is built around a profound method for

tracking the observed workspace. Through using foreground segmentation and skin color, they

automatically identify hand-held objects. As a background model, they generate panoramas

from short-term snippets of the video stream. In contrast to our approach, they do not adapt the

temporal segment that contributes to each of these panoramas to the ongoing activity, whereas

our approach does not incorporate foreground segmentation, at all. Their approach comprises

computationally demanding processing steps like super-pixel and graph-cut segmentation, as

well as SIFT-descriptor extraction and matching, which makes real-time applications infeasi-

ble.
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Recently, the authors of [109] have evaluated AR in the psychomotor phase (after Neu-

mann and Majoros [165]) of a workflow, i.e., the phase wherein the user actually executes a

work step. They use markers, attached to all tracked objects and on the head-worn display. On

moving one of the incorporated objects, indicating the beginning of the psychomotor phase,

their system presents new overlays (dynamic arrows, highlights, or labels) to assist the user

during the execution. While we share the distinction between an instructional phase and the

psychomotor phase, we focus on the technical realization of markerless spatiotemporal track-

ing. Additionally, an important goal of our work is to automate the creation process of systems

for procedural assistance. [166] propose an event-based distance measure between several se-

quences that allows matching events from even a single example. The authors of [155] first

segment the user’s hand, face, and the manipulated object within the video stream. The work

then focuses on the simultaneous recognition of the user action and the manipulated object us-

ing conditional random fields. In contrast to our approach, the system requires a frontal view

on the scene, facing the user. [167] uses an HMM on a spatial 3D occupancy grid of the user’s

right hand derived from 2D skin color blob tracking on two cameras. In contrast to our method,

their approach relies on a second camera for reconstructing the 3D positions, while we base

the recognition upon 2D descriptors with prior camera movement compensation. In fact, the

only way we incorporate full 3D information is in the way of full finger tracking, as we show

in Chapter 5. [168] propose a similar approach with a single, wearable camera, where they use

2D positions of objects and the user’s hands detected using color histogram. In contrast to our

approach, they process the positions solely in the camera coordinate system, while we perform

the classification using what we call the relevance plane, a 2D model of the current work step.

2.4 Descriptors and models

One major challenge when gathering information from an unconstrained, dynamically chang-

ing environment is to define a data structure that can hold and describe the findings. We will

discuss current approaches in the following subsection and afterwards review approaches to

region descriptors, usable to recognize wide-spread portions of an image.

2.4.1 Anchoring of augmentations and overlays

Anchoring is challenging as the extracted information has both a spatial and a temporal associa-

tion with the environment that is susceptible to change drastically in the course of the workflow.
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One straight-forward approach would be to anchor information at 3D locations, i.e., to anno-

tate the scene’s 3D geometry (or an online reconstruction of it). Examples for this method

are the marker based approaches [169], 3D model-based approaches [170], or SLAM-related

approaches [141].

We can exclude the entire body of literature dealing with markers or CAD-model tracking

as we explicitly forbid any prior knowledge or control over the infrastructure in our approach.

The remaining SLAM-related approaches suffer from two problems: (1) The camera mo-

tion of the head-worn camera dominantly consists of orientation change and we cannot assume

sufficient camera translation to reliably reconstruct geometry to bootstrap the mapping. (2) The

environment is susceptible to change drastically and perpetually due to user interaction.

Very recently Tan et al. [142] proposed a promising method that explicitly handles dynam-

ically changing environments and thus alleviates the second problem. A possible drawback

towards our approach on camera tracking could be its dependence on point features, which

might exclude sparsely textured workspaces.

These issues can be solved through the use of a combined RGB and depth sensor, which

has recently become popular. [145, 146] propose methods for 6-DoF camera relocalization

and tracking using RGBD cameras by combining the 2D image and the according depth map.

[145] present a system for tracking and dense mapping by fitting the current depth frame within

the global map using the iterative closest point (ICP) algorithm. The authors of [146] use

regression over a set of synthesized views to relocate the camera under partial occlusion and

sparse texture.

In this work, we restrict our focus to monocular RGB cameras. The arguments from a prac-

tical standpoint are the higher potential for miniaturization and the lower power consumption

compared to active (light-emitting) depth sensors and the mere fact that as a consequence all

currently available, suitable HMDs are exclusively equipped with RGB cameras.

To circumvent the challenges of 3D acquisition, a popular method is to associate infor-

mation with 2D image features. In this case, information is anchored with point-features

[171, 172], region descriptors [9] or object detectors [173, 174] that principally can operate

separately on single frames of the sequence. While this is often sufficient and feasible, it has

one major disadvantage as it does not allow a spatially continuous annotation of the scene.

We propose to anchor information within a dynamic scene using a temporal series of spa-

tially continuous 2D representation. These 2D maps are registered with the scene through

a planar (not necessarily connected) structure within the environment that has a large overlap
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with the region of interest. In contrast to methods like [175, 176], we do not aim for an accurate

reconstruction of the environment or the camera pose which relaxes most of the constraints on

scene geometry. Particularly, our model does not imply any requirements on camera motion,

like it is necessary for structure from motion (SfM) and SLAM-based methods.

There are approaches to mitigate the effect of rotation-only camera motion by switching

from depth reconstruction to a homographic model to track features. The authors of [177] have

recently proposed a scheme that deals with the motion requirements through explicit model

switching. This approach has also been adopted and extended in further SLAM approaches

[144]. The disadvantage is that the depth of the feature points cannot be reconstructed from

rotation-only observation. Hence, this method leads to rather decoupled models for the two

types of features. In contrast, our approach is based on prior temporal segmentation that leads

to locally optimal, decoupled 2D maps that are connected through a consistent model.

2.4.2 Region descriptors

Template matching proves to be particularly useful in case of sparsely textured objects that

make it difficult to locate stable interest points. This prohibits the use of point descriptors

and also the application of many affine region detectors. When applied to the entire image,

these approaches can function as a robust dissimilarity measure. As region descriptors are

explicitly designed to efficiently cope with certain image distortions, they generally outper-

form correlation-based dissimilarity measures. For our implementation and the experiments

we propose an image dissimilarity function based on template matching, more precisely the

dominant orientation templates (DOT) [9]. For each grid cell the template stores a list of eight

booleans, seven to denote the presence of respective quantized gradient orientations, one to

denote the absence of any strong gradients. The method is closely related to histograms of

oriented gradients (HOG) [178]. In fact, DOT is essentially a binarized HOG using a locally

adaptive thresholding value. Though, due to the binarization the method performs very fast as

matching solely relies on bitwise operations that can be effectively handled by the vector units

of modern processors. The matching distance evaluates the number of grid cells, where the

dominant input image gradient was found in the list for that grid cell.

The authors of [9] report state of the art results for their method while being able to search

the entire image in real-time without relying on any feature point detector. This is possible

due to a binary representation of these lists, branch-and-bound clustering [179], and an explicit
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invariance to small translational shifts. This allows skipping large parts of the image at the cost

of reduced translational accuracy.

Another benefit of most template matching approaches is the possibility to add templates

on the fly to allow online tracking [9, 178, 180]. This possibility is mainly depending on the

storage strategy. In this work we are using branch-and-bound clustering [179], as proposed

and adapted by [9] for usage with DOT. Another interesting approach is the use of locality

sensitive hash functions [181, 182]. These hash functions are designed to more likely produce

hash collisions also on merely similar entries.

A popular metric for matching edge based templates is the chamfer distance (e.g., [183,

184]) which is efficient to compute using the distance transform. [185] present a template

representation directly based on the distance transform which is invariant to scale changes

and generalizes quite well. Unfortunately, their approach is only applicable to objects with

roughly closed contours which narrows its field of usage. One of the major drawbacks that all

methods based on distance transform have in common is the dependency on edge extraction,

which still is an error prone step. [186] circumvent this by proposing an efficient to calculate

approximation of the directed chamfer distance and a probabilistic line matching scheme to

identify model edges with high probability.

In [187] the authors present a fast silhouette template matching approach. It is based on

learning a list of axis-aligned rectangles covering the silhouette area that is efficiently matched

using the integral image. Due to that and a hierarchical indexing of their templates, they achieve

real-time performance independent of the image resolution. The downside is that object sil-

houette extraction is similarly fragile as edge extraction and does not preserve any informa-

tion other than the object boundary which vastly reduces the applicability to arbitrary objects.

[188] use the idea of bitwise comparison on binarized histogrammed intensity patches (HIP).

Their approach has very efficient run-time behavior but requires an extensive training phase

to counter the effects of a fast but inaccurate interest point localization. Eventually, with the

recent popularity of depth cameras there now also exist template approaches that exploit both

the color and the depth image, e.g., [180].

2.5 Finger tracking

In this section we present related work for our hand and finger tracking approach. Our main

idea is to incrementally update an underlying database with entries for successfully tracked
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frames. The database is hereby initialized with a very large amount of synthetic entries. The

straight forward approach of just adding an entry for each successfully tracked posture would

adapt utterly slowly. Thus, in practice this approach would almost never have an impact on the

actual tracking performance. We circumvent this through filling the parameter space between

successful matches using image-based rendering. As soon as a couple of frames have success-

fully been matched, we synthesize the database entries in a perimeter of the adapted entries to

increase the adapting rate.

We therefore divide related work into a section dealing with approaches to database query

and general discriminative methods and a section for the appearance methods used to generalize

the database.

2.5.1 Tracking by detection

There are numerous approaches with a tracking-by-detection architecture for articulated bodies

based on database indexing. Examples for such work are dominantly based on edge templates

[186] and silhouettes [187]. The essential approach is to establish a large database of object

descriptors labeled with the corresponding generating parameters. At run-time, the generating

parameters for the current frame are recovered through querying the database for the closest

match with the current observation.

The accuracy of the approach is determined through the sampling density in the database

and thus suffers strongly from the high dimensionality of the underlying search problem. This

so-called ”curse of dimensionality” leads to an exponential performance decrease with higher

degrees of freedom (DoF). To allow fast nearest neighbor searches in spite of this problem, the

literature proposes similarity and parameter sensitive hashing functions [181, 182]. Although

these methods allow faster general nearest neighbor searches, our proposed method has the

benefit of allowing fast online database changes and a more flexible shaping of the search

results incorporating the current tracking state.

Another approach is described in [187] where the authors build a database of hand silhou-

ettes in different poses using hierarchically ordered axis-aligned rectangles and integral images

for fast matching. The resulting approach is fast enough to run in real-time at least on smaller

sets but silhouettes are hardly descriptive enough to recognize and distinguish complex pos-

tures.

In principal, our approach is a combination of beam-search and branch-and-bound cluster-

ing [179] in an appearance descriptor database. Since the choice of the descriptor is crucial to
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our method, due to its computational footprint and robustness with respect to the sparsely tex-

tured hands, we briefly discuss the necessary properties. As the human hand does not provide

sufficiently stable point features among all poses, point descriptors like [172] or [189] are not

applicable. The authors of [190] use characteristic patches like the finger nail area, though, but

these are only valid for small local regions of the parameter space.

Region descriptors for the entire hand patch are more suited since they describe the object

as a whole. This is particularly beneficial when describing complex postures that are otherwise

hard to capture in a regression/classification model. There is a huge variety of template descrip-

tors, ranging from thumbnail views [191], over gradients [9], and silhouettes [187], to using

the distance transform [185]. Silhouette templates are an often pursued approach, e.g., [187]

but have the disadvantage that they lose descriptiveness on complex postures. Edge templates

([186], [192]) on the other hand suffer from a particularly difficult and thus error-prone edge

extraction step on hand images, especially when lighting is rather ambient. Thus, these tem-

plates are most stable on contour edges which share the same disadvantageous properties as

silhouettes. The method proposed by [191] works with a distinctively colored glove that the

user needs to wear. This tracking aid leads to less ambiguous images produced by different

poses. The approach works with a large database of sampled views with a subsequent refine-

ment of the closest match.

Classifiers such as [193] are likely to give excellent results at vastly reduced memory con-

sumption compared to template techniques. However, the advantage of the template approach

is that adapting to the tracking target can be performed online at very low computational costs.

To us, this is a particularly desired property of the tracking system. Dominant orientation

templates (DOT) [9] are computationally efficient and work very well with smoothly shaded

objects such as hands. Since the descriptor encodes the image content quite locally, this fa-

cilitates clustering particularly for articulated structures like hands, where only parts of the

image are affected from change of single parameters. Furthermore, using the same descriptor

for workflow and hand tracking allows to streamline the tracking procedure, as we will show

in Section 5.2.2.3.

2.5.2 Appearance models

Fast and accurate rendering of objects plays an important role in vision-based analysis-by-

synthesis frameworks, particularly in the context of hand tracking with generative models.

Therefore, a variety of methods has been proposed for accurately predicting the appearance of
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a human hand in certain poses. However, most objective functions used in derived tracking

methods are either solely or dominantly comparing hand silhouette and edge features between

the current hypothesis and the observation, e.g., [186, 187, 194, 195]. Especially in a monocular

setting, this leads to a severely ill-posed problem as many postures create the same or very

similar silhouette and edge information. A general overview of hand tracking techniques can

be taken from [196].

The authors of influential work in [197] propose to use truncated quadrics to approximate

the shape of the human hand. As quadrics can be efficiently projected to the image plane,

this provides a computationally lightweight way to formulate an objective function based on

silhouette and edge proximity. The authors of [194] propose using particle swarm optimization

[198] on a similar objective function. While this works reasonably well on high quality frames

they suffer from the fragility of skin color and edge extraction in presence of severe lighting or

blur as we show in our experiments.

In the work of [195] the authors propose a ”cardboard model”. They use model-aligned

rectangular shapes to approximate the hand’s contour edges. To prevent collapsing of their

rectangular segments they strictly limit the possible viewpoints of their model - a restriction

that does not apply with our method.

In fact, only a few approaches incorporate additional, more complex image cues. In the

work of [190] the authors propose the incorporation of salient points, i.e., finger nails, into the

objective function. Although this greatly alleviates the minimization problem, the requirement

on the frame quality is prohibitive in many practical cases.

The authors of [199] have proposed the use of texture and shading information to allevi-

ate the observation ambiguities using a textured, deformable 3D mesh model. Their method

minimizes a pixel-wise distance between the current observation and a deformable mesh model

with the texture taken from the last frame. The use of a deformable skinning model is computa-

tionally expensive and therefore achieving real-time performance is difficult. Also the shading

information is captured from one frame alone and then approximated for the subsequent frame

using Gouraud-shading. However, there is no straight forward way to extend this approach

to greater pose difference. Additionally, the model requires well defined object boundaries.

Therefore, it requires a very precise fit and non-blurred image material to produce decent re-

sults. These prerequisites are mostly prohibitive in realistic applications and do not occur in

our approach.
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The authors of [200, 201, 202] are incorporating depth information from a Kinect camera.

They gain much increased stability from the additional information. However, the more com-

plex hardware required for depth sensing (stereo setup or ’active’ sensors like time-of-flight or

Kinect) is complicating a use on highly mobile hardware.

Image-based rendering (IBR) provides a principled way to synthesizing realistic object ap-

pearance from unobserved viewing angles. Since the human hand is kinematically complex

with 22-30 degrees of freedom with prevalent self-occlusion we resort to a strong geometric

proxy to gain robustness. A related approach is the work of [203] that generates new views of

football players from wide-baseline stadium cameras. The players are modeled as articulated

bodies with billboard fans aligned to each bone. Thus, the authors call their approach ”artic-

ulated billboards”. Instead of performing a pixel-wise morph as proposed in our work, they

create a separate billboard per segment and camera, arranged in a fan around the kinematic

bone. Thus, they have less control over elastic deformation. However, just as in the cardboard

model [195] their billboards are not stable at all relative viewpoints (which is not a requirement

in their application).

The idea of morphing between prototype views images was pursued by [204] and [205].

Their approach is based on establishing point correspondences which is not easily possible in

our application due to the high articulatory complexity of the hand and its lack of texture. Also

since we are decomposing the necessary warp into a segment-wise rigid (predicted) transforma-

tion and an axis-aligned efficient pixel-wise warp we expect our method to be faster by orders

of magnitude. Active appearance models (AAM) [205] describe the relationship between the

movement of control-points and the change of pixel intensities through primary components

analysis (PCA) to recover the pose parameters of unseen object views (faces in their case). The

control-points hereby warp the image content. The main difference is that we use an anatom-

ical kinematic model to predict coarse-grained deformation parameters and contour cues for

fine-grained and elastic deformation. In contrast, AAM directly learns a linear model for both.

Since using a strong geometric proxy provides an improved prediction of inter-pose change, our

method is applicable to kinematically complex objects. Nevertheless, it would be interesting to

investigate the feasibility of AAM on a per-segment level.
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Unsupervised task segmentation

The segmentation of actions within a video sequence has a large number of applications com-

prising action and activity recognition, scoping of training data for classifier training, and (vi-

sual) data mining [206]. Most importantly, the temporal segmentation of actions is an essential

building block towards discovering the structure of a workflow. In the following sections we

will explain our approach to unsupervised segmentation of workflow videos based on image

distances. We will begin with a review of related work. After that follows a short discussion

of the problem and an introduction to the image dissimilarity functions that we use for clus-

tering. We then show how we extend these functions to receive a frame-to-frame measure in

time series data that we use to provide compactness criteria for segmenting a workflow. These

measures can also be used to provide a coarse classification of each segment. We additionally

interpret a change in the user’s focus of attention as a cue for segment changes, which are

estimated through changes in gaze direction, i.e., through camera pose tracking.

The dissimilarity measures and the camera tracking approach described within this chap-

ter are also being used during the run-time workflow tracking and the temporal alignment of

workflows, both described in Chapter 4.

3.1 Image distance functions for task segmentation

The majority of approaches towards action recognition in video sequences is based on the

analysis of high-level features, derived from detecting and tracking certain image parts such

as tools and interaction objects [61, 62]. While the unsupervised isolation of these objects is

already difficult and therefore a rather fragile preprocessing step, it foremost depends on the
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3. UNSUPERVISED TASK SEGMENTATION

Figure 3.1: Examples of the user’s hand occluding the used tool (left) or the interaction object
(right).

actual observability of the objects. Especially in video from first-person view, tools and objects

might not appear at all in the entire recording. Figure 3.1 shows examples of this problem.

Instead we propose using image distance measures of the kind d : R2×R2→ R between

two images I,J, based on low-level image comparison. The direct benefit is that a low-level

comparison is not prone to failure due to a sophisticated preprocessing step. What makes it

complicated to apply whole-image distance is that the return value of an image distance func-

tion does not necessarily reflect a semantic relation between two images. For example one

could find three entirely different images, let us say: one image of a house and two images of

cars that roughly exhibit the same (large) pair-wise image distance although the two images

of cars are far more related. The reason is of course that the distance function does not di-

rectly evaluate the similarity of the latent concepts but rather a roughly correlated observation.

If the images differ too much, the measure does not reflect the latent dissimilarity anymore.

Figure 3.2 shows an example of this condition. We claim that the negation is indeed valid and

postulate the

Surrogate assumption: Within its specific confidence radius, an arbitrary distance function

on correlated phenomena can be used to infer a latent similarity.

In the application we pursue, we want to relate images of manual actions to infer whether

they could originate from the same task. If the images are almost identical, the probability

is low that both images could not be produced by the same task. Figure 3.3 illustrates this

thought.
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3.1 Image distance functions for task segmentation

Figure 3.2: Image distance vs. latent similarity: The center image has almost the exact same
distance towards the left and right image using our comparison function, although the left image is
semantically more similar.

Given an image distance function d(I,J) between two images I,J, we assume that the

images are latently similar if and only if d(I,J) < T , where T is a threshold that we call the

confidence radius that is specific to the given distance function. If d(I,J)≥ T , then we cannot

decide. Naturally, the surrogate assumption is not transitive, i.e., we cannot propagate the local

similarity from frame to frame in a video sequence to infer whether the first and the last frame

are related.

In the following subsections we present our framework to partition an image sequence

into conceptually similar images by exploiting the surrogate assumption. This formulation is

independent from the actual choice of distance function. However, for didactic reasons, we

first introduce the distance function that we use for the experiments.

3.1.1 Robust dissimilarity functions

In the context of our application an adequate image comparison function should predominantly

be sensitive to task related image change. Since image brightness changes or minor camera

movements are generally no indicators for task differences, the function should ideally be in-

variant to these types of changes. It is therefore easy to see that the desired function is not a

metric, as it intentionally violates the condition d(I,J) = 0 if and only if I = J. Hence, we will

41



3. UNSUPERVISED TASK SEGMENTATION

Confidence 

radius �

Figure 3.3: Illustration of the confidence radius: By reducing the observed distance to a very close
perimeter, we can safely assume that the images within this radius were produced by the same
action.

use the more general term dissimilarity instead of distance from here on. In fact, the dissimilar-

ity measure that we propose is a so-called hemimetric, as it additionally violates the symmetry

property.

Some comparison functions are implicitly invariant or robust towards certain image distor-

tions, e.g., normalized cross correlation is robust to lighting changes. However, every compar-

ison function can be made explicitly invariant towards (predictable) distortions at the cost of

increased computation time. This can be achieved by sampling the effects of a certain distortion

and extending the function to return the dissimilarity to the minimum sample.

Given an image distortion function T (I)→ {sample1,sample2, . . .} that returns a set of

transformed images, we return the minimum dissimilarity between I and the transformed im-

ages:

dT (I,J) = min
K∈T (I)

d(crop(K),crop(J)) , (3.1)

where crop(I) is a center-cropped version of the image to be able to compensate small amounts

of camera translation.

We define T (I) to produce synthetic camera views within a small cone around the optical

axis. Since we do not possess information about the scene geometry (e.g., from a depth sensor),

we only produce affine, more precisely scaled, rotated, and translated instances. This can be

interpreted as an approximation using an orthogonal camera. In this work our dissimilarity
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3.1 Image distance functions for task segmentation

Figure 3.4: Scaled and rotated samples in T (I).

function is based on the region descriptor DOT (dominant orientation templates) [9], since it is

invariant to small deformation and lighting change and can handle translation very efficiently.

Since DOT already is handling translation, we define T to only cover scale and rotation change,

see Figure 3.4 for an illustration. Due to the deformation invariance, this definition of T even

suffices for small to medium changes of the elevation angle, depending on the range of depth

within the camera image. Since DOT returns a score sDOT between 0 (entirely unsimilar) and

1 (very similar) we define d = 1/sDOT . Experimentally, we found T = 1.11 to be a good

confidence threshold for the DOT-based approach.

3.1.2 Extension to time series data

Let S be a given image sequence of size |S| and Si denote the i-th frame from that sequence.

From our given dissimilarity measure we aim to derive a time-series extension that is addition-

ally using intermediate frames to infer whether a previous frame t0 and the current frame t are

dissimilar. We will use the notation Dt0(t) for this dissimilarity measure between St0 and St

evaluating all Si with t0 ≤ i≤ t.

There are two intuitive choices for such a measure Dt0(t) that we will shortly discuss in

advance. The first choice is to simply sum up all frame-to-frame dissimilarities between t0

and t:

Dsum
t0 (t) =

t−1

∑
i=t0

d(Si,Si+1). (3.2)

This would only be a valid dissimilarity measure if the sequence was entirely progressive,

i.e., there would be no repetition at all. In all other cases, the return value of this function would
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Figure 3.5: Illustration of the shortest path distance Dsp
t0 , compare Equation 3.4. Grayed out images

indicate skipped frames.

be too large. One trivial example to emphasize this is to examine the case where St0 =St . One

would generally expect the dissimilarity to be 0 if and only if the images are equal up to

viewpoint change, but in presence of differing intermediate frames this is not the case.

The second intuitive choice would be to use the minimum dissimilarity of St to St0 and all

intermediate frames.

Dmin
t0 (t) = min

∀t0≤i<t
d(Si,St). (3.3)

Although Equation 3.3 would be a valid choice for a dissimilarity measure between an image

and a set of images it is not a suitable measure between two frames. In fact, it is even likely

to be entirely independent of frame St0 as long as there is only one intermediate frame that is

closer to St .

Instead, we propose a measure that we call shortest path. It not only solves the aforemen-

tioned problems but also ’protocols’ whenever the dissimilarity function is evaluated above its

confidence threshold. The term shortest path refers to the path through the image sequence

from frame t0 to t with the least amount of frames not within any confidence radius. Figure 3.5

shows an illustrating example. It is given by the following recursive definition:

Dsp
t0 (t) =


0 if t = t0
Dsp

t0 (m)+d(Sm,St) if ∃m ∈Nt0(t−1) :
mind(Sm,St)< T

Dsp
t0 (t−1)+d(St−1,St) else,

(3.4)

where Nt0(t) is the set of frame-indices between t0 and t with a pair-wise frame dissimilarity

d(Si,S j) ≥ T, for all t0 ≤ i < j ≤ t. We call Nt0(t) the novelty set and approximate it with

straight-forward greedy clustering, i.e., as soon as the current frame has a pair-wise dissimilar-

ity greater than T to all other novelty frames, we add its frame-index to this set.

Informally, Dsp
t0 (t) can be interpreted like this: For the current frame St , look at all previous

frames back to St0 for frames that are so similar (d < T ) that we can assume they come from
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3.1 Image distance functions for task segmentation

the same activity. If we have found such a frame Sm with minimal dissimilarity we add the

dissimilarity between Sm and St to our path and start over at frame-index m, directly (thus

ignore all frames between m and t, the second case of Equation 3.4). If there was no such

frame, we add the (typically small) dissimilarity between t and the previous frame t− 1 and

start over at the previous frame.

One should note that whenever no such frame was found (the third case in Equation 3.4) the

current frame-index is added to the set of novelties. Thereby, we protocol that we encountered

a frame for which we cannot certainly infer the task affiliation in the sense of the surrogate

assumption.

When we compare a new frame to previous ones, we are in fact only incorporating the

novelty frames Nt0(t). That is for two reasons: firstly, to speed-up computation, secondly and

more importantly, the closest frame for St would most probably always be the directly previous

one. By restraining to Nt0(t) we implicitly disallow associating with frames between the last

novelty and t.

Interestingly, the measure has closed-form upper and lower bounds that are reached in pres-

ence of characteristic content: In case of an entirely progressive (i.e., non-repetitive) sequence

Dsp
t0 = Dsum

t0 and in case of an entirely static sequence Dsp
t0 = Dmin

t0 . Since Dmin
t0 ≤ Dsp

t0 ≤ Dsum
t0

holds, we can use that for normalizing Dsp
t0 :

D|sp|1
t0 =

0 if Dsum
t0 (t) = 0

Dsp
t0
(t)−Dmin

t0
(t)

Dsum
t0

(t)−Dmin
t0

(t) else.
(3.5)

D|sp|1
t0 (t) is a robust normalized measure for how progressive (i.e., non-repetitive) the sequence

is between t0 and t. Values closer to 1 indicate a progressive activity, lower values a repetitive

or cyclic activity, with a value of 0 in case of an entirely static segment. Dmin
t0 ,Dsp

t0 , and Dsum
t0 for

an entire segmented sequence are shown in Figure 3.6. The change rate of the novelty count,

i.e., the change rate of the number of elements in Nt0(t) constitutes an uncertainty measure for

the assumption of task identity.

In the following we explain how these measures can be interpreted to derive online evalu-

able decision criteria for task segmentation.

3.1.3 Determining segment boundaries

Through examination of manual workflows, one can observe certain characteristics occurring

at times when an action changes. These characteristics are motion pattern cues that can be
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Figure 3.6: Plot of minimum, summed, and shortest path concatenated for all segments of the
’Install RAM’ sequence. Repetitive actions like releasing/fastening screws and ensuring the fit of
the RAM show a significantly smaller shortest path with respect to summed dissimilarity compared
to progressive tasks like flipping the device.

extracted without knowledge about the affordances or goals of these actions. As psychological

studies suggest [128, 129], these statistical cues contribute to human segmentation decisions,

even dominantly with infants [128].

We have extracted three conditions that we use to determine segment boundaries:

• After a period of motion the activity comes to a significant slow-down or halt.

• After a period of motion a change in the motion pattern occurs.

• Before and after periods that are entirely static, i.e., no image change except for noise.

Please note that we will complement these three conditions that are based on motion cues with

a fourth that is based on changes in the focus of attention in the following section.

The latter two conditions are rather intuitive, the first requires a bit of illustration. This

condition applies to cases like e.g., placing an object or positioning a screwdriver, where aiming

requires a slow-down of the motion. As the third condition is basically the absence of an

activity, it reduces the search space for actions. Especially since these segments often do not

contain the user’s hands, the according frames are highly reliable for tracking as well as for the

optical validation through comparing the appearance before and after an action (compare the

according approach described in Section 6.3.4).
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3.1 Image distance functions for task segmentation

For detecting these conditions, we use the set of measures from the previous section. The

normalized shortest path D|sp|1
t0 is sensitive to the type of underlying image change: Since in

the progressive case almost every frame gets flagged as a novelty, D|sp|1
t0 remains close to 1.

However, in case of repetitive or static content, the measure monotonically approaches 0. So,

a sudden increase is a strong indicator for some kind of pattern change, as this means that

a high number of frames cannot be associated to the previous observation. This allows to

separate adjacent repetitive actions but is not applicable to adjacent progressive actions. Since

a progressive action often coincides with a slow-down near the end, as formulated in the first

condition, the framework will separate these cases. To also treat the cases where the condition

does not hold, we additionally exploit a change in the focus of attention, as will be explained

in Section 3.2. For segmentation we are most interested in the change rates of the measures.

Since these are time series with a relatively high amount of local fluctuation, we determine the

change rates of Nt0(t) and D|sp|1
t0 (t) using a sliding window of length w:

∆Nt0(t) =
1
w
(|Nt0(t)|− |Nt0(t−w)|) (3.6)

∆D|sp|1
t0 (t) =

1
w

(∣∣∣D|sp|1
t0 (t)

∣∣∣− ∣∣∣D|sp|1
t0 (t−w)

∣∣∣) . (3.7)

We choose w in all our experiments to be corresponding to a duration of one second. D|sp|1
t0

is up to fluctuation monotonically decreasing roughly proportional to 1/(1+ t− t0) in case of

static, repetitive (not necessarily cyclic) periods.

If we then encounter a cumulation of non-assignable images, this will result in an increase

of D|sp|1
t0 , which we simply formalize as

∆D|sp|1
t0 (t)> 0, (3.8)

as local fluctuations are already smoothed out through the sliding window. Through examina-

tion of ∆Nt0 we gain information about the progressive motion. A significant decrease, defined

by a ratio α of the recent peak rate ∆Nt0 , is used to identify a slow-down:

t
max
f=t0

∆Nt0( f )> M (3.9)

∆Nt0(t)< α
t

max
f=t0

∆Nt0( f ). (3.10)

The threshold M determines the minimum motion that an action needs to exhibit before being

a candidate for segmentation. Equation 3.9 formulates a heuristic to prohibit the segmentation
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Figure 3.7: Illustration of our segmentation criteria: As soon as the observation gets saturated,
indicated through a slower change rate of the novelty count ∆Nt0 , we cut at the next increase of
the normalized shortest path D|sp|1

t0 .

of periods with potentially insufficient motion as distinct actions. Often, it is not required to

threshold the minimum motion (i.e., M = 0) and we analyze the influence of this threshold in

our evaluation chapter.

Equation 3.10 is not solely an indicator for a slow-down or halt of motion. In fact, there

are far more precise ways (e.g., based on optical flow) to assess the motion velocity. We

recall our main assumption that we can only infer a latent similarity within the confidence

radius of a surrogate function. When the rate of novelties decreases, this means that we can

actually relate the current images with our previous observation. The knowledge about the set

of appearances produced by the current action has reached a state of saturation. Therefore,

an increase of Equation 3.8 is caused by an actual change of the current appearance pattern.

Figure 3.7 illustrates the process.

A premature increase of ∆D|sp|1
t0 in Equation 3.8, before condition 3.10 is met could either

mean that there really is a new action or the current action was just not sufficiently observed.

Experimentally we found α = 0.5 is giving good overall values.

Switches from static to non-static content naturally coincide with an increase of ∆D|sp|1
t0 (t),

compare Equation 3.8. However, since we await the saturation of the current segment and due

to the way we compute temporal derivatives, we gain robustness with a dedicated handling. We

segment static periods by extracting the longest period that satisfies

Dmin
t0 (t) = d(Si,St0)< T, ∀i ∈ [t0 +1, t] and t− t0 ≥ lmin. (3.11)

So, if at least lmin consecutive frames are all similar to the first in the series, we extract this until

the first frame that violates the criterion. Algorithm 1 lists our entire segmentation algorithm,

including the dedicated handling of static segments.
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3.1 Image distance functions for task segmentation

Algorithm 1 Segmentation of a sequence.
1: Set current frame: t← 0
2: while t ≤ n do
3: Set start frame of current task segment: t0← t
4: Set start frame of potential static segment: s0← t
5: while t ≤ n do
6: Go to next frame: t← t+1
7: // Check conditions for a static segment
8: if Dmin

t0 (t)< T and Ns0(s0) =Ns0(t) then
9: if t−s0 ≥ lmin then

10: t← position of next Dmin
t0 (t) 6= d(St−1,St)

11: Output static segment from s0 to t−1
12: Leave inner while-loop
13: end if
14: else
15: Reset start of potential static segment s0← t
16: end if
17: // Check condition for motion and pattern change
18: if t−t0 ≥ w // due to sliding window

and maxt
f=t0 ∆Nt0( f )≥M

and ∆Nt0(t)< α maxt
f=t0 ∆Nt0( f ) then

19: t← position of next ∆D|sp|1
t0 (t)> 0

20: Output segment from t0 to t−1
21: Leave inner while-loop
22: end if
23: end while
24: end while
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3.2 Head gaze direction and attention

A change in the focus of attention is another important cue for action change. In this section,

we will present how we estimate changes in the focus of attention from the head gaze direction,

estimated from the pose of the head-worn camera.

3.2.1 Camera tracking

We use a very simple but practical alignment scheme to track the camera.

Step 1: We start by selecting arbitrary corner features Pt within frame t = 0. After locating

the correspondences within the next frame using KLT [207], we use RANSAC to find the

largest subset of correspondences that support a homography, i.e., we determine the largest set

of correspondences Pt+1 and the homography Ht+1
t that satisfies

‖~pt+1−Ht+1
t ~pt‖2 ≤ ε, ~pt ∈Pt , ~pt+1 ∈Pt+1, (3.12)

where ε is an error threshold. The impact of a suboptimal RANSAC solution is negligible as

(1) our method gracefully deteriorates with suboptimal results and (2) the step gets repeated

on every frame, thus quickly corrects exceptionally bad RANSAC solutions. Though, it is

important not to set ε too low, since it affects how the tracking support is enlarged in case of

occlusions. We found values between 4 and 6 pixels to produce good results w.r.t. an image

size of 960×720 pixels.

Step 2: For the next frame t = 1, we repeat KLT and RANSAC with the already determined set

of points Pt+1 to estimate Ht+1
t for t = 2. After that, we select new corner features across the

entire image in frame t, find correspondences in t+1 and directly apply (3.12) to reject points

that do not comply with the homographic model. We continue to track by repeating Step 2 for

all subsequent frames t = 3..n. In case of a complete loss of tracking, i.e., Pt = /0, we repeat

Step 1. The homography from the first frame t = 0 to the current frame t is then given as

Ht
0 =

t−1

∏
k=0

Hk+1
k . (3.13)

This simple scheme only provides camera location with respect to a random subset of the

image and tends to drift quickly (which is negligible in our framework since we segment the

sequence into several independent and rather short segments). Nevertheless, it has some useful

properties that we will later use to segment the so-called relevance plane: Firstly, it oper-

ates consistently on translational and rotational-only camera motion. SLAM-related methods
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3.2 Head gaze direction and attention

mostly require a certain initialization and movement pattern (e.g., [141]) or use explicit model

switching to cope with degenerate motion (e.g., [177]). Our method gradually converges to a

planar subset with according motion, which is very important for our segmentation scheme.

Secondly, in case of strong occlusions or change of environment, this scheme gradually de-

viates from the coplanar point set (steered by the value of ε). Hence, the camera tracking

continues despite a fully occluded target, although of course with a higher tracking error.

3.2.2 Assessment of camera movement

We now extend the segmentation approach with an additional condition based on camera move-

ment. This is particularly important for splitting adjacent progressive actions, that are generally

inseparable through the image distance approach alone.

Since we want to distinguish different types of movement and weight them differently, we

derive three measures for different components of a homography H. For in-plane translation,

we simply measure the translational shift of the image center:

τ(H) = d
(
(cx,cy,1)T ,H(cx,cy,1)T ) , (3.14)

where d(~h1,~h2) is the Euclidean distance of the points after ”unhomogenizing”, and cx,cy are

the pixel coordinates of the image center (or if known: the optical center).

For assessing out-of-plane rotation, we score the perspective distortion of the image center:

φ(H) =
maxi=1..4 di

mini=1..4 di
, (3.15)

with d1..4 being the lengths of the four edges of a distorted square:

d1 = d(H(cx−1,cy−1,1)T ,H(cx+1,cy−1,1)T )

d2 = d(H(cx+1,cy−1,1)T ,H(cx+1,cy+1,1)T )

d3 = d(H(cx+1,cy+1,1)T ,H(cx−1,cy+1,1)T )

d4 = d(H(cx−1,cy+1,1)T ,H(cx−1,cy−1,1)T ).

Finally, movement along the optical axis is scored as

σ(H) = log2 d1 +d2 +d3 +d4

8
. (3.16)

Since we deal with a head-worn camera, we want to ignore short, likely unintentional move-

ments. To that end, we filter values within a sliding window of length w, only appreciating the

minimum motion value.
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3. UNSUPERVISED TASK SEGMENTATION

We segment the sequence if one of these measures exceeds a certain threshold throughout

the entire sliding window, i.e., if min
k=t−w..t

τ(H−1
t−wHk) > Tτ , analogous for φ and σ . The cam-

era movement thresholds Tτ ,Tφ and Tσ are hereby determined experimentally. Since rotations

around the optical axis do have a negligible effect, we are entirely ignoring this kind of move-

ment. Movement along the camera axis often occurs because the user performs work that deals

with details or requires a high accuracy and generally maintains the focus of attention. Due

to this, we grant a high threshold Tσ as segmentation condition. However, due to the result-

ing perspective distortion this indeed has a technical impact on the sampling precision of the

respective maps, as described in Chapter 4.

3.3 Evaluation

We tested our approach on three, real-world use cases: The first one shows the installation of a

RAM module into a notebook, see Figure 3.8.

The second shows the replacement of an empty toner cartridge of a laser printer recorded

from a head mounted camera, also containing unintentional movements, see Figure 3.9.

The third shows a prototypical maintenance task in a factory environment and contains

erratic head mounted camera movements and heavily cluttered background, see Figure 3.10

The notebook sequence is the only one that was recorded using a fixed camera. The re-

maining two sequences are evaluated to investigate the limitations of the approach.

3.3.1 Repeatability of the segmentation

As we had the feeling that unsupervised task segmentation is an ill-posed problem by nature,

we have conducted a user study to find out how subjective the segmentation decisions are. The

probands first watched the entire sequences and were then asked to extract all actions with start

and stop frame.

To our surprise, many tasks were quite differently assessed. In the notebook sequence,

there were 6 ’outlier’ actions that were only tagged by a single person each, compared to 2 in

the printer sequence and 7 in the factory sequence.

All actions with multiple reportings were used as ground truth for valid segmentation re-

sults in our analysis of the repeatability of our proposed method. We independently segmented

10 performances (by different persons) of the workflows using our proposed method. We rated

an extraction as being correct, if the segment start and stop was consistent with the manual

52



3.3 Evaluation

static

D|sp|1
t0 = 0

flip

D|sp|1
t0 = 0.82

static

D|sp|1
t0 = 0

screw right

D|sp|1
t0 = 0.59

screw left

D|sp|1
t0 = 0.43

open lid

D|sp|1
t0 = 0.81

static

D|sp|1
t0 = 0

insert RAM

D|sp|1
t0 = 0.66

ensure fit

D|sp|1
t0 = 0.45

static

D|sp|1
t0 = 0

close lid

D|sp|1
t0 = 0.66

screw right

D|sp|1
t0 = 0.47

screw left

D|sp|1
t0 = 0.42

flip

D|sp|1
t0 = 0.79

static

D|sp|1
t0 = 0

Figure 3.8: Photo story using the center frame of each automatically extracted segment from
the notebook sequence. The labels are manually added and taken from the conducted user study,
described in Section 3.3.1. The colors indicate progressive, repetitive, and static segments.
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Figure 3.9: Photo story for the printer sequence. See Figure 3.8 for details.
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Figure 3.10: Photo story for the factory sequence. See Figure 3.8 for details.
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segmentation result. Additionally, we also counted how often at least either start or stop of an

action was recognized correctly, i.e., only one side was correct.

For correct extractions this implies that each segment only contains exactly one action

unless several users have segmented the exact same set of actions as a contiguous segment.

For example, several users have not distinguished between different screws. The results of the

manual and the automatic segmentation are shown in Figure 3.11.

Under consideration of cross-exclusive tasks (together...), our average per-task segmenta-

tion repeatability of the notebook sequence is 79% with 5 tasks being 90% and above. In

comparison, the average manual task repeatability is 90%.

One thing to note is that in our approach the two screws were always distinguished. If there

were errors, these were always in conjunction with the task before the first or after the second

screw. This shows the effectiveness of our approach to distinguish repetitive segments.

In the other two sequences, missed activity changes are more frequent due to the additional

challenge of a moving camera. This happens in particular between tasks that coincide with

a great change in gaze direction (e.g., printer sequence between upper and lower lid, factory

sequence after/before closing/opening remotely located valve). While small changes in gaze

direction are compensated by the design of our dissimilarity function, these larger changes

conceal the user’s actions and are not exploited as segmentation criteria on their own. Fig-

ure 3.11(b) and 3.11(c) give more detailed information about the per-task repeatability for the

sequences with moving cameras.

Using the center frame of each segment as representative for the segment we can automat-

ically generate ’photo stories’ as workflow documentation. We show the segmentation results

for the three sequences in this representation in Figure 3.8, 3.9, and 3.10, respectively.

All pictures were automatically selected using our method, each representing one segment

of the automatic segmentation. The task labels on each image are taken from the user study.

The color of the task labels indicates the type of segment. If the value of D|sp|1
t0 is above 0.6 we

classify it as progressive and below as repetitive.

This classification works well for the sequence with a fixed camera. In both sequences

with moving cameras the value tends to be too low due to large perspective distortions that are

not handled by dT (I,J) in Equation 3.1. This leads to an increase of Dsum
t0 in the denominator

of Equation 3.5. The effect is strongest in the factory sequence due to the highly cluttered

background together with the high depth range of the recorded scene. Though, this effect only

slightly affects the segmentation directly as only an increase of the function, i.e., relative values
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Figure 3.11: Task repeatability for the three sequences.
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3. UNSUPERVISED TASK SEGMENTATION

are taken into consideration. Only if the extent of camera movements prevents a saturation of

the novelty rate this leads to missed activity changes.

To support this, we analyzed the temporal precision of correct segmentations in the follow-

ing subsection.

3.3.2 Temporal accuracy

We consider a segmentation being temporally correct, if it falls within the minimum and the

maximum frame value the probands have assigned to the start of a task. This interval is only

2 frames long for some tasks. We have investigated how often the cutting frame of a cor-

rect segmentation was within the correct interval respectively within a close perimeter of it.

Figure 3.12 shows the results for an increasing amount of error (from 0 to 0.5 seconds). As

expected, the notebook sequence with its fixed camera leads to the highest precision with 70%

of the cut-frames being entirely consistent with the manual segmentation and 90% being not

more than 0.3 seconds away. But also the factory sequence, in spite of a moving camera and

a cluttered scene, leads to satisfactory results with 80% of the cut-frames being not more than

0.4 seconds away. As long as probands have not incorporated abstract task goals into their

segmentation decision, our proposed criteria are well consistent with human decision making.
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Figure 3.12: Segmentation precision for the three tasks.

The reason why the printer sequence leads to significantly worse results (with 50% being

more than half a second away from the correct interval) is not (solely) due to camera movement.

The problem here is that the probands mostly attributed the first touch to the start of an action.

As these are typically located very close to the image borders, they were widely ignored by
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our approach due to the image crop applied in our dissimilarity function (which is needed

to compensate small translational movements). Hence, only the subsequent movement of the

respective printer part was then recognized as an action by our approach.

3.3.3 Impact of motion thresholding

The only parameter that was changed among the segmentation of the sequences was the mo-

tion threshold M. In the notebook sequence we used a value of M = 0.5 whereas all other

segmentation results were conducted without thresholding the motion, i.e., M = 0. Without the

motion threshold, the segmentation result of the notebook sequence contains 2 additional seg-

ments: One additional phase before starting the screwing movement and one phase containing

the approach of the hand before flipping the notebook.

We extensively analyzed the influence of the parameter M on the three sequences. Fig-

ure 3.13 shows all segmentation results for all M between 0 and 1 sampled at a step size of

0.01. A motion threshold above 0.6 is generally superseding the actual segmentation rules and

leads to very few segments that are predominantly determined through the amount of visual

motion. In contrast, values below 0.3 generally do not affect the segmentation result, lead-

ing to the same segmentation result as without motion thresholding. Hence, the value has a

meaningful operational range between 0.3 and 0.6.
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Figure 3.13: Evaluation of the influence of the motion threshold M: The graphs are sampled at a
step size of 0.01. Each line represents a segment border.
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4

Workflow modeling and tracking

Recognizing previously observed actions in video sequences is a prerequisite to (1) automat-

ically follow the progress of the user and (2) still allow the automatic creation from video

examples of the workflow. Workflow modeling is challenging, as the environment is suscepti-

ble to change drastically due to user interaction and camera motion may not provide sufficient

translation to robustly estimate geometry.

We propose a piecewise homographic transform that projects the given video material onto

a series of distinct planar subsets of the scene. These subsets are selected by segmenting the

largest image region that is consistent with a homographic model and contains a given region

of interest. The model elegantly handles estimation errors due to incomplete observation and is

robust towards occlusions, e.g., due to the user’s hands. This allows to model the time-evolving

state of the 3D workspace and the user actions using simple 2D region descriptors. We will

present and discuss this approach to spatiotemporal modeling and tracking in Section 4.2.

While the spatiotemporal tracking is obviously necessary during run-time to provide context-

aware assistance while the user is performing a workflow, many aspects are already needed dur-

ing authoring. As we point out in our evaluation section, a single reference recording generally

does not suffice to establish a model, due to user dependent variations. Therefore, we need

to temporally and spatially align recordings already during authoring to capture the slightly

differing performances of a workflow. Furthermore, this is a prerequisite to generalize the state

transition model in order to also capture valid variants of the workflow.

Since we deal with a moving camera, we need to recognize and stabilize the region of

interest. The first-person view workflow recordings that we deal with exhibit some quite unique
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and specific properties. We briefly summarize the key aspects to motivate our tracking design

decisions:

Camera motion and viewpoint: The video material is typically recorded from a head-worn

camera, leading to ego-perspective recordings. Camera motion during a certain manual

work step will dominantly consist of orientation change and we cannot assume sufficient

camera translation to reliably reconstruct geometry.

Environment: Additionally, the environment is susceptible to change due to user interaction,

which affects scene geometry and trackable features.

User: When using the resulting AR manual, we can assume a cooperative user that supports

the system when given appropriate feedback. However, this assumption does not neces-

sarily hold for the training material. Especially, when aiming for creating AR documen-

tation as a by-product of ordinary maintenance or assembly work, the system needs to

deal with difficult conditions, erratic motion, and incomplete observation.

In the next section, we will introduce the relevance plane transform, an image transform

that allows the piecewise modeling of a time-progressing environment using standard 2D de-

scriptors. After that, we present the classification approach that we use to switch between

temporal work states and to roughly initialize a camera pose. The third section explains how

we apply this during authoring and the chapter concludes with an evaluation of the tracking

approach.

4.1 Relevance plane transform

For modeling a dynamic, continuously changing environment, we propose a piecewise homo-

graphic transform that projects the given video material onto a series of distinct planar subsets

of the scene. The core idea is to identify the planar image structure (the so-called Relevance

Plane RP) that contains a certain region of interest. All images that share the same region of

interest (ROI) are then projected into a common 2D coordinate frame using homographies ac-

quired from tracking the planar structure. The corresponding ROIs are selected according to

the temporal task structure, estimating locations of user interaction. We assume that the user

touches the environment within the ROI in the course of each work step. Therefore, the contact

points will always sharply project into the common frame. Content at different depths will

62



4.1 Relevance plane transform

show a reprojection error proportional to the distance to the RP unless camera motion is purely

rotational. Figure 4.1 illustrates the model and this consideration.

Δh 

d l 

Figure 4.1: Illustration of the model assumption: The relevance plane transform (RPT) provides
accurate estimates if ∆h and l are small compared to d.

The idea is related to the influential tracking approach by Simon et al. [208] that also uses

planar structures in the scene for tracking. In contrast to their approach, we propose a selection

and segmentation approach that copes with the dynamic scene content. While our approach

is equal to whole image stabilization in case of purely rotational motion, the tracking support

incrementally converges to the planar structure with translational motion. By exploiting the

fact that with degenerate (i.e., purely rotational) motion, the entire image sharply projects into

the common frame, we can sample information without actually estimating the relevance plane.

The segmentation is then delayed but can still take place during online tracking. As pointed out

in the beginning of this chapter, the camera motion during a single work step exhibits only little

translational motion. However, the translational offset might be significant between different

users.

We now show how the various ROIs are selected and how we robustly segment the largest

support region for an ROI.

4.1.1 Selecting the region of interest

We change the ROI and therefore possibly the planar structure that constitutes the relevance

plane on every task of the workflow. To that end we use the segmentation criteria from the pre-

vious Chapter 3, including strong camera movement as a cue for a changed region of interest.

We further exploit the task structure to determine the region that is currently the focus of

attention. We start with temporal segments Si that have been classified as containing user
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actions. For robustness, we use a fuzzy representation of the user’s focus of attention within

each image It ∈ Si. We simply use an attention mask M that is 1 in the image center and

radially fades out to 0 to model the focus of attention. In the following subsection, we will

show how the region of interest is updated to segment the relevance plane.

We also tried to define the region of interest using the area of greatest optical flow, around

the centroid of the hand silhouette, at the location of the fingers estimated through [209], and

through combinations of the three but found that this approach worked most reliably in practice.

4.1.2 Segmenting the relevance plane

Segmenting the RP is quite analogous to our camera tracking scheme described in Section 3.2.1

with simple adjustments:

Altered step 1: We again select corner features Pt within frame t = 0. However, in contrast to

the camera tracking approach, we constrain the selection to a support region, which in the first

frame is given as

Ri,0 = thresκ M, (4.1)

where thresκ is a binary image threshold operator with threshold value κ . The remainder of

step 1 is analogous to the camera tracking method, i.e., finding correspondences using KLT and

using RANSAC to find a large subset of correspondences whose movement can be described

using a homography.

Altered Step 2: The support region Ri,t+1 is being updated using the density map Dt of the

currently tracked features before rejecting points that do not comply with Ht+1
t . Simply put,

Dt is created by drawing blurred circles around each feature location in frame t. The updated

support region is then given as the weighted average

Ri,t+1 = thresκ

(
αM+β warpHt+1

t
Dt

)
, (4.2)

where α and β are weights and warpHt+1
t

warps the density map using the homography Ht+1
t .

Figure 4.2 illustrates how the support region is propagated. Similar to the camera tracking

approach, we then select corner features across the entire image that comply with the homo-

graphic model determined through the point trajectories within the support region.

Without occlusions and with sufficient camera motion, the support will converge to a planar

subset of the scene that strongly overlaps the region of interest. In presence of occlusions, the
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Figure 4.2: Support region while tracking the relevance plane.

support drifts to a planar subset that satisfies (3.12). Note that due to the radial distortions of

an uncalibrated camera, the support will not span the entire planar structure.

We reuse the same ROI within the directly adjacent static or movement segments. In case

of two neighboring action segments the subsequent one propagates the ROI.

The homography to transform an image It into the common coordinate frame is given by:

ĤRP
t = (

1
|Si|

|Si|

∑
k=1

Hk
0)
−1Ht

0, (4.3)

where |Si| is the number of images in the segment and Ht
0 is the homography from first frame

of the segment to t, as given in Equation 3.13. This type of linear interpolation between homo-

graphies is along the circular secant, not the arc. It will therefore degenerate in case of strong

rotation. However, since we also separate common frames according to movement cues, this

type of interpolation becomes feasible within this application.

We can use Equation 4.3 to project each frame of a temporal segment into a single 2D frame

that affords the application of 2D descriptors such as skin color probability maps, illustrated

in Figure 4.3. By backprojecting the common frame into the workspace, these descriptors

can be applied during tracking. In the following section we explain how this backprojection

is realized using a robust classification approach. As each relevance plane is specific for a

temporal segment, this approach is intertwined with temporal tracking of the user’s progress

within the workflow.

4.2 Spatiotemporal classifiers

Our approach is based on an independent classification of each camera frame using a k-nearest

neighbors (k-NN) classifier on the novelty frames Nt0(t). These frames were acquired through
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time 

2 

… … 

… … 

Figure 4.3: The relevance plane transform allows the projection of a time-progressing 3D
workspace into a piecewise 2D representation.

the temporal segmentation approach described in the previous chapter. The classifier returns

a set of hypotheses for the current segment index as well as a rough viewpoint estimate. The

viewpoint is determined from the transform parameters leading to the minimal distance in the

robust distance function dT (I,J) (Equation 3.1). This leads to a quantized 4-DoF pose estimate

(rotation around the camera axis, 2D translation, and scaling).

We propose a set of classifiers that are trained for every segment independently. To train a

segment classifier k-NNi we first use all frames I from segment i as positive training examples.

The procedure works as follows: We start with an empty set of neighbor samples. For every

frame treated as a positive training example we create affinely transformed images T (I), as

described in Section 3.1.1. Every image in T (I) that has a distance of at least T from all

other neighbor samples is added as a new neighbor. In our implementation we use 9 rotation

values on 9 different scales, thus resulting in 81 images per training example since translation

is already handled by the underlying region descriptor.

We proceed differently on static and non-static segments. If segment i is non-static we use

the previous and the following segment as negative training examples. If the workflow contains
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Action 
Static Static 

Optical Validation 

Movement Action 

Figure 4.4: Illustration of the possible state transitions dependent on the type of segments.

structural variants in the transition model, there could be several successors and predecessors.

In that case all of these segments are used as negative training examples.

For every affinely transformed image of each training example we calculate the distance

towards all neighbor samples and remove samples that have a distance of less than T . So, for

each frame from the segment i, there exists at least one nearest neighbor within a radius T . For

each negative training example, there exists no neighbor sample within a radius T .

Each neighbor sample is labeled with the transformation parameters that were applied.

These are the rotation value r, scaling s and translation t (provided by the region descriptor).

With this information, we know how to transform overlaid images to produce roughly con-

gruent overlays, i.e., a quantized 4-DoF camera pose. As already mentioned, this suffices to

produce acceptable results for small changes of the elevation angle.

We treat static segments differently for two reasons: Firstly, the probability for matching

these images is higher since the segment potentially only shows rigid and static background.

Secondly, the respective k-NNi will contain very few (but important) samples. Therefore, the

procedure for removing negative training examples is not applied here. However, since we

remove ambiguous matches from the neighboring classifiers, the separation is still guaranteed

to be at least T .

With NN(l) denoting the lth nearest neighbor and d(I,J) being the distance function defined

in Section 3.1.1, the scoring function is

scorei
NN(It) =

1
k ∑

l=1..k
1/d(It ,NN(l)). (4.4)

We experimented with different values of k and found that a value of k = 2 improved the

precision and substantially helped to reduce the spatial jitter. Considerations in defense of the

performance of nearest neighbor classifiers are found in [210]

The temporal state transitions are based on a Markov process, illustrated in Figure 4.4.

In each segment state we may either remain in the current segment or move to its follow-up
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segment state. Since we expect segments that were segmented due to strong camera movement

not to be robustly recognizable, we allow skipping these and directly move to the next non-

movement state. Generally, we do not allow transitions back to a previous state in the tracking

process. However, as static segments might provide a direct view on the workspace, we utilize

this to validate the intermediate work step results. Therefore, in case of clearly separable static

segments that are not occluded by the user’s hands, we allow a backwards transition to the

previous static segment. A description of how the model for this optical validation is extracted

from the reference material is provided in Section 6.3.3 and 6.3.4 .

Our transition rule is based on a simple hysteresis approach: For each possible follow-up

state n we compute scorei
next , including the current state scorei

cur. If a follow-up state produces

the maximum score for a certain number of consecutive frames we transit to this state. This

implies that a single vote for the current state resets this counter.

The distance function for the k-nearest neighbors is an insufficient measure to compute the

scores. Therefore, we compute the scores by applying the 2D descriptors within the relevance

plane. In the following sections, we show how we robustly refine the camera pose to backpro-

ject the relevance plane. This is demonstrated using a simple hand location probability map as

2D descriptor, which is briefly explained subsequently. After this, we show how we compute

the final scoring function used for temporal tracking.

4.2.1 Refinement of the camera pose

We begin with the region template matching approach proposed in Section 3.1.1 to get a rough

four degrees of freedom (4-DoF) quantized pose estimate (scale, rotation, x- and y-translation).

Continuing from this pose estimate, we use a point matcher to refine it into a 6-DoF pose

estimate. The reason why we resort to a two-step camera initialization method is due to the

dependency of the point matching approach on sufficient texturing. Although the proposed

method of recovering the pose estimate is considerably slower than exclusively relying on the

point matching approach, it is highly robust towards lack of texture as well as occlusions. We

did not pursue the alternative of using a contour or edge matching approach (e.g., [211]).

Since we have to deal with a high amount of occlusions, the robustness of a contour model is

compromised whenever contours are partly occluded. In our approach using region descriptors,

we counter this through joint sampling of hand and environment. The proposed approach

consists of the following steps:
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Build point descriptors: In an offline step, we compute ORB [171] keypoints and descriptors

within the relevance plane support for each image projected into its common frame. Thereafter,

we merge all points that are close in image and descriptor space through replacing them with

the averaged keypoint position and the descriptor with the lowest summed distance towards all

others within the merge set.

Matching: During tracking, we start executing DOT matching which returns a rough, quan-

tized 4-DoF pose, denoted as H4. Additionally, we calculate a 6-DoF H6 pose by detecting and

matching point features within the segment’s RP support projected into the image using H−1
4 .

We reject the point matching homography H6 if it does not comply with H4 by examining

the values of τ(H−1
4 H6),φ(H−1

4 H6), and σ(H−1
4 H6) (compare Section 3.2.2). In case of suffi-

ciently low values, we initialize the tracking using Ht=0 = H6. Otherwise, we use Ht=0 = H4

but repeat the matching procedure with one of the following camera frames. In case of suc-

cessful initialization, the homography Ht=0 is written forward using Ht+1
t from Section 3.2.1,

while maintaining the support region of the relevance plane which results in the homography:

H̄RP
t =

t

∏
k=1

(Hk+1
k )Ht=0. (4.5)

Since KLT is also not dependent on point features (only on sufficient rank 2 image gradients

within each patch), the method also works with severely occluded or mostly textureless envi-

ronments.

In the two following sections, we explain how we capture and store hand locations and how

this is combined in an extended scoring function.

4.2.2 Hand location probability maps

We store the location probability of the user’s hands in a 2D map, using the common frame

of the relevance plane, i.e., for each temporal segment, separately. We first segment the hand

silhouette mask St based on skin color segmentation for every image It ∈ Si . While simple

pixel-wise segmentation based on HSV histograms is sufficient for the evaluated scenarios, a

more robust substitute for this step is the segmentation procedure from [212]. The location

probability map is then the normalized average SRP
i = 1

|Si| ∑warpH̄RP
t

St , where |Si| is the num-

ber of images in segment i. Figure 4.5 illustrates this procedure.

We also use this to provide visual feedback by color-coding this map and projecting it

into the field of view of the user, compare right column of Figure 4.5. A very low or zero
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Figure 4.5: Images projected into the common frame and averaged (left), hand location map
(middle), hand location map backprojected into the field of view (right).

location probability is indicated as red, low as yellow, and high probability as green. Compare

Section 6.2 for a discussion of this feedback from an application perspective.

4.2.3 Extended scoring function

We extend the original scoring function, which was formulated in Equation 4.4 with the 2D de-

scriptor scores that are projected back into the camera frame using the homographic transform

warpH̄RP
t

. Using the 2D hand location maps, we therefore formulate the final scoring function

as

scorei(It) = α scorei
NN(It)

−β count(thresκ(SRP
i )⊗warpH̄RP

t
(St)), (4.6)
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where α and β are weights, count() is the non-zero pixel count, thresκ is the pixel-wise binary

thresholding operator, and ⊗ denotes the pixel-wise XOR operator.

One important aspect to note is that we do not apply scorei
NN(It) in the common frame but

in the original image space. This is due to two reasons: (1) Since scorei
NN(It) implicitly has

some affine invariance and robustness towards arbitrary local deformation, it also handles a

certain degree of perspective distortion. (2) The term also appears in tracking (re-)initialization

to determine H4. To allow an instantaneous reinitialization, we chose to apply it to the image

space directly. Otherwise, in case of a tracking loss, the user is required to adopt a valid

initialization position. While this explicitly narrows the allowed deviation of the user’s point

of view from that of the reference recording, it also assures that the tracking model is able

to describe the observation. In our framework, we use an attention funnel to guide the user

back, if he wanders off too far. To allow for a wider range of viewpoints, it is possible to add

another reference recording from a different perspective. In order to incorporate this into a

single tracking model, the recordings need to be registered spatially and temporally, which is

described in the following section.

4.3 Learning from multiple sequences

There exist three different motivations for adding additional reference recordings into the train-

ing data body:

Viewpoint generalization: As the method extracts the entire workflow knowledge from monoc-

ular video examples, the generalization to arbitrary viewpoints is infeasible without very

restrictive assumptions on scene geometry.

User dependency: Due to variation in the mode of execution, significant differences in the

size or shape of the hands, or right vs. left handedness it is generally necessary to ac-

commodate these differences with additional training examples.

Task variants: Finally, there might be different viable solutions to the same workflow. For

example, the order of releasing screws might not be important and all orders lead to a

correct completion of the task. These variants can be automatically extracted from the

training material, analogously.
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In contrast to the problem of online workflow tracking, we can assume and exploit the complete

availability of the whole sequences. In the following, we explain how we adapt the tracking

method to improve the recognition results for this offline case.

4.3.1 Temporal alignment

In this section we explain our method to temporally align another prerecorded workflow video

in an offline process. This is required for associating learning data and allows the teach-in

of appearance and viewpoint variations as well as task variants that change the order of work

steps. Therefore, the approach needs to be able to detect inserted, left out, or reordered steps

and accordingly update the transition model.

There exist approaches that are quite robust towards viewpoint changes in an offline case,

e.g., [159], through observing the self-similarity of the sequence and matching the resulting

patterns. Although this constitutes an interesting approach, it is not applicable if the step order

is permuted locally or otherwise changed. We handle both the online and the offline case with

the k-nearest neighbors (k-NN) approach that was presented in the preceding section. As one of

the main premises of our work is the assumption of a narrow confidence radius, a classification

rule based on k-NN reduces the relevant evaluated distances to a minimum.

We distinguish two different cases of task variants:

Appearance variants that do not change the segment structure but change the appearance of

the segments (e.g., the same workflow performed by a left- and a right-handed person or

from a significantly different viewpoint).

Structural variants that change the order or number of task segments (e.g., releasing screws

in a different order).

In case of appearance variants we use dynamic programming to find an optimal path

through the given set of segments. The approach is very similar to dynamic time warping

except that we do not frame-wise align the two sequences but rather on the granularity of

frame-to-segment. If it is known that the additional recording constitutes an appearance vari-

ant, we can improve the stability of the alignment procedure by only allowing ±20% time

fluctuation between the two sequences (Sakoe-Chiba band), compare Figure 4.6(a).
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Figure 4.6: (a) and (b) show the score matrices used for alignment. (c) shows the association
matrix to associate structural variants.

In the case of structural variants there exists an immanent problem: It is very hard to decide

whether a low matching score of all segment classifiers is owed to strongly differing image ap-

pearance or because the image really does not belong to any known segment, see figure 4.6(b)

for an example of the according score matrix. To solve this, we exploit the possibility to inde-

pendently segment the second sequence with the method described in Section 3. We assume

that we have successfully recovered all tasks in the target sequence (or at least, we live with the

fact that wrongly segmented tasks consequently get associated incorrectly). We then calculate

the average matching score over entire target segments and apply non-maximum suppression

per source segment. Figure 4.6(c) shows the resulting association matrix for the printer work-

flow. After reordering the sequence using the association matrix, we can again apply DTW to

fully align the sequences.

4.3.2 Spatial alignment

After the temporal alignment, we also need to register the relative camera poses among the

frames of both sequences. Frames containing user interaction are very difficult to match among

different recordings due to occlusion by the user’s hands. We therefore exploit the fact that

we already have tracked the camera independently within each sequence with the approach

described in Section 3.2.1. Since we can associate all frames of the added video recording with

a respective segment of the reference sequence due to the temporal alignment, we also know

the respective classification into static and non-static. We therefore register the camera pose

among different recordings only within static segments and compute the relative viewpoints of

remaining frames separately for each sequence. Figure 4.7 illustrates the procedure.
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… 

… 

Sequence A 

Sequence B 

Figure 4.7: Illustration of camera pose registration between several recordings: The blue lines
indicate a camera pose matching between yellow-tinted static segments and the pose updates for
each sequence individually. In particular the segments that contain strong camera movement (blue-
tinted) are handled individually.

For each frame pair from the associated static segments, we apply the procedure as de-

scribed in Section 4.2.1. For the respective frames within each static segment of the added se-

quence, this leads to two different homography estimates: One which is relative to the linearly

averaged homography of the segment of the added sequence, as formulated in Equation 4.3.

And one that is relative to the analogously determined average of the segment from the ref-

erence sequence. For a shortened notation, we denote the reference sequence with A and the

added sequence with B. Since we can relate the pose of each frame of the sequence via concate-

nation of Hk+1
k , this leads to an overdetermined equation system, which we solve independently

for each static segment:

Hk+1
k HBk

Al
~pi = HBk+1

Al
~pi,∀l,k, i, (4.7)

where HBk
Al

is the homography from a frame l in sequence A to a frame k of sequence B, Hk+1
k

denotes the homography from frame k to k+1 of sequence B and ~pi denote the feature points

in sequence A.

This results in a robust estimate of the relative homography for each static segment. Since

the relevance plane is readjusted for each temporal segment, the estimates for the relative homo-

graphies between reference sequence A and added sequence B HB
A only need to be propagated

locally. To this end, we use the two closest static segments before and after a frame and assign

the linearly interpolated homography as relative pose.

74



4.4 Evaluation

4.4 Evaluation

We have evaluated the applicability of the tracking approach with three data sets that differ

fundamentally in their properties. For baseline, we included the ”Notebook” sequence that

was also used for evaluation in the preceding chapter (Figure 4.8). Due to the fixed camera,

this is a direct evaluation of the impact of the applied 2D hand location descriptor, which has

been described in Section 4.2.2.

”Lever & lid” (Figure 4.9), which was also used in the last chapter, exhibits few track-

able planes, the angle between the relevance planes and the image plane is quite large, and it

comprises erratic camera motion.

The newly added ”Plugs & circuit board” data set (Figure 4.10) exhibits many large planes,

coarsely aligned with the image plane and relatively steady camera motion. We added this

sequence as a best-case scenario that is simplified but not uncommon in a factory environment.

We concentrate on three different aspects of the approach: (1) the performance of the

classifiers for tracking the temporal progress of the user. This was examined through the ratio

of correctly classified frames as well as the score margin as a measure for the robustness of

the decisions. (2) The impact of adding additional training recordings to the classification

performance. (3) The spatial accuracy of the reprojection. These are covered in the three

following subsections.

4.4.1 Spatiotemporal classification

To analyze the tracking performance, we recorded each scenario twice and used the first for

training and the second for testing. To generate ground truth, the second recording was man-

ually segmented to exactly match the temporal segmentation of the reference sequence. We

then tracked each sequence once with the scoring function incorporating the 2D descriptor

(Equation 4.6), thus using a model-representation based on the RPT. The results are denoted as

”proposed” in the following graphs. We tracked the same sequences with the scoring function

solely based on the k-NN classifier (Equation 4.4). This is denoted as ”Petersen2012”.

Since maximum vote is used as decision rule in both cases, we were interested in the

percentage of correctly classified frames according to this rule and the ”confidence” of this

decision. Therefore, we measured the score margin of frame t, i.e., the score of the correct

(according to ground truth) segment classifier i minus the highest adjacent segment classifier:

mi(t) = scorei(It)−max
(
scorei+1(It),scorei−1(It)

)
. The number of correct classifications is
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Figure 4.8: Results for the ”Notebook” sequence: Temporal segmentation of reference and test se-
quence showing action segments and yellow-tinted static segments (top), descriptor score margins
and correctness (middle), and common frames for all temporal segments (bottom).
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Figure 4.9: Results for the ”Lever & Lid” sequence: Temporal segmentation of reference and
test sequence showing yellow-tinted static-, blue-tinted movement-, and action-segments (top),
descriptor score margins and correctness (middle), and common frames for all temporal segments
(bottom).
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Figure 4.10: Results for the ”Plugs & Circuit board” sequence: Temporal segmentation of refer-
ence and test sequence showing yellow-tinted static-, blue-tinted movement-, and action-segments
(top), descriptor score margins and correctness (middle), and common frames for a selection of
temporal segments (bottom).

78



4.4 Evaluation

Petersen2012 Proposed
Data set Margin Correct Margin Correct

Notebook 12.2 62.8% 21.6 68.0%
Lever & Lid 0.2 76.5% 0.29 80.5%

Plugs & Circuit Board -21 30.4% 15.8 74.5%

Table 4.1: Tracking performance comparison.

then given through counting mi(t) > 0. The results are shown in Figure 4.8, 4.9, and 4.10 for

the three data sets, respectively. Additionally, Table 4.1 lists overall performance numbers.

The ”Notebook” sequence only slightly improves with the proposed approach. While there

are large improvements in certain segments (segments 1, 4, 9, and 15, compare Figure 4.8),

these are evened out by the unchanged or even slightly decreased correctness percentage of the

other segment classifiers. The decision margin, though, almost doubles from 12 to 22, which

is an indicator for the increased robustness.

The tracking performance for the sequence ”Plugs & circuit board” increases drastically

from 30% to 74% overall correctly classified frames. The score margin was likewise improved

from an on average negative margin −21 to 15.8 and these increases are spread among almost

all segment scores, compare Figure 4.10.

On the other side, the ”Lever & lid” data set only marginally benefits from the approach.

This is mostly due to the already high tracking score of 76.5%. One interesting aspect is that

the according score margin is quite small in both methods: 0.2 and 0.29, respectively. This

is owed to the employed dominant orientation templates in combination with highly cluttered

background. As the region descriptor only stores the orientations of the k strongest gradients

within the descriptor support, much of the cluttered background gets encoded. This leads to

the decreased match score margin, as differences in the foreground have less impact.

4.4.2 Multiple training examples

We also investigated the influence of the number and kind of training examples on the example

of the notebook sequence. We recorded the notebook sequence by 5 different persons (2 female,

3 male in the order F, M, M, M, F). Additionally, a 6th person (male) has recorded a total of

6 demonstrations of the workflow, 5 used for training and 1 for testing. Figure 4.11 shows
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4. WORKFLOW MODELING AND TRACKING

example frames in the order of appearance. The gender is important, since it has a large impact

on the visual appearance and thus the achieved scores.

We then again manually aligned the respective performances to ensure that we do not mea-

sure the influence of alignment errors. We evaluated the influence on the segment classifier

score in three experiments, see Figure 4.12:

• Trained with 1 to 5 examples from a single person and tested with a 6th example from

the same person (single→ same).

• Trained with 1 to 5 examples from a single person and tested on the examples from the

5 other persons (single→ other).

• Trained with 1 to 5 examples from a different person, each and tested on an example of

the 6th person (multiple→ other).

Figure 4.11: Example frames from the 6 different persons recorded for the training evaluation.

Experimentally, we determined that a minimum average score of 0.65 is required for the

tracker to successfully follow the test sequence to its end. The reason, why we do not condition

the value on the score margin is due to its higher dependency and thus higher variation among

different temporal segments. Figure 4.12 shows the results.

As expected, the system achieves the highest scores when being trained with the same

person that uses the system. With a single training example the system achieves an average
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Figure 4.12: Average classifier score after 1-5 training examples.
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Figure 4.13: Reprojection error in pixel (underlying image size is 960×720).

score of 0.73 and climbs up to 0.8 after the 4th example. The 5th example does not further

improve the result. Due to clustering and a similarly larger set of negative training examples

the score even falls off slightly. When the system trained like this is applied to examples from

unknown users, the score is only 0.62 on average which was not enough to track through the

entire workflow. When being trained using all five examples, this value climbs up to 6.7, which

is just enough to track the entire workflow. When the system is trained with examples from

different users, the scores improve due to the increased variability. After only training with

the first example (provided by a female user), we again achieve very low scores, since the test

set is recorded by a male user. Already after training with the second example (showing a

male user) this score climbs up to 0.69 and almost stays constant after training the remaining

three examples. This clearly indicates that the morphological differences between users have

a large impact on tracking performance. This also explains the significant improvements that

can be achieved trough the model-guided generalization procedure, described in the following

chapter.

4.4.3 Reprojection accuracy

Additionally, we evaluated the reprojection accuracy in the two data sets recorded with a mov-

ing camera. To that end, we first computed the RPT for each segment as described in Sec-

tion 4.1.2. Then, we masked the desired region of interest within each common frame as

ground truth. This ground truth annotation is illustrated as the blue grids in Figure 4.9 and

Figure 4.10, respectively. For every image It ∈ Si projected into the common frame, we have
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selected points ~pt within the ground truth mask and tracked them using KLT to get the entire

point trajectory ~pt for every t = 1..n in the segment. The reprojection error of a single point

~pt is then taken as: e(~pt) = ~pt − 1
n ∑~pt and the overall reprojection error is determined as the

average of e(~pt) over all selected points and all segments. The results are shown in Figure 4.13.

The reprojection error is lower for the easier data set ”Plugs & circuit board”. Over 60%

of the pixels reproject into an area of 2 pixels diameter compared to only 30% in the ”Lever &

lid”. In both sets, the tracking error in pixels does not exceed 20, measured with respect to an

image of 960×720 pixels.
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Hand and finger tracking

While our entire approach so far has been based upon robust but coarse models, we now ex-

tend this with detailed information gathered through hand and finger tracking. This has three

important applications within our framework:

The first is acquiring detailed information about the execution modalities such as hand

postures, trajectories, and velocities during each work step. We call this kind of information

enactive knowledge, as it can be used to guide and support the user during the psychomotor

phase [165].

The second is the assessment of the required level of precision within each work step. The

classification models, presented in the previous chapter, already allow identifying unnecessary

or unintentional work steps as a whole. Through analysis of recurring hand postures among

several recordings of the same work step, we are able to further specify each step. Through

this comparison, we are able to distinguish work steps that require a relatively high precision,

e.g., pressing a certain button from steps that are less determined, e.g., picking up a randomly

placed tool.

The third application is the model guided generalization of the tracking model. In order

to reduce the required number of reference recordings, we are explicitly generating additional,

synthetic views, based on the already available observation. To this end, we present a novel

approach to image-based rendering of articulated objects that gives reliable estimates of the

object’s shape and shading in new, previously unseen poses. It faithfully approximates both

shape and shading of a hand in an unseen target pose even despite large unobservable hand

parts in the images that were used as prototype views.
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5. HAND AND FINGER TRACKING

In order to estimate the necessary hand posture parameters, we propose an entirely novel

hand tracking approach that is able to adapt to the actual observation. Using this approach it

is possible to track the challenging input material, exhibiting recurrent dis- and reappearing of

the hand, occlusions through hand-held objects, and fast and erratic motions. To the best of our

knowledge, this work contains the first description of a method that is able to operate on such

input data using with a single RGB camera.

We begin with a detailed explanation of how we model the appearance of the hand (5.1)

using our proposed extension to billboard rendering (5.1.1) and the method for efficient, axis-

aligned morphing (5.1.2). After that, we present the adaptive tracking approach in Section 5.2

that allows the adaptation of the tracking model to the observerd content. In the extensive

evaluation Section 5.3, we make the case that a derived pixel-wise distance function vastly

outperforms distance functions based on skin or edge features, used in current state of the art

methods. Using synthetic, ground truth labeled data, we demonstrate that the proposed func-

tion is highly robust against image blur, occlusion, cluttered or skin-colored background and

exhibits significantly less local optima than the state of the art. Additionally, in Section 5.3.4,

we are able to demonstrate the significant improvement of the generalization approach using

actual workflow videos as an input.

5.1 Image-based appearance model

We present a method to synthesize a low-textured, articulated object from other views through

image-based rendering (IBR) that can be used to explore the parameter space between a grow-

ing set of nearest neighbor templates. Figure 5.1 shows examples using synthetic images both

with and without unobservable areas to illustrate the procedure.

The method can also operate on real observation, recorded with a monocular RGB cam-

era. Figure 5.2 shows examples of interpolating between two frames of a real-world image

sequence. The morphed views in between are synthesized using our approach with linear in-

terpolation between the two original views, depicted left- and rightmost.

This allows the formulation of bias-free pixel-wise objective functions in an analysis-by-

synthesis framework that significantly outperform the state of the art. Further, IBR and hand

tracking results are eventually used to explicitly generalize the underlying training body for the

workflow tracking (Section 5.2.2.2 and 5.2.2.3).

84



5.1 Image-based appearance model

1st prototype 2nd prototype rendering 1st prototype 2nd prototype rendering

Figure 5.1: Examples using synthetic prototypes: Left column shows results for partly unobserv-
able areas, right column for fully observable prototypes.

Since our method does not require skin-color segmentation, edge extraction, or any other

preparatory feature extraction but operates directly on the pixel intensities, we gain additional

robustness. In fact, we can show that our method leads to far less local optima than edge and

skin-color based methods and is very robust towards blur, skin-colored background and even

skin-colored occlusions. In practice, images often exhibit motion blur, due to the high move-

ment speed of the human hand. We would like to point out that our method still produces

stable results even in the combined presence of strong blurring, cluttered skin-colored back-

ground and skin-colored occlusions, whereas edge- and silhouette-based methods both fail.

Compared to related methods, our approach has the benefit of being computationally ex-

tremely lightweight and requiring only a coarse model fit and object segmentation. Although

the prediction quality improves with shorter distance of the prototypes to the target pose, we

will demonstrate that our approach can handle substantial differences in the input views. The

method is not limited to hands but is in principle applicable to all articulated low-textured ob-

jects. Summarized, it is based on a kinematic skeleton with adjacent planar billboards, whose

distinct textures are being morphed according to the view change.
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Figure 5.2: Interpolation between observed hand postures: The leftmost and rightmost images
show the frames used to extract the prototypes. The images in between show interpolated frames
using our method.
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Figure 5.3: Schematic view of the kinematic hand model (left), the 2.5D billboards associated
with this model (middle), and a single 2.5D billboard (right).

We distinguish between three main effects that affect the appearance of a kinematic object:

segment-wise rigid transformation, elastic deformation, and shading change due to changed

relative lighting. The rigid transformation which has the strongest impact on the appearance

is carried out through positioning and deforming the billboards along the articulated model

to match the target pose. Figure 5.3 (left) illustrates the kinematic model used to pose the

hand. The rigid appearance change of each segment is thereby approximated using a proposed

extension to billboard rendering, where billboards are transformed through the kinematic model

(middle and right). To account for elastic effects and to compensate for model alignment errors,

we propose an efficient axis-aligned warping method between the pre-sampled views. This set

of labeled views is called the prototypes P . As we assume relatively low texture, simple

blending is then sufficient to cope with the remaining shading differences between two not too
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distant prototypes. See [213] for a comment on why this is a sufficient interpolation in this

case.

5.1.1 2.5D Billboards

𝒄  

𝒔  

𝒕  

0.5D Billboards 

𝒄  

𝒂 

𝒔  

𝒔  

1.5D Billboards 2.5D Billboards (proposed) 

𝒄  

𝒔1 

𝒕1 
𝒃 

𝒂 

Figure 5.4: Billboard types in analogy to our proposed 2.5D billboards. While 0.5D can only
change scale uniformly, 1.5D billboards extend this with a 3D axis that allows to model certain
viewpoint changes at the cost of a possible collapse to a single line. Our proposed 2.5D billboards
solve this through a second, perpendicular axis that spans a 3D polygon, surrounded by a ’billboard-
frame’ always aligned with the image plane.

As mentioned above, the hand is modeled as a set of billboards connected through a kine-

matic model. Billboards can faithfully simulate rotation-symmetric objects as long as the view-

point is not changing substantially other than around the symmetry axis. This holds for cylin-

drical objects like finger segments but also for objects, where rotational appearance change is

not directly apparent, e.g., trees. Figure 5.4 illustrates the relation to conventional billboards.

Similar to [203], we are aligning each billboard with the bone vector ~a of the kinematic

model. The billboard is then spanned using a vector ~si = αi(~a× [~ji−~c]) perpendicular to ~a

and parallel to the image plane, i.e., perpendicular to the vector from camera center ~c to the

adjacent joint ~ji. The scalar αi is a normalization resp. scaling factor.

This billboard definition suffers from a singularity problem: If the camera view direction

is aligned with~a, the billboard collapses to a single line. Additionally, for instance the palm of

the hand exhibits a strong change in shape with change of viewpoint. Therefore, we propose

an extension to billboards, which effectively solves both issues and is capable of reproducing
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non rotation-symmetric objects more faithfully from arbitrary viewpoints. Compare the right

illustration of Figure 5.3.

Our approach can be interpreted as a combination of a 3D planar polygonal patch and a

surrounding billboard ”frame” always aligned with the image plane. Therefore, we call this

extension 2.5D billboards. It allows viewpoint dependent minimum and maximum shapes that

can be used to describe rotational asymmetry and thus a larger class of convex 3D objects.

Formally, we achieve this by introducing a secondary axis~b and a secondary perpendicular

span vector~ti = βi(~b× [~ji−~c]) with the normalization factor βi. The two axes then span a plane

in 3D space. Let {~xi}, |{~xi}| ≥ 3 be the set of vertices of a convex polygon in this plane. In

fact, the convexity-constraint is too strict but simplifies the construction process with respect

to avoiding self-intersection. Please note that the method described in this work is hereby

effectively not limited to convex objects: Modeling of concave objects is achieved through the

subsequent pixel-precise morphing step, while the billboard projection operates on the convex

hull of the object. We establish a ”billboard frame” around this polygon by adding axis aligned

span vectors to obtain the billboard vertices

~yi =~xi +~si +~ti. (5.1)

Although the orientations of the billboard vectors are entirely determined, their lengths given

by αi and βi are free parameters for each vertex ~xi. To avoid self-intersection of the resulting

billboard polygon we do enforce the following three constraints when determining αi and βi:

• {~yi} represents a convex polygon.

• The billboard frame is on the outside of {~xi}. Formally, let ~m be the centroid of {~xi},
then the following must hold: (~yi−~m)(~xi−~m)> 1.

• The order is maintained, i.e., if~xi is the clockwise neighbor of~xi+1 the same holds for~yi

and~yi+1.

Since inner and outer polygons are both convex, enforcing these constraints for an arbitrary

viewpoint is sufficient for the constraints to hold for all viewpoints.

5.1.1.1 Constructing 2.5D billboards from projections

For constructing the 2.5D billboards there remains the question of the exact shape of the inner

polygon as well as the outer billboard frame. While it would be possible to solve this through

minimizing the reprojection error, there exists a simpler way.
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Figure 5.5: Illustration of 2.5D billboard projections of 3D objects at various orientations (left).
Not more than one of the two axes of the inner polygon will vanish at any orientation (right).

The construction is conducted in several steps: First, we determine the vertices ~yi of the

billboard frame. This is done by examining the orientation that maximizes the projected sil-

houette of the object (which is trivial for finger segments). Then, we define~yi as the polygonal

approximation of the convex hull of the projected silhouette.

In subsequent steps, we determine the billboard vectors ~si and~ti, separately. We exploit

the fact that the orientation that maximizes the projected object silhouette implies that also the

inner polygon has to be in the orientation that maximizes its projected silhouette, i.e., must be

aligned to the image plane. Therefore, when rotating the object by 90◦ around one of the axes,

the other axis vanishes in the projection of the inner polygon. Thus, when rotating around

~a (compare right of Figure 5.5), the inner polygon projects onto a line in the direction of ~a,

i.e., has no extent in the direction of~b. We then define the intersection of the line~yi +v~b,v ∈R
with the rotated object’s projection as~y⊥i and determine the corresponding billboard vector as

~si =~yi−~y⊥i . (5.2)

By repeating this procedure for the remaining axis~b analogously, we can reconstruct the inner

polygon using the determined billboard vectors~si and~ti.

Figure 5.3 shows the billboards that are used to model the hand. Applied to finger segments

there is no obvious choice for a secondary axis. To solve this, we use the segment’s bone as

primary axis and reuse the primary span vector as secondary axis. If the bone aligns with

the camera’s viewing direction, this span vector would become zero and the billboard would

collapse to a single point. In this case we substitute the secondary axis with the primary span

vector of the preceding segment in the kinematic chain until we have found a non-zero span-

vector.
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5.1.1.2 Capturing prototype appearance

Each prototype consists of the set of generating parameters (position and joint angles) and

the corresponding appearance information. To sample this appearance information from an

image with given generating parameters, we assume that a rough segmentation is available

to distinguish the hand from the background. Typically, this is achieved through skin-color

segmentation but as this may happen in an offline process, more sophisticated segmentation

methods can be applied, as well.

To identify the association between pixels and billboards we first articulate our kinematic

model according to the given parameters. We then project the resulting model onto the im-

age and label the segments accordingly. Pixels that are located within two billboard areas,

e.g., within overlaps along each finger, are copied into both billboard textures.

To avoid sampling neighboring fingers into the same billboard texture we prune each tex-

ture line-wise by only keeping the biggest connected segment. If there is at least a pixel gap be-

tween neighboring fingers this solves the issue. We have experimented with grab-cut segmen-

tation to solve unintentional co-sampling for the case of unseparated occluding and occluded

parts. The results however did not improve upon always co-sampling as the deteriorative effects

are alleviated by the texture morphing phase.

Also, the prototype views often contain unobservable parts, e.g., fingers occluded by the

palm. We nevertheless sample the area where the occluded segment would be located. Al-

though this leads to typically rectangular artifacts (since our billboards are mostly rectangular),

it assures a smooth transition away from this prototype which is important for the derivabil-

ity of the objective function. Our evaluation shows that this approach leads to a dominantly

monotonic pixel-wise objective function despite the sampling errors.

5.1.2 Axis-aligned morphing between prototypes

The biggest influence on the rendered appearance, the segment-wise rigid transformation, is

handled through the billboard articulation and accounts for rotational alignment of prototype

and target billboard axes. As we show in the following evaluation, only relying on the 2.5D

billboard transformation is already providing useful results.

However, to allow the exploitation of shading cues, a more precise approximation is re-

quired. Morphing the billboard texture, i.e., blending and simultaneous warping could improve
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the results, though the incorporated warping step is generally too costly to be used as an ob-

jective function. Due to the preceding rigid transformation, we can formulate an axis-aligned

warping technique that produces satisfying results while being computationally comparable to

a non-uniform scale.

We are exploiting two observations about the problem: Firstly, the fact that the visual ef-

fects due to warping within the object’s silhouette are negligible compared to areas that contain

the boundary, due to the relatively low texture. Secondly, we utilize that the ”bones” of the

kinematic chain are always roughly aligned with the object boundary.

𝑙𝑦
𝑝 

𝑏𝑝 − 𝑡𝑝 

𝑟𝑦
𝑝 

Figure 5.6: Illustration of the axis-aligned morphing scheme.

Figure 5.6 illustrates the method. When capturing the prototypes, we store the billboard

texture always aligned to the according principal axis. We thereby compute the left and right

contour boundaries of the billboard texture. Left and right denotes the directions +~si and

−~si, i.e., perpendicular to the kinematic bone. Additionally, we calculate the top and bottom

(+~ti,−~ti) boundary of the texture, stored as the coordinate components t p and bp in texture

space, ∀p∈P . In practice, we only calculate top and bottom on billboard textures representing

the fingertips and assume zero (top) and the texture height (bottom) for all other segments.

For the resulting texture we take the weighted average for top tres = ∑p∈P γ pt p and bot-

tom bres = ∑p∈P γ pbp and row-wise left boundary lres
y = ∑p∈P γ plp

y and right boundary rres
y =

∑p∈P γ prp
y . The computation of the weights γ p will be described in Section 5.1.3. The morph-

ing can then be formulated as

Tres(x,y) = ∑
p∈P

γ
pTp(xp(yp),yp) (5.3)
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for all y ∈ [tres,bres] with

yp = (y− tres)
bp− t p

bres− tres + t p (5.4)

xp(yp) = (x− lres
yp )

rp
yp− lp

yp

rres
yp − lres

yp
+ lp

yp , (5.5)

where T(x,y) is a placeholder for billboard textures at pixel coordinate x,y with Tp(x,y) denot-

ing the texture of prototype p and Tres(x,y) denoting the resulting texture.

The rearticulated and then pixel-wise warped prototypes are sufficiently similar so that the

subsequent cross-fade is well approximating the fine-grained changes due to relative move-

ment of the light source and fine-grained deformation. A formal explanation, why cross-fading

is sufficient in this respect is pointed out in [213]: Simple cross-fading is indistinguishable

from proper morphing for matching errors that are smaller than half the wavelength of the

spatial frequency of the images. As the hands exhibit very low texture, this mostly resolves

the remaining small-scale matching errors. Only small areas of the hand violate this assump-

tion and exhibit a certain degree of ghosting, most noticeably the shirt-sleeve and the finger

nail area. The warping prevents the occurrence of ghosting effects at the entire boundary, see

(a) (b) (c) (d)

Figure 5.7: Using prototype views (a) and (b) cross-fading the re-articulated models (c) leads to
visible artifacts due to model-alignment errors and elastic deformation. This does not occur using
our morphing technique (d).

Figure 5.7. Particularly, since we do not dedicatedly treat unobservable image content, these

boundary effects would be very evident.

As we do not perform any deformation to account for soft-tissue skinning at joints we do

have visible boundaries between the single segments. A deformation method like [214] would

allow a smooth transition, however, at the cost of a disproportionally increased computational
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𝒑1 
𝒕  𝒑 1 

𝒑1 𝒕  

𝒕  
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𝒑 1,2 

𝒑2 

𝒑3 𝒑2 

Closest distance 

Prototype 
Mirrored set mean 

Figure 5.8: Illustration of the prototype subspace and the scheme used to calculate blending
weights.

effort. Since the pixel-wise objective functions are not sensitive towards local texture disconti-

nuities, this does not result in any loss of accuracy.

5.1.3 Determining blending weights

The definition of the blending weight γ p that determines the weighting of prototype p in Equa-

tion 5.3 has a crucial influence. Simply defining γ p reciprocal to the distance of the target

parameter vector ~t (i.e., the 26 hand pose/posture parameters) to the prototype’s parameter

vector ~pp does not give appropriate results. The three arising problems are illustrated in the

following examples using three prototypes with the (simplified for didactic reasons) parameter

vectors (0,0)T , (10,0)T , and (35,0)T :

Neighborhood: The synthesis of~t = (5,0)T would still incorporate the prototype (35,0)T ,

though restraining to (0,0)T and (10,0)T produces a ”cleaner” result.

Lateral position: The synthesis of~t =(0,10)T should only incorporate the prototype at (0,0)T ,

as neither prototype contains information about the second component.

Prototype bias: Given an additional 4th prototype at (10,10)T and a synthesis target at (15,5)T ,

the three closest prototypes would be (0,0)T , (10,0)T , and (10,10)T and thus all on the

”left” of the target. This would lead to a significant bias in an objective function.

To solve this, we are using the following procedure to define the blending weights. First,

we are sorting the prototypes in P such that ~p1 is the nearest neighbor to~t in parameter space,

~p2 the second nearest and so on. We then choose the closest prototype ~p1 as support vector

for a subspace, see left of Figure 5.8. To address the neighborhood problem, we prune linearly
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dependent prototypes in the set: Whenever a span vector ~pi−~p1 is representable using a linear

combination of any span vector using a closer prototype
〈
~p j−~p1

〉
,2 ≤ j < i, it is removed

from the set of prototypes until we have k linearly independent prototypes ~p1 to ~pk in Pk. We

then collect these span vectors for the prototype subspace in P =
(
~p2−~p1 | ... | ~pk−~p1

)
. The

orthogonal projection~̂t of~t into the subspace P then satisfies

PT (~t−~̂t) =~0. (5.6)

Since we want~̂t to be included in the subspace, we substitute P~̄t+~p1 =~̂t and reorder to receive

PT (~t−~p1) = PT P~̄t. (5.7)

As the inverse of PT P exists, we can solve this as

~̂t = P(PT P)−1PT (~t−~p1)+~p1. (5.8)

Through measuring distances within the prototype subspace, we then effectively address

the issues regarding lateral positions. However, using all remaining prototypes would increase

the computation time while having little impact on the result. We therefore select a maximally

bias-free subset Pb f of prototypes. Starting with the set Pb f
1 = {p1}, we mirror the mean

of all prototypes currently within the set ~mi =
1
n ∑

p∈Pb f
i

~pp through ~̂t and add the closest of the

remaining prototypes to this set (compare Figure 5.8):

Pb f
i+1 =Pb f

i ∪ argmin
p∈P ,p/∈Pb f

i

‖2~̂t−~mi−~pp‖2. (5.9)

The blending weight γ p of the p-th prototype is then defined to be

γ
p

∝ 1/‖~pp−~̂t‖2 (5.10)

and normalized to satisfy ∑
p

γ p = 1 with p ∈Pb f . In our experiments we found that developing

Pb f to a size of up to 4 already leads to good results.

5.2 Content adaptive hand tracking

From a technical perspective, the state of the art in hand tracking can be coarsely categorized

into frame-to-frame and tracking-by-detection approaches. Both approaches aim to cope with
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different but specific challenges of hand tracking. The first is based on the assumption that

the previous trajectory of the hand movement can be exploited to acquire an accurate estimate

of the hand configuration in the current frame. However, due to the ability of the hand to

achieve high movement speeds and accelerations, this assumption is often violated and quick,

unintentional movements will likely cause a tracking loss. Additionally, these approaches do

require an entirely different strategy for initializing the tracker.

The second dominant approach is tracking-by-detection using an offline trained classifier.

Typically, this classifier is based on nearest neighbor considerations, so this approach is often

called database querying. During tracking the resulting classifier or template matcher is then

applied to single images and does not (or only loosely) rely on the motion history.

The tracking-by-detection approach has several beneficial properties. Initialization of the

tracking is straightforward by choosing the best hypothesis without prior knowledge. This

strongly alleviates the requirements on a high input frame rate due to the possibility of quick

reinitializations. Since the hand disappears often in the course of a workflow, we are crucially

reliant on a quick reinitialization scheme.

Also in related work (e.g., [191]), the two approaches are often combined. After generating

a single or multiple hypotheses using an initialization database, a refinement step is performed

that resembles the approach of frame-to-frame tracking. Here, we are combining the two ap-

proaches in an essentially different way. We use a database that is sufficiently large to be

usable not only for initialization but for continuous tracking, also. In our experiments, we use

a database with 4.5 million entries, which allows a comparatively dense sampling of the con-

figuration space. Despite the large size of the database, the approach runs at interactive frame

rates, while supporting to add, remove, and replace entries during run-time. This is possible

through the organization of the database that facilitates generating locally optimal search trees

for every query and therefore very fast beam-search runs. This leads to the major advantage

that all successfully tracked frames can be used to incrementally adapt the underlying database

to the observation.

We start with a database filled with synthetic hand templates. When a hand posture is

successfully recognized using our database, we refine the match using nonlinear optimization

of the pixel-wise objective function, detailed in Section 5.2.2.1. Figure 5.9 shows examples

of recognized postures using our database. In case of finding a well-defined optimum, a new

appearance template is generated from the according frame that replaces the synthetic template

within the database. To vastly increase the convergence speed, we not only replace the single

95



5. HAND AND FINGER TRACKING

Figure 5.9: Sample tracking results on cluttered background.

nearest neighbor template, but also propagate the adapted appearance template to entries in

the immediate vicinity using our image-based appearance model and interpolation between

multiple entries.

The resulting tracking system retains most of the benefits from database indexing while still

achieving frame rates between 10-15 frames per second on a single 2.8 GHz core and up to 30

frames with multi-threading on a quad core machine. Although the refinement scheme does not

run in real-time, it may be outsourced to an asynchronous and even remotely executed thread.

Since the eventual replacement in the database is computationally lightweight, the tracker can

still be executed in real-time.

In the next subsections, we will describe the various aspects of this approach. We begin

with explaining the structure and the initial content of the descriptor database. After that,

we show how we combine this database with the adaptation scheme using the image-based

appearance model.

5.2.1 Extendible descriptor database

The high performance of the database queries are possible through locally optimal search-trees

(Section 5.2.1.2). We will briefly discuss the parameter subspace, which is used to initially

create the synthetic hand views, the template construction, and the indexing method that con-

tributes to the procedure.

5.2.1.1 Content and template construction

The high number of degrees of freedom (DoF) needed to express arbitrary hand configurations

of up to 30 DoF for an anatomically accurate model exponentially increases the demand on

the database size. However, as most of the mathematically possible hand configurations lead
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to unnatural, unusual, or at least rarely seen hand postures, early tracking systems were using

subspaces of about 8 to 15 dimensions (thereof 3 translational and 3 rotational DoF for the

external pose) [197, 215].

Nevertheless, this parameter space is still very challenging, especially within the small time

budget, owing to interactive frame rates. Additionally, any objective function for hand model

fitting will be locally very non-linear due to several effects like self-occlusion. Hence, samples

need to be collected at a relatively high rate among the parameter space. To synthesize views

for our database, we are using the same kinematic model with 26 DoF that was introduced in

Section 5.1.1, though only a subset is used to initially fill the database. There are methods that

perform this reduction using PCA on data captured with a data glove [195]. Here, we explicitly

attribute one flexion parameter and one abduction/adduction parameter to the thumb, the index

finger and the combination of middle, ring, and small finger. The constrained model is still able

to perform most of the natural poses, including an opposable thumb. Together with the three

rotational DoFs of the wrist, this leads to a 9 DoF subspace that is stored densely sampled in the

database. Since, the three translational DoFs of the wrist are handled by the template matching

method, the effective recognizable DoFs of the tracking system is 12 DoFs. Please note that it

is not a requirement that the parameter entries in the database must form a linear subspace. In

fact, during the adaptation process, the database is extended with distinct observed poses.

The purely synthetic model is rendered as silhouette with boundary edges, see Figure 5.10.

Although shading is a valuable cue, particularly to resolve ambiguities in the hand projection,

it could only be exploited if lighting conditions are met by the synthetic rendering. As this

would require known and static lighting, this would substantially reduce the universality and is

therefore delayed until after the database adaptation takes place.

As discussed in Section 2.5.1, we use dominant orientation templates (DOT) [9] as appear-

ance descriptors. Gradient orientation proves to be a good descriptor of hand appearance. Even

if an edge between touching fingers is too weak to be recognized as such, the general gradient

orientation is likely to be perpendicular to that edge. Furthermore, as the form of a finger seg-

ment is approximately cylindrical, the image gradients due to shading are mostly aligned and

consistent with the boundary edge gradients. Misleading contrasts due to drop shadows only

affect the matching scores in proportion to the affected area, as do occlusions, while brightness

and contrast variations are implicitly normalized.

Unfortunately, the descriptor is neither scale nor rotation invariant. For translation along

the z-axis, i.e., scaling, we chose to not include database samples for that but rather perform
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Figure 5.10: Results on the synthetic image sequences: Tracking result visualized as colored
contour-overlay. Top row: dorsal views and only dorsal samples in the database (dorsal/dorsal),
middle: dorsal views with full database (dorsal/full), bottom: unconstrained poses with full
database (full/full).

iterated database searches with scaled query images. The reason is that changing the sample

size leads either to cropping or aliasing effects: Larger scales reduce the area represented by

the template to a small part of the hand; while at smaller scales the distinction between close-by

edges is often lost, reducing the accuracy of the descriptor. Since the DOT template descriptor

samples the observation at an effectively seven times lower spatial frequency, particularly the

effects of antialiasing are mitigated through resampling the observation, directly.

Since the appearance-change is higher for in-plane rotation (our z-axis) than for the other

two axes, we sample the z-axis at every 10◦ (36 templates), the x- and y-axis at 15◦ (24 tem-

plates). As we will show, this is sufficiently dense to ensure continuous detection of a smoothly

moving target. For each external pose, we sample 216 different postures. In total this leads to

36 ∗ 24 ∗ 24 ∗ 216 = 4,478,976 DOT samples with their respective generating parameters in

our database. In the next subsection we will show how we efficiently perform real-time beam-

searches within this database.
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5.2.1.2 Local search-tree generation

The tracking performance relies on local beam searches in direction of the currently estimated

external parameters. The basic structure of our search tree is in accordance to the kinematic

chain of the hand. Firstly, this reflects the hierarchic structure of the hand as an articulated

body and thus tends to lead to similar image projections. Secondly, this also reflects different

angular velocities occurring at the joints: Typically the velocities at internal joints are much

higher than those of external joints and are vastly exceeding what can be captured at typical

video frame rate of 30 fps. This property makes trajectory-based predictions of the internal

joint angles rather inaccurate. Thirdly, the further a joint is located within the kinematic chain,

the less image content is affected by the according parameters. Thus, as projections get in-

creasingly similar, it becomes increasingly harder to estimate the respective parameters from

the observation. Matching errors become more likely in these parameters. To accommodate all

of this, it is desirable to broaden the beam at more uncertain degrees of freedom. In fact, we

decided to include all internal parameters in our search-tree to be able to recover from tracking

errors. This does not impact performance too much as most search runs are already rejected at

higher tree stages.

Figure 5.11: Illustration of a cache tile containing all hand postures of a certain extrinsic pose.
Each cache tile can be loaded individually and removed from RAM when not used anymore.

In our experiments we use about 4.5 million samples with approximately 500 bytes per

sample, but much higher values are possible. In order to reduce memory consumption and to

cope with database sizes that do not fit in memory entirely, we incorporate a caching scheme,

reducing the actually needed memory for loading parts of the database to about 6 MB of RAM.

The whole database is stored in selectively loadable cache tiles, see Figure 5.11. Each tile

contains all samples for a fixed set of external parameters and is loaded and released on demand

by the tracking system.
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Figure 5.12: Illustration of the different tiers of the search tree: At every node an upper bound
for the matching score can be quickly determined. Thus only branches that are able to exceed the
score of the best hypothesis have to be examined.

We use a three-tiered search tree, see Figure 5.12. In the following, we list and afterwards

describe the three tiers in detail:

• Tier 1 are the branch-and-bound clusters [179], as proposed and adapted by [9] for usage

with DOT.

• Tier 2 is formed by precomputed local search-clusters containing the tier 1 clusters.

The cluster comprises all samples from neighboring cache tiles for out-of-plane rotation,

i.e., around x- and y-axis.

• Tier 3 allows very fast reclustering of the precomputed local search-clusters. This is

achieved through exploiting associative invariants among neighboring tier 2 clusters.

Tier 1: We use the branch-and-bound technique [179] as proposed and adapted by [9] for

usage with DOT in tier 1. For a comprehensive understanding we will briefly sketch how

the clustering works. A greedy algorithm is used to establish the clusters. The templates

themselves are binary strings where each bit is associated with a gradient in a certain position

and orientation. In the first step, the DOT template with the highest amount of dominant

gradients (i.e., the highest 1-bit count) that is not yet assigned to a cluster is used to start a

new cluster. From the remaining unassigned templates, the one is added to the cluster that adds
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Figure 5.13: Illustration of the precomputed tier 2 clusters: The samples of 3×3 cache tiles seen
on the left containing all ±15◦ out-of-plane rotations are clustered in tier 2.

the least additional dominant gradients to the template cluster. Adding, hereby, corresponds to

bitwise OR-ing of the cluster-template and the new template. This is repeated until the cluster

has reached a certain size, whereupon a new cluster is created. The whole algorithm iterates

until no unassigned templates are left. For a more detailed pseudo-code representation, see

Algorithm 2. Since clustering is O(n2) and becomes computationally heavy with large n, we

precompute parts of it. The costly part is not the construction of the upper-bound template

(OR-ing of short binary strings) but the selection of sufficiently similar templates. We will

exploit this fact in several places within our method.

Tier 2: Tier 2 clusters out-of-plane rotations of the hand as a whole. We sample out-of-plane

rotations at 15◦ with each set of according views stored in a separate cache tile. Each local

tier 2 cluster contains the direct neighborhood in x- and y- direction (i.e., rotation around the

x- and y- axes). So, in total it comprises 9 cache tiles, see Figure 5.13 for illustration. Since

each cache tile contains 216 templates in our implementation, each tier 2 cluster contains 1944

templates.

We precompute and store all tier 2 clusters. Since the computationally heavy part of the

clustering process is finding the best-fitting templates for each cluster, we only store the asso-

ciations by index and do not explicitly include the templates.

Tier 3: In tier 3 we exploit the underlying symmetry of the clustering with respect to rotation
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Algorithm 2 Branch-and-bound clustering adapted from [9].
1: U← set of all templates not assigned to a cluster
2: popcnt t← number of 1-bits in template t
3: c⊕ t← bitwise OR-ing of c and t
4: while U 6=∅ do
5: t̂← argmax

t∈U
bitcnt(t)

6: U← U\ t̂
7: Create new cluster template c← t̂
8: s← 1
9: while s < maxSize,U 6=∅ do

10: t̂← argmax
t∈U

bitcnt(t⊕ c)−bitcnt(c)

11: U← U\ t̂
12: c← c⊕ t̂
13: s← s+1
14: end while
15: end while

around the optical axis: Despite minor perspective effects or camera distortion, we can approx-

imate rotation around the optical axis (our z-axis) as pure 2D image rotation also if the hand

is not in the image center. The result is a faithful approximation, since the size of the hand is

typically small compared to its distance to the camera and minor distortion effects are easily

compensated through the template descriptor.

This simplification allows us to calculate a prototypical clustering that holds for all tier 3

clusters. A tier 3 cluster contains the tier 2 cluster rotated by −10◦, 0◦, and +10◦ around the z-

axis. So, in total it contains the 27 cache tiles covering [−15◦;15◦]× [−15◦;15◦]× [−10◦;10◦]

around the center tile at our sampling rate. Since the hand postures in each cache tile contain

finger configurations, partly compensating this extrinsic pose variation, the similarity of views

facilitates a good clustering. Figure 5.14 shows an illustration of the cluster content.

We exploit the fact that the similarity between templates is maintained, if both templates are

2D-rotated by the same amount. This means that the optimal template association for clustering

within each triple of neighboring tier 2 clusters is 2D-rotation invariant. Actually, there is one

additional minor effect that violates this invariance: Since we do not rotate the grid cells of the

DOT descriptor, the optimal clustering may differ slightly due to sampling effects. However,

the effect is negligible as affected templates lead to a very similar upper bound compared to
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Figure 5.14: Illustration of tier 3 clusters generated on the fly: The tier 2 clusters containing the
±10◦ in-plane rotated samples are being grouped here.

the theoretical optimum.

For each tier 2 cluster we thus only have to compute one prototypical z-rotation neighbor-

hood that can then be applied to all such triples. We again only store the associative infor-

mation, i.e., which templates of the tier 1 clusters were combined into the tier 2 cluster. We

reapply the same association to create the tier 3 clusters for all other rotation values of the cen-

ter tile. This reduces the amount of necessary precomputed clusters by the factor 36. This is a

huge speed increase that allows exchanging parts of the database in real-time in order to adapt

to observed images.

Only the clustering change of the single affected x-y-package has to be recomputed. Local

search-trees are then implicitly available and updated for all rotated instances. Additionally,

tier 3 leads to a natural choice of data parallelism for multi-threading, as the clusters within

tier 3 can be processed by different threads. We therefore choose the cluster count to be a

multiple of the number of (logical) cores.

In principle, the same approach is also viable for other geometric transforms, like finger

joint rotations around the effective z-axis or even for out-of-plane rotations. However, (1)
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these cases bear a significantly higher likelihood of self-occlusion and self-shadowing of the

resulting hand appearance. (2) While we were able to align the symmetry of the underlying

database entries under z-axis rotation with the database structure, this is not easily transferable

to the small-scale symmetries. Since this requires rearranging the entries, it would break with

the working principle of increasingly similar appearance down the search tree. The benefits

would thus be countered by the significantly higher overhead.

5.2.2 Database tracking

In this section we show how we combine the appearance model and the possibility for fast

local-beam searches into a content-adaptive tracking method. We start with explaining the

procedure for database tracking and afterwards present the approach to refine a match and

extend the database, accordingly.

-15° 

+15° 

-15° +15° 

-10° 

+10° 

z-axis 

x-axis 

y-axis 

Figure 5.15: Illustration of the tracking support: Each cache tile is addressable through the ac-
cording x-, y-, and z-Euler angles. At each iteration only the 3× 3× 3 neighborhood centered at
the current tracker state is searched.

As already stated, the tier 3 clusters contain templates of densely sampled intrinsic poses for

an approximate external pose. For each frame in the sequence the 3×3×3 cache tiles around
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the current estimate of the external parameters are loaded, see Figure 5.15. The comprised

DOT templates are then compared extensively at all 2D positions within each input frame. In

reverse this means that the tracking system is only constrained by the three rotational external

parameters and the z-axis translation, as explained below.

Given an estimate of the extrinsic hand orientation, the local search-tree is generated by

loading the according tier 2 clusters and computing the tier 3 clusters through the prototypical

clustering. At our sampling rate, the tracker compares the entire set of hand postures within

[−15◦;15◦]× [−15◦;15◦]× [−10◦;10◦] rotational tolerance of the extrinsic hand orientation.

Translation in x− and y− direction is handled by matching the templates at all possible po-

sitions, which is handled very efficiently through the DOT matching approach [9]. For further

speed-up, we reject regions where no skin-color is found.

Translation along the z-axis, i.e., scaling, is handled by consecutive runs with the query

image being scaled accordingly (see the previous Section 5.2.1.1 for an explanation). We

hereby repeat the scans on scaled instances of 90%, 100%, and 111% of the current estimate.

At our sampling rate, this results in the maximum viable velocities of 450◦ per second out-

of-plane rotation and 300◦ per second in-plane rotation at a video frame rate of 30 frames per

second. The angular velocities in the internal joints are hereby not limited, as each neighbor-

hood contains a densely sampled set of internal parameters.

For every frame, we retain the i = 1..k,k ≤ 8 matches with a score si above a certain

threshold and a parameter vector~hi. These matches are then combined by weighted averaging

to give the parameter estimate~xt for the current frame:

~xt = α

k

∑
i=1

β si

‖W(~xt−1−~hi)‖1

~hi , (5.11)

where W is a parameter weighting matrix, α is a normalization factor, β is a relative weighting

factor between the matching scores and scaling due to distance.

The matrix W is a diagonal matrix that weights the translational and rotational parameters

inversely proportional to their position in the kinematic chain: Hand orientation is weighted

with 1, the metacarpophalangeal (MCP) joint angles (flexion and abduction) with 1/2, proxi-

mal interphalangeal (PIP) joint angles with 1/3, and distal interphalangeal (DIP) joints angles

with 1/4. The weight coefficients for the translational parameters are normalized to match

the scale of the rotational parameters. However, 2D translation is penalized stronger to avoid
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incorporating spurious matches. The normalization factor α is then determined as

α =

(
k

∑
i=1

si

‖W(~xt −~hi)‖1

)−1

. (5.12)

The value of α can also be interpreted as a confidence measure, as a small value reflects overall

high matching scores and good parameter compliance.

5.2.2.1 Model refinement

For all frames that were successfully matched, as indicated through a small value of α in Equa-

tion 5.12, we perform an additional model refinement step using Particle Swarm Optimization

(PSO) [198] and our proposed appearance model. PSO is an iterative optimization method that

was proposed for usage with hand tracking by [201]. A general overview of further applications

is found in [216, 217].

We propose an objective function based on pixel-wise differences to be minimized by PSO.

The straightforward formulation would be:

f (~p) =
1
n ∑

x,y
|It(x,y)− I~p(x,y)|, (5.13)

where n is the number of pixels in the image and I~p is the rendered hypothesis ~p using our

proposed image-based appearance model.

Although the average per-pixel differences are well suited to evaluate the reconstruction

accuracy of the proposed appearance model, we can do better in terms of an objective function

for optimization purposes. When dealing with background that is similar to the pursued object,

the average per-pixel differences will likely exhibit frequent local optima. We therefore limit

the support area to the area covered by the current rendered hypothesis. To further reduce the

amount of local optima, we reject areas, where the difference is too large to contain reliable

information about the true global minimum:

f̂ (~p) = ∑
x,y

{
min(ψ, |It(x,y)− I~p(x,y)|) if I~p(x,y) 6= /0
φ else,

(5.14)

where I~p(x,y) 6= /0 denotes coordinates that are within the silhouette of our rendered hypothesis,

ψ is the maximum acknowledged pixel value difference, and φ is a regularizer that adds a

discount to the objective function in areas not covered by the rendered silhouette. The effect

of φ is to influence the objective function towards favoring solutions with larger silhouette
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Hypotheses 
Mean 

𝜏 = 1.25 
Search space 

Result of step 1 

Search space 

Step 1 Step 2 

Figure 5.16: Illustration of the partitioned PSO solver: We first run the optimization on a smaller
subspace spanned by the hypotheses, then refine the result using the full search space.

area. Our experiments have shown that without this discount, there is the potential of a ’trivial’

optimum when the hand is projected onto a very small area. We have chosen ψ = 50 (with

respect to intensity values in the range of 0-255) and φ = 0.8ψ for our experiments. We will

show that the refined formulation leads to an increased robustness, especially on top of skin-

colored background. In the following we will denote this as the proposed function and the

average per-pixel difference (Equation 5.13) as average.

We slightly alter the optimization procedure as proposed by Kennedy and Eberhart [198].

We propose a partitioned approach that exploits the prior knowledge from the tracking system.

Figure 5.16 illustrates the procedure.

We use the set of hypotheses~hi, including the best hypothesis for the last frame ~xt−1. In

contrast to the proposed random initialization of PSO, we instead initialize particles at every

hypothesis~hi and at the weighted average, denoted as ~xh
t . We then define a low-dimensional

search-space by spanning an affine linear subspace

~xk
t =~xh

t +~pT
[
~h1−~xh

t |~h2−~xh
t | . . .

]
. (5.15)

We do not remove collinear span-vectors ~hi−~xh
t as PSO follows a randomized exploration

scheme and is not dependent on operating on a vector base. The low-dimensional parameter

vector ~p ∈ Rk is therefore possibly possessing collinear components and k matches the number

of hypotheses (including the last frame’s best hypothesis).

We then further constrain the (convex) search space to ‖p‖ < τ , where τ is a scale factor.

With τ = 1, the constrained search space would contain all hypotheses as outer corners of the
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polyhedron. In our experiments, we have set τ = 1.25. After a relatively small number of

iterations within this low-dimensional search space, we switch to the full parameter space to

refine the matches within a small perimeter around~xk
t to receive the estimated parameter vector

~xt for the frame.

PSO has already been successfully applied to high-dimensional problems, even containing

the joint parameter space for both hands [202]. However, these experiments have been con-

ducted on less ambiguous, thus easier RGBD input material. We found that our partitioned

approach gets less often stuck in local minima on monocular RGB observations.

5.2.2.2 Extending the database

Each database is not only labeled with the generating parameters but can also be associated with

an according IBR appearance model. During tracking, the database is incrementally extended.

For each confident parameter estimate, we replace the DOT descriptor of the closest database

entry. Using the IBR model captured from that frame, we propagate the new information into

the surrounding database entries. The rationale behind replacing instead of adding entries is to

keep the database size and thus the query run-time constant. Figure 5.17 shows two examples

of generalized renderings for matched frames.

Initially, there is the problem of deciding, when the tracker has successfully tracked a hand

posture. Unfortunately, there is no reliable indicator for this. Here, we use an experimentally

determined threshold value for the objective function, as there is no natural choice for deciding

on the first frame. After the first matched frame, we use the reprojection error of all IBR models

that are closest in parameter space as an additional criterion of validation.

Figure 5.18 shows interpolation examples between IBR models captured from different

frames. Although the database only covers geometric (posture) parameters, our appearance

model is also able to interpolate between different morphological and lighting properties. Fig-

ure 5.18(ab) shows interpolation between different morphological properties and Figure 5.18(bc)

between different lighting scenarios. The appearance model is also able to interpolate between

real and synthetic input material, which is shown in Figure 5.18(cd). In the future, these non-

geometrical properties could be incorporated into the parameter space, explicitly. The synthetic

rendering in this image was rendered using Poser [218].

To adapt the database, we load and rewrite the 27 cache tiles within the tier 3 cluster in the

vicinity of~xt . We thereby replace all entries within a certain radius around~xt with image-based
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Figure 5.17: Two examples of generalized hand postures from a single tracked frame used to fill
the database.

Female Male Lighting Rendering 

(a)                (ab)                   (b)                 (bc)                 (c)                  (cd)                   (d)  

Figure 5.18: Synthesized hands using our image-based appearance model: The prototypes have
been sampled from the four images in the top row. The bottom row shows reconstructions and
interpolations between the different prototypes.
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renderings. In our evaluation section, we will demonstrate how this affects the recognition of

the user performance.

5.2.2.3 Incorporation into workflow tracking approach

In order to extend the workflow tracking model with the information gathered from hand track-

ing, we generalize the training sequence, directly. We hereby incorporate the adapted entries

from the database into the spatiotemporal k-NN classifier, described in Section 4.2.

This is straightforward as both approaches are based on the DOT descriptor. In contrast

to the approach used exclusively for hand tracking, we additionally need to incorporate the

environment into each entry. We therefore retouch the input image and remove the hand us-

ing image inpainting [219]. We use the retouched image as background for the image-based

renderings of the generalized hand postures and use the composited images as additional train-

ing material for the spatiotemporal classifiers, described in Chapter 4. The inpainting leads to

certain smoothing artifacts. However, as the distortions are rather small-scale, this does not

have a strong impact on the resulting DOT descriptors. Figure 5.19 shows an example of the

inpainting result and the generalized training material.

In reverse, the spatiotemporal classifiers initialize the hand tracking during run-time, as the

hand is likely to go through one of the already sampled postures in the course of a work step.

Using hand parameter labels on the k-NN entries, this allows to bootstrap the hand tracker.

5.3 Evaluation

In the following subsections, we first examine the reproduction accuracy of the proposed

image-based appearance model. Further, we analyze the properties of the pixel-wise objec-

tive function that can be formulated using this appearance model. We are able to show that our

approach significantly outperforms the state of the art on monocular RGB sequences through

demonstrating flaws in commonly used parts of the objective function. Afterwards, we investi-

gate the initialization procedure using the database approach and the impact of the adaptation

scheme, when applied to real workflow sequences.

5.3.1 Reproduction accuracy of the image-based appearance model

We propose to use our IBR-based appearance model in combination with a pixel-wise objective

function, which makes its ability to accurately synthesize previously unseen poses an important
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Figure 5.19: Example of the explicit generalization of a single frame: The upper left image shows
the original frame. We remove the hand using image inpainting (lower left). The right side shows
the generalized frames.

factor. To investigate its feasibility in this regard and to obtain quantitative measures, we use

renderings generated with Poser [218] with ground truth available. We have augmented the

Poser model with a green stripe around the wrist section to represent the shirt-sleeve.

Figure 5.20: Experimental setups: Cluttered background for the clutter setup (left), background
and occluding foreground containing hands for the hands setup (right).

For our experiments we have generated 2000 random hand poses including random finger

articulations and random viewpoints except from impossible angles (e.g., from within the arm

joint, intersecting fingers) used as target views. We then generated two experimental setups,

see Figure 5.20:
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5. HAND AND FINGER TRACKING

Clutter: The rendered Poser images were drawn on top of cluttered background.

Hands: The rendered Poser images were drawn on top of cluttered, skin-colored background

showing hands and then additionally occluded by a foreground image showing hands.

Each target view was then rendered from viewpoints differing by ±20◦, ±40◦, and ±60◦ de-

grees out-of-plane rotation. These views were used as prototype views ~p−,~p+ to sample our

model from. To measure the improvement due to morphing, we performed each experiment

once with both prototypes and once only using the prototype ~p− at −20◦, −40◦, resp. −60◦.

We did not enforce any further visibility constraints other than rejecting impossible poses.

Particularly with higher viewpoint difference (±40◦ and ±60◦), the prototype views exhibit

substantial amounts of unobservable areas with respect to the object parts visible in the target

view.

We first investigated the reconstruction error when interpolating between two prototype

views with and without the axis aligned-morphing scheme. To this end, we used the clutter-

setup, i.e., we have rendered the target view onto the cluttered background using Poser to

generate a synthetic observation image Iobs with known ground truth. Using our method, we

have rendered the model for all parameters ~pα = (1−α)~p−+α~p+ with α ∈ [0,1], denoted as

Irender
α . Thus, for a perfect reconstruction Iobs = Irender

0.5 should hold. An illustration can be seen

in Figure 5.21. To measure the image difference we use the average pixel-wise difference:

fα =
1

pixel count ∑
∀x,y
|Iobs(x,y)− Irender

α (x,y)|. (5.16)

Figure 5.21: Difference images between (synthetic) observation and our rendering |Iobs− Irender
α |

for several values of α . The center image shows α = 0.5, where the ground truth optimum is
located. The objective function for 0 ≤ α ≤ 1 was evaluated in 2000 randomized repetitions in
both experimental setups (clutter setup shown here).
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Figure 5.22: Average pixel error in percent between observation and our rendering given the true
parameters (left) and the objective function between prototype parameters (right) for ±20◦, ±40◦,
and ±60◦ degrees prototype distance using one or two prototypes.

We performed these experiments with the viewpoints of the prototypes being ±20◦,±40◦,

and±60◦ rotated with respect to the target view and in order to assess the impact of our morph-

ing scheme, once using both prototypes and once using only the ~p− prototype. To aid interpre-

tation, we calculated the upper bound (the average pixel value of Iobs) and the lower bound (by

subtracting the true target view from the image and then determining the average pixel value).

The resulting graphs are shown on the right of Figure 5.22. Averaged across our 2000

repetitions all experiments show clearly defined optima around α = 0.5. As expected, closer

prototype viewpoints lead to better results and morphing between two prototypes increases the

accuracy of the prediction, significantly. Also, the closer the prototype views are to the target

pose, the steeper the objective function gets around the true optimum.

One thing to notice, though, is that when only using the ~p− prototype, the function’s global

optimum is slightly (≤ 1.2◦) biased to the negative side; when using both prototypes the global

optimum is located at the true ground truth optimum.

To better rate the improvements we have compared the function’s value at the true optimum.

We show these results on the left of Figure 5.22. The scale is normalized with respect to

the determined bounds, i.e., 0% corresponds to the lower and 100% to the upper bound. The

improvement between using two prototypes compared to using just one is consistently between

20% and 30%. With two prototypes at±20◦ viewpoint deviation, our prediction and the ground

truth image differ by only 10%. Also at higher prototype viewpoint distance, the improvement

when using the morphing scheme is substantial. With 28% error using two prototypes at ±60◦

our method almost achieves the same score as using one prototype at ±40◦ (27% error).
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5.3.2 Analysis of the proposed objective function

To compare our proposed pixel-wise objective function (Equation 5.14) with the state of the art

in hand tracking on RGB images, we have implemented the method of Oikonomidis et al. [194].

Their approach optimizes an objective function using particle swarm optimization (PSO) [198],

simultaneously maximizing the overlap between the rendered silhouette and the segmented

skin-color and minimizing the mutual average edge distance. We have chosen this approach

since skin-color based overlap (further denoted as silhouette term) and edge distance (denoted

as edge term) appear - in different formulations - in most existing approaches, e.g., [186, 187,

190, 194, 197, 220] as well as in the existing variants [200, 201, 202, 221, 222, 223, 224].

Additionally, we analyze the simpler formulation of our proposed method, directly based on

average per-pixel differences (Equation 5.13), denoted as average.

We implemented the skin-color segmentation by back-projecting an HSV histogram sam-

pled from the observation. Following the paper, we implemented the edge extraction using

Canny edge extraction. For computing the silhouette and the edge maps we use the same ar-

ticulated model as in our approach with fixed segment shapes. For our image-based rendering

approach, we always use two prototypes at ±20◦.

Due to the high movement speed of the human hand, observed images often suffer from

motion blur. We simulated the impact of motion blur by repeating the experiments with in-

creasing levels of Gaussian blur applied to the images. Figure 5.23 shows plots of the numerical

derivatives of the three objective functions in the two setups.

Expectedly, on cluttered background, the silhouette term leads to very good results at all

levels of blur. Without blur, also the edge term shows a clearly defined optimum. However,

with increasing level of blurring, the edge term becomes constant and thus becomes useless as

an objective function. This is due to the increasingly difficult edge extraction and is therefore a

principle problem of all approaches based on edge cues. Our proposed method is not dependent

on a feature extraction and shows a clearly defined optimum at all levels of blur.

In the hands setup, the silhouette term suffers from numerous local optima and also ex-

hibits compromised validity due to a high outlier rate, as we will show later. Without blur, the

edge term is mostly able to determine the correct optimum but fails doing so, even at light to

moderate levels of blur. In contrast, our approach is not largely affected by the skin-color fore-

and background.

114



5.3 Evaluation

clutter setup hands setup
si

lh
ou

et
te

te
rm

0
1

2
3

4
5

6

−20

−10

0

10

20
−4

−2

0

2

4

x 10
−3

blur [sigma]

angular deviation [deg]

o
b

je
ct

iv
e 

fu
n

ct
io

n
 c

h
an

g
e 

/ d
eg

0
1

2
3

4
5

6

−20

−10

0

10

20
−2.5

−2

−1.5

−1

−0.5

0

0.5

x 10
−4

blur [sigma]

angular deviation [deg]

o
b

je
ct

iv
e 

fu
n

ct
io

n
 c

h
an

g
e 

/ d
eg

ed
ge

te
rm

0
1

2
3

4
5

6

−20

−10

0

10

20
−1

−0.5

0

0.5

1

blur [sigma]

angular deviation [deg]

o
b

je
ct

iv
e 

fu
n

ct
io

n
 c

h
an

g
e 

/ d
eg

0
1

2
3

4
5

6

−20

−10

0

10

20
−0.5

0

0.5

blur [sigma]

angular deviation [deg]

o
b

je
ct

iv
e 

fu
n

ct
io

n
 c

h
an

g
e 

/ d
eg

pr
op

os
ed

m
et

ho
d

0
1

2
3

4
5

6

−20

−10

0

10

20
−0.2

−0.1

0

0.1

0.2

blur [sigma]

angular deviation [deg]

o
b

je
ct

iv
e 

fu
n

ct
io

n
 c

h
an

g
e 

/ d
eg

0
1

2
3

4
5

6

−20

−10

0

10

20
−0.2

−0.1

0

0.1

0.2

blur [sigma]

angular deviation [deg]

o
b

je
ct

iv
e 

fu
n

ct
io

n
 c

h
an

g
e 

/ d
eg

Figure 5.23: First derivative of the analyzed objective functions in the two setups under increasing
levels of blur. The skin-color based silhouette term (top row) does not perform well on skin-colored
back- and foreground (right column) while edge based terms (center row) are not robust towards
blur. Our proposed method (bottom row) exhibits a well-defined optimum in both setups and is
very robust towards blur.
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Figure 5.24: Percentage of gradients pointing towards global minimum sampled at 0.04◦ and
averaged over the 2000 repetitions in the clutter (left) and hands (right) setup.

This is supported by our evaluation of the amount of local minima, shown in Figure 5.24.

We counted how persistently each of the functions exhibits gradients that point towards the

correct global minimum along the path from−20◦ to 20◦. While our proposed method achieves

an average ratio between 78% and 90% at all levels of blur in both setups, the next-leading

state-of-the-art approach achieves 62% at best in the hands setup. While our proposed function

is even slightly outperformed by the average pixel difference in the clutter setup, it clearly

outperforms the simpler formulation in the hands setup.

After studying the function behaviors with respect to local optima, we also examined the

principal correctness of the global optimum of each function. To that end, we examined the

distance of the function’s global optimum from the true location of the optimum according to

ground truth.

The results are shown in Table 5.1 and in Figure 5.25. In the clutter setup, simple average
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Figure 5.25: Percentage of repetitions with a correct global minimum with respect to an accepted
tolerance for the clutter (top) and hands (bottom) setup.

and our proposed function both achieve a high accuracy. These functions result in an optimum

within 2◦ of ground truth in about two thirds of the 2000 repetitions. For comparison, the next

best approach (Oikonomidis) finds the optimum in less than 50% of the cases within he same

tolerance. In the hands setup, our proposed function is only slightly worse with 61.9%, while

simple average deteriorates to 41% and the remaining approaches are all below 25%.

5.3.3 Database tracking procedure

In this subsection, we want to study the database tracking approach before adapting to the ob-

servation, i.e., only with synthetic entries in the database. Specifically, we want to demonstrate

that it is able to reliably recover from tracking failures due to the broad spectrum of hypotheses

that are tested in each iteration. This is a crucial prerequisite for the given problem, since the

hands often disappear or get occluded during the course of a workflow. Note, that all results

117



5. HAND AND FINGER TRACKING

silhouette edge oikonomidis average proposed

cl
ut

te
r

% correct (=0◦) 5.3% 3.4% 6.0% 22.7% 27.3%
% correct (≤ 2◦) 43.2% 31.5% 47.7% 66.7% 67.8%
% outlier (> 10◦) 6.7% 32.6% 10.7% 10.4% 15.1%

std.dev 5.31◦ 11.13◦ 6.10◦ 6.23◦ 7.20◦

ha
nd

s

% correct (=0◦) 0.7% 2.2% 2.6% 14.0% 24.4%
% correct (≤ 2◦) 7.5% 24.0% 23.5% 41.0% 61.9%
% outlier (> 10◦) 77.3% 40.1% 41.7% 37.3% 19.2%

std.dev 16.55◦ 10.01◦ 11.41◦ 11.43◦ 8.10◦

Table 5.1: Analysis of the global optima.

within this subsections are entirely synthetic and generated without incorporating any model

adaptation. While the adaptation process will significantly improve the results, here we merely

aim to demonstrate the general applicability of the underlying database approach.

We distinguish between observations of only dorsal views of the hand and observations

containing arbitrary rotations of the hand, even ones that would not occur in first-person views

of the user’s own hands. The difference is that a dorsal view is generally sufficiently char-

acteristic to fully estimate the hand pose from a single frame. Otherwise, single frame hand

tracking is an ill-posed problem due to self-occlusion and ambiguous observation, i.e., very

different hand postures producing very similar feature vectors.

We prepared three test sets, each consisting of 40 completely random (within anatomical

constraints) 9 DoF poses. These poses are interpolated to produce a 1950 frames long image

sequence of a smoothly moving hand for each set, rendered as silhouette and contour edge

model without shading. We used the same model to fill the database, however, with slightly

different morphological parameters. Although the test sequence mostly comprises images with

parameter vectors that have no exact match within the database, we additionally altered the

output to create a more realistic test case. Each sequence was rendered with altered finger

radii and the output image was scaled slightly larger, compared to the database content. All

sequences were rendered on black background. We created the following three test setups:

Dorsal/dorsal: external parameters fixed to produce dorsal views only and the database con-

strained to dorsal views as well.

Dorsal/full: external parameters fixed to dorsal views but using the entire database.
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Full/full: external parameters contain all 3 rotational DoFs and again using the entire database.

Since some of the frames show frontal, fist-like poses, which are somewhat ambiguous

for a single-frame method, this set shows if and how quickly the method can recover

from tracking losses.

matched best match

dorsal/dorsal 92.5% 20.6%

dorsal/full 58.4% 9.6%

full/full 7.9% 0.9%

Table 5.2: Results on the synthetic test sets: The first column shows matching rate, i.e. the beam is
centered on the correct tile. The second column shows the matching rate where the best hypothesis
was the nearest neighbor entry in the database.

For each test set, we centered the search beam on the correct tile at the first frame and then

processed the entire sequence with our proposed method. Table 5.2 shows matching rates for

the three setups. In the dorsal/dorsal setup, where the data set and the database for tracking

have been constrained to only comprise dorsal views, the system achieved a matching rate of

92.5%. So, almost all frames were correctly matched to the according cache tile, while on

average every 5th frame was matched to the nearest neighbor in the database. On an equally

constrained data set but using the full database (dorsal/full), these numbers drop to slightly

below 60% resp. 10%. The reason for this is that the tracking system quite often erroneously

matches a ”mirrored” template after tracking loss due to ambiguous or misclassified frames.

In the entirely unconstrained setup, these numbers drop to approx. 8% and 1%. The reason

for this is that the sequence contains views with very ambiguous projection appearance, see

Figure 5.26 for examples. In the next subsection, we will show that the tracking performance

drastically increases when adapting to the observed content.

The graph in Figure 5.27 shows histogram and cumulative distribution of angular tracking

errors. The tracking results for 90% of the frames were below ±30◦ external pose deviation

when applied to the quite descriptive dorsal views. For fully unconstrained movement 30%

of the frames have been matched with this or less deviation. Table 5.3 contains a quantitative

overview of the tracking mean, median, and maximum tracking error, separately for all frames

and matched frames (i.e., beam centered on correct tile) only.
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5. HAND AND FINGER TRACKING

Figure 5.26: Two examples of ambiguous views due to self-occlusion contained in the test set
(full/full).
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Figure 5.27: Histograms of the tracking error for external parameters (top) and internal parameters
(bottom).
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mean std.dev median max

do
rs

al
/d

or
sa

l external 8.7◦ 18.5◦ 3◦ 175◦

-matched 5.5◦ 7.2◦ 0◦ 15◦

internal 9.2◦ 10.9◦ 6◦ 96◦

-matched 5.6◦ 4.0◦ 4◦ 15◦

do
rs

al
/fu

ll external 19.0◦ 15.2◦ 15◦ 175◦

-matched 14.9◦ 1.3◦ 15◦ 15◦

internal 10.0◦ 10.3◦ 7◦ 94◦

-matched 6.7◦ 8.7◦ 6◦ 81◦

fu
ll/

fu
ll

external 71.0◦ 56.0◦ 60◦ 179◦

-matched 9.2◦ 6.75◦ 8◦ 22◦

internal 16.2◦ 17.3◦ 10◦ 105◦

-matched 10.3◦ 10.3◦ 6◦ 90◦

Table 5.3: Parameter errors between ground truth and best hypothesis: For each synthetic set
the mean, std.dev., median, and maximum deviation are given separately for external and internal
parameters and each separately for all frames resp. matched frames.

5.3.4 Adaptation and model-guided generalization

We will show how the tracking performance in terms of correctness is significantly improved

with the image-based appearance model compared to just using silhouette and edge cues. Ad-

ditionally, we will show that the explicit, model-guided generalization has a strong effect on

the tracking performance on sequences recorded by different users.

For this experiment, we use three recordings of the first four steps of the ”Plugs & circuit

board” workflow introduced in Section 4.4, performed by two different persons. Example

frames are shown in Figure 5.28. To generate ground truth, we semi-automatically labeled the

hand postures within the three sequences by using the method proposed within this chapter,

manually verifying the results and correcting errors. We then used one of the two sequences

that were performed by the same person as training material to sample hand view prototypes in

six different ways:

Dense: Using all labeled frames with a visible hand as prototypes.

Sparse: Only using four key frames as prototypes, shown in Figure 5.29.
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5. HAND AND FINGER TRACKING

Generalized 5◦ / 10◦ / 15◦ / 20◦: Generalizing the four sampled prototypes from the sparse set

by different amounts. Within kinematic constraints, we randomly synthesized parame-

ters with 5◦, 10◦, 15◦, and 20◦ maximum deviation per joint, creating four independent

database sets.

Figure 5.28: Example frames from the test sequences: Left side recorded by the same user, right
side recorded by a different user.

Figure 5.29: Prototype views used in the sparse set.

We then applied the six different databases to the two test sets shown in Figure 5.28.

Hereby, only the database tracking approach as described in Section 5.2.2 was used, with-

out further refinement of the weighted query results. The results of each adapted database were

then compared to the verified ground truth parameters per frame. We then analysed the respec-

tive ratios of correctly recognized hand postures with respect to a tolerated deviation ranging

from 0◦ to 30◦.
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Figure 5.30: Rate of correct detections within allowed average deviation with training and target
material recorded by the same user, compare Figure 5.33.

We first discuss the case, where training and test sequence are recorded by the same person.

Figure 5.30 shows the resulting graphs and Figure 5.31 according example frames. Addition-

ally, Figure 5.32 presents the achieved results after refinement in an offline optimization process

based on PSO. As both performances strongly resemble each other and therefore most postures

are already contained in the dense database, this database performs best on this test set. With

respect to a tolerated deviation of 20◦ the correct recognition rate is double as high than that of

the sparse database with 50% compared to 25%.

The fact that both curves meet at about 30◦ allowed deviation is an indicator for the maxi-

mum deviation of the user’s hand posture while approaching and retracting from the respective

key poses. Expectedly, the effects of generalization do not improve upon the dense sampling

of all hand postures in the training material and produce results in between these two boundary

conditions. Interestingly, the sparse database even outperforms the generalized at larger al-

lowed deviations due to an increased likelihood of misclassification in the generalized models.
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5. HAND AND FINGER TRACKING

Figure 5.31: Tracking results for the test set from the same user: White overlay represents the
database tracking results. Green/beige overlay represents the results after outlier rejection (using
the objective function) and translational refinement.

Figure 5.32: Tracking results on the same user test set after refinement.
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The higher the generalization radii are, the earlier this break-even point is reached, beginning

at 24◦ for the widest-spread generalization radius.
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Figure 5.33: Rate of correct detections within allowed average deviation with training and target
material recorded by different users, compare Figure 5.30.

When applying these databases to the test set, performed by a different user, the results are

entirely different. The resulting graphs are shown in Figure 5.33, with Figure 5.34 showing

example frames. The offline-refined results for this case are shown in Figure 5.35. As the

hand’s morphology and the modes of execution and even the viewpoint are slightly different,

the two non-generalizing databases perform significantly worse than the generalized models.

At an allowed deviation of 20◦, the dense and sparse databases are virtually unable to match

any of the frames of the test sequence, with 3% and below 1%, respectively. Compared to that,

the best-performing generalized database is able to recover the hand pose in about 40% of the

frames within this allowed tolerance.

One observation that is consistent with the same-user test set is that higher generalization

radii lead to higher likelihood of classification errors. From the analyzed generalization radii,
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5. HAND AND FINGER TRACKING

Figure 5.34: Tracking results for the test set from a different user: White overlay represents the
database tracking results. Green/beige overlay represents the results after outlier rejection (using
the objective function) and translational refinement.

Figure 5.35: Tracking results on the different user test set after refinement.
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5◦, 10◦, 15◦, and 20◦, the lowest radius of 5◦ performed best in both cases. This issue can

be addressed with an outlier rejection. This is implicitly realized in the PSO-based refinement

procedure (Section 5.2.2.1), as the exploration of the objective function starts simultaneously

at all hypotheses, thus rejecting the outliers. However, for the use case of real-time adaptive

hand tracking, the lower generalization radii clearly perform best.

As the tracking system operates on images from a monocular RGB camera, the error in

estimating the depth can be expected to be higher than the error within the image plane. We

therefore analyzed the average per-joint spatial deviation within the image plane and the depth

component, separately. We hereby compare the best-performing non-generalizing database

(dense) and the best-performing generalizing database (10◦) in this respect. Since we are in-

terested in accuracy, we explicitly removed erroneous outlier matches, i.e., matches with an

average spatial error of more than 3 cm. The results can be seen in Figure 5.36.
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Figure 5.36: Scatter plot of all occurring spatial reprojection errors, separated by components
within the image plane and depth.

The dense database leads to an average error-component of 1.5 cm parallel to the image-

plane, compared to a slightly higher depth estimation error of 2.2 cm. Using the generalizing

database, the depth estimation remains almost as high (2.1 cm), while the in-plane estimate is

reduced to less than 0.9 cm.
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6

Authoring and Presentation

———————————————————————————————-

To this point, we have covered all aspects that deal with the segmentation-, tracking-, and

generalization-related aspects of the proposed workflow monitoring. So far, this has laid out the

direction from observation to the tracking model as well as the technical aspects of real-time

spatiotemporal tracking in order to present information adequately in time and position.

In this chapter we will describe the method to process the acquired information, in order

to present it to a human recipient. These presentation-centric aspects of the authoring process

have a crucial impact on the perceived quality of the task assistance. In the following sections,

we first discuss concept-related difficulties within the AR context and how we address these in

our framework. We then continue with presenting the single types of instructions and real-time

feedback provided by our system and how we associate them with the corresponding work step.

In addition to the automatic authoring, we also intend to enable the user to manually add

visual annotations. At the end of this chapter, we will briefly present our approach to manual

authoring that does not require any knowledge in 3D computer graphics or computer vision

from the user.

6.1 Concept-related challenges

While Augmented Reality (AR) has often been proven to have a positive impact on several

key performance indicators, the concept suffers from known but often ignored difficulties, im-

manent to the AR principle. The authors of [52] have evaluated the use of an AR system for

maintenance in a military scenario. Their results show significantly reduced head rotations
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compared to using a mobile display with maintenance instructions and significantly reduced

task localization times. For the overall task-completion time, however, the authors report a

faster execution using the mobile display and explain this through the reduced comprehensive-

ness of instructional overlays in AR compared to the technical sketches on the mobile display.

While their results are very promising and clearly demonstrate benefits in ergonomics and gen-

eral muscoloskeletal strain, it also shows that the nature of the visual presentation is a key

factor for the effectiveness.

Certainly, a large amount of this deterioration can also be attributed to ergonomic issues

with head-mounted displays as often reported in according studies [4, 52]. Very recently,

Marner et al.[225] have investigated the usage of AR for procedural task assistance without the

deteriorating effects of an HMD. They are successfully using projection-based Spatial Aug-

mented Reality (SAR) to improve procedural task performance. However, while SAR cannot

be applied in all scenarios, there also exist fundamental difficulties directly related to the con-

cept of first-person perspective, which are not addressed in their synthetic experimental setup:

The viewpoint from which objects that are involved in a procedural task are shown has

a clear impact on understanding. For most objects, there exists a so-called canonical view,

denoting the view from which an object is most characteristic, [226]. A simple illustrative

example would be a coffee cup that is easiest to recognize by a human observer, when viewed

from the side with the handle visible. The same concept clearly holds for procedural tasks and

is trivially reflected in pictographic manuals, by depicting object parts and actions in easy to

recognize poses. Canonical views are well studied in cognition research, also with respect to

dynamic scenes [227]. However, the principle is not transferable to the presentation paradigm

of Augmented Reality, where the viewpoint is constrained to the user’s viewpoint. Therefore,

AR and canonical views are in a way competing concepts for alleviating object identification

for a human observer. In case of AR, unfortunately, this adds the cognitive burden of having to

deal with occlusions or generally poor observability of important workspace parts:

While in technical manuals, this is often handled with explosion sketches, it is not entirely

straight-forward to overcome this in AR. One approach is to incorporate explosion diagrams

in AR [95]. However, the principle problem of obscured information from non-optimal view-

points remains. Additionally, as humans tend to use occlusions as the dominant cue for depth

ordering [228], the intuitive presentation of obscured information in AR is a broadly investi-

gated but still challenging task [229, 230].
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One possibility to overcome this is to drop the general AR presentation principle and use

an untracked display showing optimal viewing angles for each work step. However, the per-

formance of stationary or mobile display setups is provably much deteriorated as for example

[4, 52, 69, 94, 225] have experimentally confirmed.

Another possibility is simply changing the user’s viewpoint into a more adequate config-

uration. Several techniques have been developed for this, most notably attention funnels that

allow to intuitively indicate viewpoint changes in all six degrees of freedom [92]. Attention

funnels have been extensively evaluated in picking tasks [53], where directing the user is of

particular importance.

While we cannot influence the viewpoint from which the reference sequence was recorded,

we can however direct the user to that viewpoint, e.g., using attention funnels. This does in

fact mitigate the viewpoint problem, given that the person recording the reference sequence

has deliberately chosen didactic viewpoints. Additionally, this is also a technical necessity as

the video snippets that are extracted from the reference sequence (explained in Section 6.3.1)

are obviously determined in their shown viewpoint.

Although this does not conclusively solve the issues with non-canonical views and occlu-

sions, it by all means provides the possibility to solve these issues through a deliberate choice

of viewpoints when recording the reference sequence. Therefore, incorporating a mechanism

for location change directly into the presentation paradigm is a key prerequisite that is widely

ignored by the state of the art.

6.2 Visual representation

In this section, we present the different types of visual hints to guide the user through the

workflow. The emphasis lies on their technical realization, i.e., how they are assessed from the

reference and the run-time observations.

We distinguish four types of visual overlays, see Figure 6.1 for examples for each type:

Procedural overlays: Overlays that instruct on the given task by displaying an animated sum-

mary of the subsequent task.

Enactive feedback: Real-time enactive feedback during the execution of the task, indicating

a correct conduction of the task by coloring the user’s hand green, respectively red in

case of wrong postures.
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(a) Procedural overlays (b) Enactive feedback

(c) Annotational overlays (d) Assessing overlays / optical validation

Figure 6.1: Visual feedback provided by the system.

Annotational overlays: Overlays that emphasize certain workspace regions or further illus-

trate the current instruction, also using (manually entered) texts or graphics.

Assessing overlays: Overlays that indicate the outcome of an optical validation that compares

the state of the workspace after a work step with the desired target state.

We will show how these overlays are generated automatically in Section 6.3 and manually

in Section 6.4. In the remainder of this section, we show how the displayed information is

scoped temporally and the user’s view is guided spatially.

6.2.1 Scoping of displayed information

The point in time when AR overlays for the next action are displayed is crucial for the under-

standing. If the user is left unaware about the pending task for too long, the performance of the

workflow will be stalled. If the next step is hinted too early, while the current step is not yet

completed, it could potentially confuse the user. So, a helpful overlay must accomplish both,
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Figure 6.2: Visual clutter due to procedural overlays interfering with the current appearance of the
workspace.
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Figure 6.3: Illustration of the four partly overlapping phases distinguished within each work step
and the respectively displayed information.

reassure the user of the correctness of the current behavior and announce subsequent actions

early enough to minimize perplexity.

The fine-grained tracking of the user’s performance even allows us to further break down

the temporal granularity, subdividing each work step into several, partly overlapping phases.

We can use these phases to exactly time, when information is displayed to the user. Therefore,

we can massively increase the specificity in the selection of displayed information. As a re-

sult, this also effectively avoids visual cluttering, which might overburden or stress the user.

Figure 6.2 shows an example of visual clutter already occurring with a single type of visual

overlay when not scoping the displayed information.

Figure 6.3 shows the temporal order of the distinguished phases, in particular the instruc-
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tion phase, psychomotor phase, validation phase, and transition phase:

Instruction phase: When a user has finished the preceding work step and is ready to be in-

structed about the new task. Technically, we determine the instruction phase either as

the static segment before the next segment containing a user activity. In case of adjacent

non-static segments, we subdivide the non-static segment and set the instruction phase

as the beginning of the non-static segment before detecting the user’s hand entering or

coming close to the target posture.

Psychomotor phase: As soon as the user begins with the actual execution of a work step.

The system hides the procedural overlays and instead displays the enactive feedback.

As the procedural overlays would very likely interfere with the actual appearance of

the scene, hiding these during the psychomotor phase largely reduces visual clutter of

the interface. Additionally, through providing visual feedback over the correctness of

conduction, we are able to reassure the user of a correct execution and the ongoing

support by the assistance system. Technically, we detect the beginning of this phase by

solely observing the matching scores of the hand location probability maps, described in

Section 4.2.2.

To the best of our knowledge, this is the first AR-based assistance system that provides

this level of support during the psychomotor phase. While [109] also propose exchanging

the provided information, their system is heavily dependent on markers. In contrast, this

work describes the first realization using solely natural features.

Validation phase: After the conduction of the step, the system displays a reference image

for manual inspection, or, if possible, performs an automatic validation in which case it

simply displays the outcome of this inspection.

The beginning of this phase is conditioned on the segment being surrounded by static

segments before and after and the user actually retracting his or her hands after com-

pleting the step. The reason is simple, as the validation is conducted by analyzing the

workspace appearance as seen from the head-worn camera, which trivially requires the

workspace being observable. This also needs to be true for the reference material, in-

cluding the view on the unobstructed workspace before and after the user interaction to

allow for an automatic identification of altered regions.
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Transition phase: Between steps, if there is a change of the region of interest or even a change

of location involved. This phase is active during a movement segment, if a change in

position needs to be communicated before instructing the next step. Alternatively, this

phase starts after a fixed period of time after the validation phase. For example, this

could be used to present the user with an overview of his or her current progress within

the workflow, by displaying a short summary of completed and forthcoming work steps.

We chose the term phase to emphasize that this represents an additional subdivision of each

segment, as the main unit of temporal/procedural progress. While the segments are entirely

determined through the reference material, the different phases are additionally conditioned on

how the user conducts the workstep. For example the transition phase can be entirely omitted

by immediately continuing with the subsequent action.

A user can also repeatedly cycle between instruction, psychomotor, and validation phase

for each work step. This could be further extended by detecting certain operational modes, like

a state of confusion of the user. For example, remaining in the instructional phase for a long

time, or cycling more than two times through the aforementioned phases could be interpreted

as a sign of confusion and be answered with additional support through the system.

6.2.2 Viewpoint guidance

During the workflow, the user might need to be instructed to reposition his or her viewpoint for

several reasons. The obvious one is that this change in viewpoint also occurred in the reference

recording. In this case, the viewpoint guidance could actually be interpreted as procedural over-

lay. In line with the considerations made in Section 6.1, this might be due to didactic reasons,

in order to facilitate the understanding of the recorded procedure. In addition to that, there is

of course the technical necessity to not severely deviate from the viewpoint of the reference

recording. We therefore reuse the same visual hints to guide the user back to the point of view

that matches the one from the reference material. We use a slightly modified implementation

of attention funnels [92] to guide the user towards the target viewpoint. Figure 6.4 shows an

example of the visual representation.

From the approach described in Section 4.2.1, we receive a homography relative to the ref-

erence material, which we can propagate frame-by-frame using the camera tracking approach

from Section 3.2.1. We draw an axis-aligned rectangle representing the current view in the

center of the screen. Let ~pi, i = 1..4 denote the four corner points of that rectangle and H be the

135



6. AUTHORING AND PRESENTATION

Figure 6.4: Example of the attention funnels used to guide the user to a target viewpoint.

target homography, relative to our viewpoint. We then repeatedly draw rectangles between the

corner points ~qi = (αH+(1−α)I)~pi with α ranging from 0 to 1 in steps of 0.1. This visual

hint is hidden from the user, if the relative homography H is sufficiently small, as indicated by

the measures described in Section 3.2.2.

6.3 Automatic overlay generation

Building upon the acquired information, we are able to automatically generate a rich set of

visual overlays. The following subsections explain the processing steps for the technical real-

ization of each type.

6.3.1 Procedural overlays

Since we use first-person view videos as input material, the straight-forward way to generate

an instructional animation of a work step is to use the corresponding parts of the reference

sequence, directly, as illustrated in Figure 6.5. Through the temporal segmentation of the

reference sequence, we are able to identify the time segment containing the conduction of

the task. Using the entire sequence to illustrate the step might not always be the optimal

strategy, as the selection needs to be a trade-off between completeness and conciseness. The

distinction between static, repetitive, and progressive segments allows for some improvement

on this respect.

The decision what to show is dependent on the classifications of the current and following

segments. In case of a progressive segment, we actually do use all frames for the animation,

since it is difficult to determine whether a shorter snippet would be sufficient. Using the hand
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Animation 

Figure 6.5: Illustration of our method to automatically generate procedural overlays based on the
segmentation results.

tracking information, we would indeed be able to determine events such as grasping. However,

we cannot safely decide, whether the footage before or after this salient event is important to

illustrate the action.

However, when showing overlays sampled from repetitive segments, we do not playback

the segment in its entirety. In case of a repetitive segment, we could use the cycle period, if

detectable. In practice, we sample a snippet of fixed length from the middle of the temporal

segment. There is an additional distinction depending on the subsequent segment: If the current

segment is classified as being repetitive and the following as non-static, it is not determinable

which cycle or repetition is the last one, in order to switch over to displaying instructions for

the next step. Hence in this case, we always append the instructions for the following action to

the current one. Although this means that the user is instructed on two consecutive actions at

once, it ensures that both instructions will be shown to the user.

6.3.2 Enactive feedback

Through back projecting the color-coded location probability maps, described in Section 4.2.2

into the field of view, we are able to provide real-time feedback about whether the user’s hands

are at locations that comply with the reference material. The color coding is done, using a static

look-up table. A very low or zero location probability is indicated as red, low as yellow, and

high probability as green.
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Figure 6.6: Illustration of our method to automatically generate annotational overlays indicating
changed workspace areas based on the segmentation results.

These colored maps are then projected into the current camera frame using the inverse

Relevance Plane Transform and then used to tint the largest connected skin-colored regions,

see Figure 6.1(b) and 4.5. In addition to indicating clearly incorrect hand positions, it also

reassures the user of the ongoing support through the system.

6.3.3 Indication of changed areas

Through comparing the reference sequence before and after a segmented user action, we are

able to automatically identify image regions that have been altered in the course of the action,

see Figure 6.6. This is achieved through registering the Relevance Planes for the preceding

and subsequent static segments using the approach described in Section 4.3.2. Using a pixel-

wise comparison, we segment discrepant regions between the geometrically registered common

frames and select the largest connected component.

We can use this, to indicate workspace regions that are about to be altered in the following

step. To that end, we display an annotational overlay containing the contour of the connected

component at the beginning of the task, see left part of Figure 6.1(c).
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6.3.4 Optical validation

Further, we can use the altered regions to perform an optical validation of the state of the

workspace. For that, we extract the corresponding image patches from the static segments

before (prior state) and after (target state) the actual action takes place.

During run-time, we compare the target state patch with the tracked camera image when the

user is assumed to have completed the respective work step using normalized cross-correlation.

Hereby, we tolerate small translational (+6, 0, −6 pixels in x & y direction), rotational (+5◦,

0◦, −5◦), and scaling (90%, 100%, 111%) deviations using brute-force matching of the result-

ing 81 positions and orientations.

It is not straight-forward to determine a threshold value for a successful match, as we do

not know, whether a low score comes from an incorrect execution by the user or general image

distortion effects due to changed lighting or viewpoint. We therefore use the known prior state

to determine a suitable threshold. We match the prior state patch using the same procedure

to the live camera image just before the execution of the work step. Since we know that this

matching score accounts for a positive match, we can use this as a threshold value for the

subsequent comparison.

While the spatiotemporal tracking is reliably identifying when the user has reached a po-

tential target state, it is not designed to discriminate between the possibly small appearance

discrepancies that indicate errors. The normalized cross-correlation of the identified image re-

gions is far more specific in this respect. Depending on the outcome of this comparison, we

either acknowledge a correct (green check mark) or indicate an incorrect (red ’x’) completion,

see Figure 6.1(d).

6.4 Manual authoring

While we are able to automatically generate a rich set of visual representations, the system

is unable to infer task goals and domain knowledge from the observation. For example, it is

crucial to communicate any hazards to the user, e.g., from residual electrical charges, pressure,

or chemicals that might not be obvious to an observer of the video references. Additionally,

due to the occlusion or unobservability issues, discussed in Section 6.1, the reference material

simply might not depict all necessary information. Hence, it is mandatory to provide a way to

manually augment the scene with instructional assets.
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While this could involve things that novice observers could effectively infer from watching

the reference material, there are important hints about safety regulations, warnings, or conven-

tions that require expert domain knowledge to contribute. One of the principal aims of our

work is to allow domain experts, e.g., a maintenance worker, rather than a person knowledge-

able in 3D creation tools to self-dependently implement the system described within this work.

We briefly present our authoring-tool that does not require the author to have any knowledge

about 3D content creation or tracking systems.

6.4.1 Structuring view

Segments 

Import / record 

Figure 6.7: Labeled screenshot from the learning view of the authoring tool: The recognized
actions within all available workflow recordings are presented to the user.

The tool divides the authoring procedure in two steps that are covered by two different

views. The first step allows to review and to correct the automatically discovered workflow

structure, see Figure 6.7. In particular, the user can add new recordings to the analyzed data
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body (Figure 6.7, section ”Import / record”).

After adding a sequence, it is presented as a film strip with the segmentation result overlaid

using different tints (Figure 6.7, section ”Segments”). Yellow indicates a static segment, blue

a movement segment, and white indicates a segment containing a detected user action. The

segment borders are indicated through vertical lines that the user can readjust freely through

moving the line handles. Additionally, the user is able to easily delete unimportant or uninten-

tional actions, as well as to combine or divide segments.

While this view provides an easy interface for correcting possible segmentation or (in case

of multiple recordings) synchronization errors, the actual authoring is handled in another view.

6.4.2 Authoring view

Main view  

Timeline 

Property 

panel 

Export 

 

Layers 

 

Figure 6.8: Labeled screenshot from the authoring view of the authoring tool: The current frame is
projected onto the common frame to allow easy annotation within a stabilized frame of reference.
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The main difficulty of the authoring process is dealing with the 3D nature of the problem.

In more detail, the process requires to associate 3D coordinate frames, spanned by the (pos-

sibly disjunct and local) tracking models with the assets provided by a 3D graphics designer.

Neither the creation of 3D assets, nor the association with a 3D tracking system can generally

be conducted by a domain expert.

An exemplary screenshot of the authoring view is shown in Figure 6.8. The editing takes

place within the stabilized common frame of the according Relevance Plane (Figure 6.8, section

”Main view”). This leads to a workflow that is more similar to annotating a still image than to

annotating a 3D environment. To further simplify the procedure, we allow adding annotations

using a set of predefined pen-stroke gestures. Figure 6.9 shows the set of currently supported

gestures and illustrates the procedure.

Start Drawing a 
gesture 

The gesture 
gets recognized 

and replaced 
by an 

annotation 

Figure 6.9: Illustration of the annotation procedure and selection of supported gestures.
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Implementation

In this chapter, we present implementation details and benchmarking results of the system. A

considerable amount of effort was invested in exploiting the streaming data nature of the under-

lying application. The outcome is a comprehensive programming model, specifically designed

for auto-parallelizing stream processing. Since real-time performance is a crucial prerequisite

for our application and AR in general, we will briefly present our approach. It is not limited

to the application at hand and allows quick prototype development that immediately runs at

speeds that would otherwise require elaborate fine-tuning of the implementation. Addition-

ally, it facilitates the incorporation of multiple and heterogeneous physical machines within its

parallelization strategy: We will show achieved results, considering the importance of tablets,

smartphones, and even wearable mobile devices as target platforms.

7.1 Programming model

Developing efficient software for current multi-core and future many-core hardware is becom-

ing an increasingly difficult task. While some constraints like the demand on memory effi-

ciency could be relaxed to some extent due to cheap memory, a well parallelized implemen-

tation still remains an important requirement. This not only puts higher requirements on the

algorithmic design and thus on the skills of the developer, but also leads to additional code

issues that are very hard to discover.

There are several approaches to facilitate the writing of parallel code. There is the family of

dedicated stream-processing languages, most notably nVidia CUDA [231] and OpenCL [232].

However, our proposed approach is closer to the class of declarative languages or language
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Figure 7.1: An example graph visualized in our web-based user interface: The components in
the graph are cascadable. The ”AR Manual” component in the middle of the graph for example
comprises further sub-components, which allows for internal parallelism.

extensions, e.g., the Microsoft Accelerator concept [233], or OpenMP [234], where the parallel

implementation is realized through merely declaring the data parallelism rather than explicitly

creating and dispatching threads.

We have given careful thoughts of how to design a programming model that

• implicitly influences the developer to favor architectures that facilitate parallel execution,

• hides the complexity and the synchronization overhead of multi-threaded execution,

• is able to automatically parallelize and optimize parts of the provided algorithm,

• provides a strong separation between algorithm and implementation,

• facilitates the use of optional hardware like general purpose GPUs,

• can distribute code among heterogeneous physical machines.

The component paradigm, where code is organized between highly encapsulated entities

that only declare their data interface, has several natural benefits for the purpose of paralleliza-

tion. We require the developer to provide a component-graph that describes the data flow

between single abstract component nodes. Figure 7.1 shows an example graph. The graph

explicitly contains all data dependencies; either by ”wiring” a consumer to all associated data

providers in the graph or by referencing constant default values. The component nodes in the

graph are black-box placeholders for processing steps or algorithms. Even without knowledge

about the actual implementations, this abstract definition already allows to statically distribute
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parallel sub-graphs (i.e., data-independent) among threads and physical machines. The com-

ponent nodes only represent algorithms or even classes of algorithms that share a common data

signature to which several implementations can be registered. This can be hardware-specific,

like a CPU vs. a GPU implementation, but also specific to a problem size, e.g., one that is

fast for small-scale data, and one that suits large amounts of data. By delaying the association

of an algorithm with a concrete implementation until after the system knows the exact target

hardware, we are able to choose an optimal implementation for the given platform. Through a

profile-guided optimization, we can further specify the set of implementations that optimize the

resulting program in terms of execution time, memory footprint, or bandwidth consumption.

The developer needs to contribute the abstract, data-driven, graph-based definition of the

algorithm, together with implementations for the missing building blocks. We call the combi-

nation of the data signature (i.e., set of necessary inputs and outputs) and an implementation a

module. The data signature of the according algorithm is automatically computed as the union

of data inputs and the intersection of outputs of all modules registered to it. Algorithm 3 shows

an example of a concrete module implementation.

Algorithm 3 Definition of an example module. The ARGOS WRAPx macro builds a wrap-
per around the implementing function and registers it as an implementation of the according
algorithm.
void Dilate(const argos::Image& input, argos::Image& output) {

output.ensureFormat(input);

cvDilate(input, output, 1);

} ARGOS_WRAP2(Dilate, const argos::Image, argos::Image, image; image)

Within this function, the module has exclusive writing rights on its output buffers and

granted, synchronized reading rights on the input buffers. Additionally, the framework handles

the memory management, creating multiple simultaneous buffers in the background as well

as the related garbage collection. This vastly alleviates the implementation of multi-threaded

applications, since there are no additional constraints compared to single threaded implemen-

tations within each module.

7.2 Scheduling and optimization

The set of associated implementations and the concrete, static dispatching to threads and phys-

ical machines is called a schedule. To create a schedule, the system pursues three strategies:
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Figure 7.2: Illustration of pipelining, i.e., stage-parallel execution: As soon as a component has
finished processing a data item, the result is propagated and the component immediately continues
with the next item.

• Choosing an optimal set of implementations for a given target hardware and a problem

size.

• Graph-parallel execution, i.e., dispatching sub-graphs to different threads and physical

machines. The goal is to partition the graph into balanced fragments in terms of compu-

tational load with minimal bandwidth footprint in-between.

• Pipelining or stage-parallel execution, i.e., accelerating sequential sub-graphs in presence

of streaming data, see Figure 7.2 for an illustration. This technique, which is also used

by most modern processors, allows to exploit hardware parallelism for algorithms only

comprising sequential steps.

A profile-guided schedule requires information about the computational and bandwidth

footprint of each module. While there are approaches using simulated performance data, here,

the measurements are acquired through repeated instrumented runs in different configurations.

The parameter search space for optimization is hereby reduced trough only examining mod-

ules above a certain computational footprint. Without a profiling run, this means only evaluat-

ing static graph analysis, the optimization potential is limited to exploiting graph- and stage-

parallelism. This process can be performed in less than a second and is therefore always con-
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SourcePort 
Layer 

Source 
Layer 

Execution 
Layer 

Sink 
Layer 

SinkPort 
Layer 

Module 

Figure 7.3: The internal structure of a module using 5 distinct layers.

ducted before executing a graph on a target platform. The abstract graph representation itself

is invariant to a schedule and does not need to be changed or adapted for different platforms.

In the following two subsections, we will describe how we realize the automatic paral-

lelization and schedules for heterogeneous target platforms comprising mobile devices.

7.2.1 Module parallelization

To allow for an automatic optimization of the resulting applications, most importantly par-

allelizing the execution, we require a thread-safe data handover between modules. As each

implementation is hereby simultaneously invoked on different data items, this requires separat-

ing the implementation from the data buffers. A module is comprised of five different layers,

see Figure 7.3. The SourcePort and SinkPort layers conduct the actual thread-safe handover.

The Source and Sink layers accumulate the data from the connected ports and communicate

with the so-called execution layer. The execution layer contains the actual implementation

and is the only part that has to be provided by the developer, as seen in the code example in

Algorithm 3.

In order to parallelize sequential branches of the graph in presence of streaming data, the

framework uses thread-safe buffers maintained in the SinkPorts. Figure 7.4 illustrates a sim-

plified sketch of the asynchronous data handover between two modules. Once a module is

triggered, i.e., all data that is necessary to run the implemented algorithm is available, the

framework reserves exclusive output buffers for the run, sets the necessary read-locks, and

invokes the implementation in the execution layer.
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Figure 7.4: Asynchronous data handover between modules.

7.2.2 Schedules comprising mobile devices

Since mobile devices like smartphones, tablets, and most recently wearables like Google Glass

are an important output device for AR task assistance, our implementation needs to accom-

modate the lower computational profile of these devices. In general, there are two possible

approaches:

Remote execution: Using remote data processing which suffers from limited bandwidth and

communication latencies and is therefore difficult to implement in real-time interactive

applications.

Simplification: Adopting a faster but less powerful approach which results in a loss of accu-

racy or robustness.

Since our proposed framework affords the simple exchange of parts of the implementation and

allows inserting network bridges at arbitrary points within the graph, we can very effectively

investigate those two approaches.

Reducing the mobile computational load by remote execution is not a new strategy: The

authors of [235] distinguish different subclasses of this approach like primary functionality

outsourcing, i.e., retaining simple components on the client and offloading computationally

complex ones, or background augmentation, i.e., offloading of a huge one-time task. Focusing

on image processing, [236] differentiate between several client/server interaction types like
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offloading of pose estimation, offloading of both pose estimation and classification or a thin-

client.

Early work in mobile AR with remote execution includes [237, 238] both using the client

solely as image source (thin-client) and performing all processing steps on the server. With the

improvement of mobile hardware it became feasible to involve the client in the computation

to reduce network load and overall processing time. The client in the system of [239] uses

object tracking to minimize the number of requests to the object recognition server. Kumar

et al.[240] propose a client, performing image tracking as well as feature extraction before

sending a request but they do not aim for interactive frame rates.

Several frameworks have been proposed for enhancing mobile implementations by remote

execution. CloneCloud [241] enables offloading by virtualization of the smartphone’s operat-

ing system on a server. The client starts offloading by transmitting its complete processor state

onto the remote system and receives the state resulting from the computations performed by the

server. This enables switching between onboard and remote execution at any particular point

in time.

In contrast to CloneCloud, µCloud [242] uses software decomposition. Viewing the whole

application as a graph of black box components every node is weighted with its consumed

time obtained during a previous run-time analysis. This graph is then split between client and

server. However, in their proof-of-concept implementation they used the mobile client simply

as an image source, computing all other steps exclusively in the cloud.

We will quantitatively analyze different workload balances ranging from extensive remote

execution to pure onboard processing within our evaluation section. Whether remote execution

improves the processing speed depends on the actual application and the execution context

(mobile device, network quality, etc.). The performance behavior is therefore systematically

analyzed under different network qualities and device capabilities.

7.3 Evaluation

Within this section, we provide an extensive performance evaluation of our approach in various

configurations, also in combination with mobile devices.
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7.3.1 Performance Evaluation

To evaluate the run-time behavior, we will first investigate the impact on run-time performance,

when using our framework. After this analysis, we will present performance measures and

profiling data for the aspects temporal segmentation, classifier training, and tracking.

7.3.1.1 Optimization gain

To give an impression of possible speed ups we evaluated morphological closing as a simple

example case, i.e., a sequence of dilation and erosion operations. We chose a total of four (two

erode plus two dilate) steps to provide enough stages to saturate a quad-core processor. Addi-

tionally, we examine different implementations to demonstrate the importance of incorporating

the choice of implementation in the scheduling strategy for a given problem size.

As baseline, we provided a simple sequential implementation using OpenCV [243]:

/* ... Creating input images ... */

for(int i=0; i<2000; i++) {

cvDilate(input, dummy, 1);

cvErode(dummy, output, 1);

cvDilate(output, dummy, 1);

cvErode(dummy, output, 1);

}

/* ... measuring performance */

We build the equivalent pipeline:

argos::ModuleGraph mg;

mg.add("Image Reader") >>

mg.add("Dilate") >> mg.add("Erode") >> mg.add("Dilate")

>> mg.add("Erode");

mg.start();

The algorithm Image Reader hereby provides a stream of altering images. The reason for

this is that creating a single image and feeding it repeatedly into the pipeline would be statically

resolved by the system: The pipeline would then only be executed a single time, as repeating

inputs to modules without internal state leads to simply repeating the last outputs without ac-

tually re-running the implementation. Aiming for a fair performance measurement, we have
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worked around this optimization mechanism. As the framework possesses an integrated per-

formance measurement and profiling, no further code is necessary.

We registered two implementations for the algorithms Erode and Dilate, each. One be-

ing a (trivial) OpenCV wrapper, analogous to Algorithm 3. One being a CUDA implementation

adapted from the CUDA SDK material. The results of the experiment are shown in Figure 7.5.
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Figure 7.5: Performance comparison for small (left) and large (right) input cardinality: The exper-
iment was performed on an Intel Core2Quad 2.5 GHz with nVidia 9800 GTX.

Both for small and large input images the framework overhead is below the measurement

accuracy. When the framework was allowed to create a stage-parallel schedule, the applica-

tion performed at about 3.3 times the speed of the single threaded execution resp. at 80% of

the theoretically achievable maximum on a quad core. Forcing the scheduler to associate the

CUDA implementation to Erode and Dilate, the performance was slightly worse on small

input cardinality.

On bigger images, the CUDA implementation could exceed the CPU implementation. This

underscores the utility of a loose association between algorithm and implementation. The

optimal choice of algorithm is depending on the target platform as well as on the nature of the

data to process. The possibility to delay and change the actual scheduling transparently without

changing the definition of the algorithm is a beneficial property that we will further investigate

in Section 7.3.2.

7.3.1.2 Application performance

We will show that the speed-ups described above are also possible for real applications. We will

now present performance data for the three main aspects of our approach, temporal segmenta-

tion (see Chapter 3), classifier training (see Chapter 4), and workflow tracking (see Chapters 4
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Figure 7.6: Performance profiling results for the offline components.

and 5). Without changing the algorithm graph, we ran the applications once multi-threaded and

once using only a single thread on a Core i7 Quad W3520 at 2.66 GHz.

Multi-thread Single thread Factor

Temporal segmentation 22.5 10.0 2.3

Classifier training 2.9 0.8 3.7

Workflow tracking 24.7 6.4 3.8

Tracking w/o display 38.6 10.0 3.9

Table 7.1: Frames per second and achieved speed-up factors.

The achieved speed-up factors are shown in Table 7.1. While both classifier training and

tracking achieve high speed-ups of about factor 3.7, the very sequential segmentation task still

achieves a factor of 2.3 without any change of the underlying algorithm.

To further analyze the performance behavior, we have profiled each of the algorithms in

more detail. Figure 7.6(a) shows the ratios for the segmentation approach. The two largest

computational chunks are determining optical flow and template matching, each consuming

about one third of the computation time. These two algorithms are provided as single nodes

152



7.3 Evaluation

2D Hand 
tracking 

20% 

Classification 
21% 

Optical  
flow 
10% 

Compositing 
and display 

11% 

Loading and 
processing 

overlays 
35% 

Other 
3% 

Figure 7.7: Performance profiling results for the tracking components.

within the graph and are internally single-threaded. This already caps the theoretically achiev-

able speed-up factor to a value of 3, since two thirds of the computation time only can double

in speed. By multi-threading, i.e., sub-dividing these implementations, a higher performance

is achievable.

The classifier training profile is shown in Figure 7.6(b). As expectable, the largest chunk

is the descriptor computation with 46% of computation time. Since the comprised components

can be fed with multiple frames simultaneously, this part is very well parallelizable.

Similar holds for the real-time workflow tracking, as the follow-up workflow states are

evaluated by separate, parallelizable classifiers. The according results are shown in Figure 7.7.

What is noteworthy, though, is that with over a third, the largest part of computation time is

spent on loading and processing the video-based overlays and an additional 11% are spent on

compositing and display. When providing the system as a back-end rendering node, these two

parts would not be required and the system could achieve higher frame-rates. We measured this

headless operation without any display functionality and received 38.6 frames multi-threaded

and 10.0 frames single-threaded, respectively, which translates to a factor 1.5 speed-up. The

detailed analysis of this mode of operation in combination with a mobile displaying device is

presented in the following subsection.
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Figure 7.8: Illustration of the processing pipeline and its three possible handovers (gray, low-
pass, gradients) for outsourcing computation to a remote server. The client then displays the visual
instruction as a result.

7.3.2 Mobile devices and remote execution

We aim to investigate, when remote execution yields a benefit for our application in comparison

to algorithm simplification, allowing to run an algorithm on the mobile device. To that end, we

measure the time consumption with respect to different handovers between mobile device and

remote server under varying device and network qualities.

Figure 7.8 shows a schematic overview of the workflow tracking approach, explained in

Chapter 4. We provided equivalent implementations for all parts of the algorithm, except for

the classification and analysis aspects. As these are the most time consuming aspects of the

procedure, they would overburden the mobile devices in real-time and memory budget in un-

changed form and are thus mandatory candidates for simplification.

Additionally, we provided two implementations for the UDP network bridge algorithm.

One that compresses the data for every handover, using JPEG compression for images and

run-length encoding for the DOT query descriptors and one that sends the data uncompressed,

trading bandwidth for saved computation time. Hence, the system provides a total of six pos-

sible ways for subdividing the pipeline between client and remote system.

To implement the same approach using simplification, we exchange the (server-based) steps

of classification, and analysis through a simplified mobile implementation based on bag of

words classification using FAST+BRIEF features [172, 244]. The number of features was

hereby limited to the best 50 keypoints. This prototypical implementation is solely intended to

provide a repeatable frame of reference for comparative performance.

To have a controlled experimental setup, the tested devices were mounted onto a tripod

facing a computer monitor, displaying a series of static images to classify (Figure 7.9).

We used a Samsung Galaxy S2 (SGS2) representing the class of faster mobile devices and

a Nexus One (NX1) for the class of slower ones. The wireless LAN (WLAN) connection

between client and server allowed a connection with around 40 Mbit/s and we measured a data
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(a) Evaluation setup (b) Running application

Figure 7.9: Illustration of the synthetic evaluation setup and running application.

rate of around 0.3 Mbit/s for the mobile broadband (HSDPA). When not stated otherwise, the

server received a 320× 240 image and used 40 reference templates - one template per scene.

The stated execution time is the time between the start of the scene classification and the arrival

of the result averaged over a three to five minute run.

7.3.2.1 Analysis of the optimal handover position

To figure out which workload balance yields the best performance, we compare all six possible

handovers: gray, low-pass, and descriptor, each with uncompressed and compressed bridge

implementation. While the client’s computational load rises with a late handover, the network

load decreases. While the uncompressed size of the gray image is 75KB per frame, the size of

the DOT query descriptor is only about 5% of that size.

The effect of compression varies depending on the visual content. In our test cases we

observed a data reduction by factor 5 for handover gray, factor 6 for handover low-pass (both

lossy JPEG) and factor 3 for handover descriptor (lossless run-length encoding) compared to

the respective uncompressed case.

The performance of the SGS2 in WLAN (Figure 7.10(a)) slightly increases with a late

handover (descriptor) and benefits from compression. This behavior is more distinct with the

NX1 (Figure 7.10(b)). This is surprising since one would assume that the higher workload

and the additional compression would be disadvantageous for the slow device. However, the

transmission time via the slower network interface seems to overcompensate the increased CPU

load. The benefit of a late handover with compression is even more evident when using mobile

broadband (Figure 7.11). However, choosing the low-pass as handover has no advantage. Since
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(b) Nexus One - WLAN

Figure 7.10: Evaluation of the six possible handovers using WLAN: The tests were conducted
on two different mobile devices and show a slight advantage of compression in all cases. A late
handover turns out to be the best choice.
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(b) Nexus One - mobile

Figure 7.11: Evaluation of the six possible handovers using mobile broadband: The tests were
conducted on two different mobile devices and show a clear advantage of compression. A late
handover (descriptor) turns out to be the best choice.
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Figure 7.12: Breakdown of the thin client configuration (offloading the gray image) and the late
handover (offloading the descriptor), both compressed: A higher mobile computational load comes
with a decreased communication overhead which is especially advantageous when using mobile
broadband.

the smoothing kernel does not justify subsampling, the slightly higher JPEG compression rate

of smoothed images is negligible when using WLAN.

To satisfy the real-time demand, we use UDP as transmission protocol, which means that

lost datagrams are not sent again. Since the uncompressed gray image and the uncompressed

blurred image have to be divided into many packets, the probability of one of those getting lost

is very high leaving the server with an incomplete image. This occurred quite often when per-

forming remote execution with the Nexus One via mobile broadband. Hence, we exclude those

measurements in Figure 7.11(b) and conclude that compression also decreases the probability

of datagram incompleteness.

Figure 7.12 illustrates the individual shares of the thin-client configuration (gray) and the

late handover (descriptor), both compressed. It shows that a late handover comes with a higher

computational load for the client but reduces communication load on the other hand. This

client configuration is called ”non-trivial client” as opposed to a thin client and is particularly

useful in mobile broadband.

7.3.2.2 Comparison of remote execution and simplification

Figure 7.13 illustrates the difference between simplification and remote execution. Remote

execution was done with a late handover (compressed descriptor) since the previous experi-

ments showed that this is the best choice. The measurements indicate that remote execution

via WLAN is advantageous compared to running a simplified classification onboard.
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Figure 7.13: Comparison of simplification (orange) and remote execution with compressed de-
scriptors via mobile broadband (green) and WLAN (dark green): Remote execution turns out to be
particularly useful for slower devices (right), strongly outperforming simplification. Simplification
is preferable via mobile broadband, given that the amount of reference templates does not exceed
a certain size.

Remote execution in mobile broadband becomes profitable when the template set exceeds

a certain limit. This break-even point occurs very soon for the NX1 (less than 10 templates).

For the SGS2, this will only occur with a considerably larger data set, roughly around 100

templates.

Our analysis of remote execution in the application context showed that offloading complex

computations can indeed result in a higher processing speed. Reducing the network overhead

increases this effect, which means that a simple thin-client configuration is typically not the

best configuration. In our specific application, splitting the pipeline at a rather late point in

time yields the highest performance increase.

Thus, we propose remote execution with non-trivial clients as an alternative to simplifica-

tion when adopting computationally complex programs to mobile devices. This also has the

advantage that already existing template databases can still be used and do not have to be re-

computed for the simplified algorithm. Moreover, the remote system’s database and even its

implementation can easily be changed without the user having to update the application.
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Conclusions

In the following sections, we will summarize our work and the conclusions drawn from it.

This includes the identification of open research questions and directions for future work. In

Section 8.2, we will briefly present the three short-term topics that are currently ongoing or

planned.

8.1 Summary

We have presented the first comprehensive approach for the automatic creation of procedural

task assistance using Augmented Reality. Over more than twenty years since the general con-

cept’s proposal [1], the technical approach has remained almost unchanged. There have been

partial approaches for specific domains or with rigorous technical constraints and scenario pre-

requisites. However, this is the first work achieving the workflow structure assessment, content

creation and during runtime the user monitoring and assistance with a markerless and domain-

agnostic approach. Especially the contribution of this work regarding the first two aspects is

cardinal, since it strongly alleviates the content creation issue and even conclusively solves

it for a range of use cases. As the content creation problem is one of the major inhibitors

for a wide-spread uptake of AR assistance systems in commercial markets, we expect a great

commercial and scientific impact of our work.

During run-time, our approach allows to closely follow the user through the course of an ac-

tivity sequence. For procedural assistance, this allows guiding the user during the psychomotor

phase and providing feedback regarding the correctness of conduction. This has been achieved
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for the first time without the use of optical tracking aids. In the following, we summarize and

discuss the main technical contributions of our approach.

Segmentation: We have presented an online, live-stream capable task segmentation approach

for video examples of manual workflows. The method provides the underlying workflow

structure, which corresponds well with human interpretation. We can use this segmen-

tation to automatically create a pictographic documentation of a workflow as well as to

author animated overlays as part of Augmented Reality manuals.

In contrast to the typical approach of using high-level features such as recognized ob-

jects, we investigated the feasibility of whole-image properties that do not require a prior

identification of image segments or any other semantics. Since the formulation is based

on the learning rate of a nearest neighbor classifier, a beneficial side effect is that the

segment boundaries facilitate k-NN classification during run-time.

The approach works very well on workflows that were recorded with a fixed camera.

In this case, about 80% of the actions were segmented in strict compliance to what a

human would manually determine as segment boundaries. It is important to note that

no segmentation or any other prior identification of image parts needs to be carried out

to achieve this performance (other than cropping the image by a fixed margin). When

applied to recordings from a head-worn, moving camera, the approach has a higher fail-

ure potential. This is mainly due to parallax movement of the environment that cannot

be distinguished from user activity by the proposed approach. Thus, in its current state,

the approach is most effective on (mostly) stationary cameras. A dedicated recognition

and handling of parallax motion is a promising candidate to improve the segmentation

precision in the case of strongly moving cameras.

Beyond the use case of procedural assistance, there are further applications of the method.

Since the clustering approach is real-time capable and can operate on online, live video

input, it could be used as a preprocessing step for various real-time computer vision

problems. Most prominently, it could be used to implement the idea of context-priors for

problems with a prohibitively large search-space. We will further express this thought at

the end of this section.

Modeling and markerless tracking of workflows: Using a set of classifiers trained on the

segmented recording, we have presented an approach to precisely follow a user while
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executing this workflow in real-time. This can be used to interactively display instruc-

tions, real-time feedback, and side-information without requiring the user to manually

step through the single segments. To the best of our knowledge, this is the first time that

this has been successfully implemented for AR and procedural assistance without the use

of markers, special sensors, or additional tracking aids. Three major contributions lead

to this. Besides hand tracking that will be discussed subsequently, these are:

• A novel representation of time-progressing 3D environments. Due to the fact that

the camera motion during recording is unconstrained and not guaranteed to exhibit

sufficient translation to estimate geometry, typical approaches like structure from

motion or SLAM are infeasible for this application. Furthermore, all approaches

that require prior knowledge (CAD-models) or special infrastructure (markers)

were also deliberately excluded.

Instead, we have proposed a piecewise homographic transform that we call rele-

vance plane transform that projects the given video material onto a series of distinct

planar subsets of the scene. These subsets are selected by segmenting the largest

planar image region that contains a specific region of interest. This region gets de-

termined for each temporal segment, independently, either through estimating the

focus of attention or the focus of interaction using the hand tracking information.

The transform then results in a piecewise two-dimensional spatiotemporal model

of dynamic, changing environments that elegantly handles cases of incomplete ob-

servation.

As the resulting 2D frames are spatially continuous, it is viable to directly apply 2D

descriptors or to anchor 2D information associated spatially as well as temporally

to the time-evolving 3D workspace. Through a robust two-step backprojection pro-

cedure, the descriptors or overlays can be robustly applied to a new recording or

live stream. The limitation of the procedure is that the viewpoint during run-time

is required to be similar to the one from the reference sequence. However, the

extracted instructive video snippets would also be compromised in expressibility

or even validity, when overlaid onto the workspace seen from a different angle.

Therefore, the limitation is inherent to our approach in general. We have demon-

strated the applicability by sampling 2D probability maps of the hand location from

a moving camera that were used for classification and for providing live feedback.
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• An image-based approach for the model-guided generalization of training data. As

the originally resulting tracking model is quite user dependent, we have pursued

several ideas to address this. We first showed how to include several reference

examples into the same tracking model that allows accommodating user-related

variations and differences in the point of view. Furthermore, this allows assessing

structural variants of the workflow itself.

Eventually, to allow the creation of a tracking model from a single reference video,

we proposed an approach using model-guided generalization based on image-based

rendering and hand tracking. On our data sets, provided by different users, the

correct recognition rate on single frames was more than tenfold higher, when using

this generalization scheme. We further showed how to seamlessly include this

scheme into our framework through explicitly retouching the training data.

Hand tracking: In order to track the user’s hands during the workflow, we have proposed

a novel learning-based approach. The method combines a generative approach using

an image-based appearance model and a discriminative approach based on queries in

very large databases of hand views. The proposed database allows real-time queries for

a rather densely sampled subset of the parameter space with millions of entries. This

is possible due to a hierarchical structure that corresponds to the relative average joint

velocities, in order to facilitate fast local beam-searches. Through exploiting associative

symmetries, it allows the quick exchange of entries, which is the prerequisite to adapt to

the observed content.

In order to populate the database, we have presented an image-based rendering approach.

This method allows interpolating between observed prototype views by means of an ex-

tremely light-weight axis-aligned morphing scheme. Due to its efficiency, it is also fea-

sible as hand appearance model for real-time hand tracking, in particular for refining

results in presence of nearest neighbor hypotheses. Most importantly, this appearance

model allows the formulation of a pixel-wise objective function that vastly outperforms

skin color and edge based methods regarding robustness and the number of local op-

tima. Our proposed objective function is provably very robust towards various challeng-

ing conditions including cluttered background, skin-colored background, skin-colored

occlusions and strong blur. We have demonstrated that our method significantly outper-

forms the state of the art in hand tracking with a generative model. We could prove this
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through unveiling systematic flaws in the most commonly used mathematical terms of

the previous objective functions. Additionally, we have validated our findings through

comparison with a concrete state of the art method [194].

To the best knowledge of the author, the resulting hand tracking approach is the only

approach capable of tracking such challenging material as was used for evaluation with-

out using markers and only using a monocular RGB camera. One could argue that the

more fragile step of sampling the necessary prototypes compromises the validity of these

findings. However, in a real application this could as well be handled by a short, dedi-

cated preparation procedure, where the user gets prompted to perform a certain number

of hand postures to robustly bootstrap the process.

We could further show that the generalization procedure that is key for the database

population strategy has a paramount impact on the recognition rate. This eventually

allows the inference of working tracking models from a single recording of the workflow.

Presentation and application: We have described our approach of extracting descriptive il-

lustrations for each action from the provided reference sequence, automatically.

When displaying information during run-time, we exploit the ability to precisely track

the user’s progress to scope the visibility of each overlay. Additionally, we visualize sev-

eral automatically assessed correctness indicators. Firstly, the system provides enactive

feedback during the psychomotor phase. Secondly, it provides feedback after each work

step by performing an optical validation of the step’s outcome by comparing it to the

desired target state from the reference material.

In order to allow augmenting the scene with further information, we have also presented a

graphical user interface for manual authoring. Most notably, this interface entirely hides

all 3D aspects in order to allow a domain expert, who is generally not knowledgeable in

3D graphics to operate the interface.

Implementation: We have briefly presented a component-based, data-driven programming

model to design, implement, and execute algorithms on possibly heterogeneous hard-

ware. The programming model particularly suits the requirements of computer vision

and image processing by efficiently supporting the stream processing nature of the un-

derlying applications. Thereby, the formulation allows the automatic parallelization of
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the resulting algorithms. By abstracting from implementation details, the algorithms can

quickly be adapted to accommodate specific target hardware.

We showed that the system is effectively able to achieve speed-ups, both in synthetic

scenarios and for the actual application described in this work. Additionally, we have

systematically evaluated different workload configurations between a remote system and

a mobile client. We found that optimizing for maximum offload (thin-client configu-

ration) is at a disadvantage compared to splitting the workload between remote system

and client, even with a fast network connection. One of the major benefits of our ap-

proach is that it affords altering execution schedules without requiring any change of

the user-provided program definition. This allows accommodating wide-ranging mobile

hardware that alters the optimal workload configuration through an automatic process.

The presented work provides a fully functional technical approach to acquiring and trans-

ferring workflow knowledge using Augmented Reality. Outside of the immediate scope of

procedural assistance, the proposed closed loop between sampling, modeling, and recognition

of user context has further applications. Technically, this could be used to condition fragile pro-

cessing steps on a prior context recognition. An example, where this has already been realized

within this work is our proposed method for hand tracking that implicitly learns context-driven

posture priors through a non-parametric model.

From a conceptual standpoint, this allows to generalize the central idea of Augmented

Reality. While the classical definition is merely based on the spatial association between virtual

information and real objects [8], we have presented a structured way of associating information

with context, additionally.

8.2 Future work

Although the material presented in this thesis is self-contained, it opens up a large field of

directions for future work. We will present three topics that we have already started to explore

within the following subsections.

8.2.1 Study of performance indicators and human factors

While this work is concluded with the technical foundation for the automatic creation and

provision of procedural assistance, there are many open questions regarding the acceptance
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and the efficiency of the resulting system.

In an already published follow-up study of our work [127], we have validated the correct-

ness of our premise to base the generation of instructions on prior event segmentation. The

conducted study shows that the selection of temporal segments for creating instructions corre-

sponds to a goal-agnostic segmentation of event boundaries.

In this regard, we intend to further study how understandable the automatically created

visual instructions and their assigned temporal scope are for a human recipient. We expect

that the automatic annotations effectively decrease the required time for understanding an in-

structed action, compared to watching an unprocessed reference sequence, directly. In case of

a pictographic documentation, we even expect to increase the understandability of the pictorial

representation. Further, we want to compare this to the effects of manually created annotations

in the same setup.

Of particular interest is the impact of the proposed enactive feedback on objective and

subjective factors. We expect the proposed feedback to possess a beneficial effect on the cor-

rectness of the conduction and, eventually, a lower error rate. More importantly, the feedback

indicates the ongoing support from the system and will expectedly have a positive effect on the

user’s perceived quality of the assistance system.

Another important practical implication of these further studies is to help us to understand

how to adapt the presentation to the user’s mental state, for example, a state of confusion. While

the purely technical ”detection” of a state of confusion is one aspect, the more challenging and

important question, however, is how to appropriately react to this state. Also generally, due to

the fine-grained observation of the user’s actions, we are able to scope and adapt the informa-

tion that is provided by the system to the user and therefore need to understand the user’s infor-

mational needs. For assembly, [245] identifies the task variables that influence perceived object

assembly complexity. Their study investigates objective and quantifiable indicators (number of

fastenings, component groups, or novel assemblies) that influence the perceived complexity.

These indicators could be very useful to adapt the information offer by system to the subjective

information need of the user.

8.2.2 Deriving procedural knowledge with hand tracking

An important technical direction of future work is to exploit the estimated hand and finger

trajectories, in order to discover the modalities of the execution. We exemplify this on two

concrete properties that can be directly estimated from the data:
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Figure 8.1: Heat maps of thumb and index finger positions collected from a single sequence (left),
averaged over three sequences (middle), and six sequences (right).

Grasp point detection: There is an observable reciprocal correlation between the required

level of accuracy and the speed of execution when interacting with objects and environ-

ment. For example, when removing a plug, the relative velocity of reaching to the plug is

typically higher than the velocity of grasping the plug to remove it from its socket. The

same also holds for the subsequent retraction of the hand. Generally, relative velocity

is one of the major statistical cues for interpreting manual activities [246] and we there-

fore have already incorporated it in the segmentation step described in Section 3.1.3. In

contrast to the low-level observation features that we have used for segmentation, we are

now able to extend this approach using the detailed hand trajectories.

We only use the positions of the index and thumb fingertips as surrogates for the hand

interaction for several reasons. Firstly, while there exist several types of typical grips

(e.g., power grip, precision grip), almost all of them involve the index and thumb as the

touching extremities. One easy example to illustrate why it is beneficial to restrict the

observation to only the touching parts is the movement of the hand when trying to loosen

up a plug. This often involves a kind of ”wobbling” hand movement. Since the touching

extremities get fixated by the plug itself, the fingers are moving significantly less than

the rest of the hand. Secondly and more importantly, the thumb and the index are the

most consistently visible fingers when observed from a first-person viewpoint.
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Figure 8.2: Heat maps of thumb and index finger trajectories collected from a single sequence
(left), accumulated over three sequences (middle), and six sequences (right).

We estimate the grasp points by accumulating 2D positions of the index and thumb posi-

tions, projected into the common frame of the work step. We hereby process the thumb

and index finger, jointly. This means that for each frame, we add two positions and there-

fore, for a segment with N frames 2N positions. We determine the grasp position using

the first statistical moments, the mean and the covariance of the accumulated series. The

mean then delivers the grasp center and the covariance matrix provides a robust statis-

tical measure for the grasp size and orientation. These can be already estimated from a

single sequence, examples of the resulting heat maps are shown in Figure 8.1.

Essential procedure: When several recordings of the same workflow are available, we are

able to distinguish relevant from erratic activities simply by comparing whether an ac-

tivity is present in all reference examples. Using the estimated hand trajectories, we

are additionally able to identify the parts of each work step that are seemingly vital to

reaching the goal.

The main approach is very similar to how we determine the grasp position in the previous

subsection. Though, since we are not interested in relative frequency but aim to accumu-
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Figure 8.3: The automatically created pictographic paper manual.

late the fingertip coverage among several reference examples, we need to quantize and

interpolate before calculating the statistical moments. Therefore, we also add linearly

interpolated finger positions and the projected 2D positions are quantized into 2D bins.

Each bin value is hereby incremented not more than once per sequence. Therefore, the

bin value counts the number of sequences that project at least one point into the bin. The

bins with a value equal (or close to) the number of examined sequences correspond to

the motion that is seemingly essential due to the reoccurrence over all sequences. Again,

the resulting example heat maps are shown in Figure 8.2.

8.2.3 Integration with paper-based workflows

As already mentioned, we can also automatically generate a pictographic paper manual, in

addition to the interactive presentation. Figure 8.3 shows an example of the resulting docu-

ments. While the interactive representation clearly has several benefits towards the traditional

paper-based documentation, it is not universally superior. In general, all user interfaces have

inherent limitations in their affordances. While AR is great for intuitively associating virtual

information with real, physical objects, it is a suboptimal or even clumsy interface for adding

written or sketched annotations. Additionally, companies typically have a stock of documenta-

tion realized in paper form.

Quite recently, we have presented an approach called Continuous Natural User Interface

(CNUI) [68], that intuitively connects physically distinct devices and in particular AR and a

paper-based representation. Figure 8.4 shows the domain-continuity cycle described in the

original publication.

The user can extract virtual pieces of paper from physical parts of the environment using a

natural grab-and-pull hand gesture. The employed gesture resembles the real-world manipula-
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Figure 8.4: Illustration of a CNUI workflow cycle: This shows, how the user interface is continued
between a virtual and real-world domain and makes use of their respective affordances: The two
instances stay associated through the use of an Anoto system in this example. Taken from our
previous publication [68].

Figure 8.5: Illustration of domain and interaction continuity between virtual (left) and real-world
paper (right) in our demonstrator: Through an Anoto-pattern added during printing all hand-written
annotations on the real paper are reflected on the virtual instance. Taken from our previous publi-
cation [68].
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tion of paper, leading to a consistent look-and-feel between AR and paper, Figure 8.5 illustrates

this consistency. Paper is a prominent example of a natural interface [247], as it offers a natural

way, e.g., for receiving handwritten annotations. To give the user the impression, that paper and

AR are instances of the same continuous user interface, they need to be permanently associ-

ated with each other. This is realized using an Anoto pattern [248] that enables a corresponding

optical pen to identify this piece of paper and precisely locate the pen’s position on the paper

during hand writing. All written annotations can thus be reassigned to the virtual instance, still

deposited at the real-world object. Since the pen is equipped with wireless communication,

this reassignment is instantaneous. This reinforces the impression of dealing with just another

instance of the same content.

Within this line of future work, we will pursue a combination of the procedural task assis-

tance as presented within this work with CNUI. The aim hereby is to crosswise augment inter-

active and paper-based representations in order to bridge between current and future means of

documentation.
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AAM Active appearance model

AR Augmented Reality

BRIEF Method for point descriptor matching
[172]
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CAI Computer-aided instructions

DoF Degree of freedom

DOT Method for region template matching [9]

DTW Dynamic time warping

FAST Method for interest point selection [244]

HMD Head-mounted display

HMM Hidden markov model

IBR Image-based rendering

Inpainting (Automatic) reconstructing of image ar-
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KLT Kanade-Lukas-Tomasi feature tracker
[207, 249] - Point tracking method based
on taylor series expansion within a small
patch around each point

PSO Particle swarm optimization
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RP Relevance plane

RPT Relevance plane transform
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SSM Self-similarity matrix
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mented reality for construction tasks: door-
lock assembly. In the Proceedings of the
International Workshop on Augmented Reality
(IWAR), 1998. — 21

[61] M. L. YUAN, S. K. ONG, AND A. Y. C. NEE.
Augmented reality for assembly guidance us-
ing a virtual interactive tool. International
Journal of Production Research, 46(7):1745–
1767, 2008. — 21, 39

[62] TOBIAS BLUM, TOBIAS SIELHORST, AND

NASSIR NAVAB. Advanced augmented real-
ity feedback for teaching 3D tool manipula-
tion. In New Technology Frontiers in Minimally
Invasive Therapies, chapter 25, pages 223—-
236. Lupensis Biomedical, 2007. — 21, 39

[63] JURI PLATONOV, HAUKE HEIBEL, PETER

MEIER, AND BERT GROLLMANN. A mobile
markerless AR system for maintenance and
repair. In the Proceedings of the International
Symposium on Mixed and Augmented Reality
(ISMAR), 2006. — 21

[64] FABIAN DOIL, W. SCHREIBER, T. ALT, AND

C. PATRON. Augmented reality for manu-
facturing planning. In the Proceedings of the
Workshop on Virtual Environments, 2003. — 21

[65] ALEX OLWAL, JONNY GUSTAFSSON, AND

CHRISTOFFER LINDFORS. Spatial augmented
reality on industrial CNC-machines. Pro-
ceedings of SPIE, 6804, 2008. — 21

[66] STEVEN J. HENDERSON AND STEVEN

FEINER. Opportunistic controls: leverag-
ing natural affordances as tangible user

interfaces for augmented reality. In the
Proceedings of the Symposium on Virtual
Reality Software and Technology (VRST), New
York, NY, USA, 2008. ACM. — 21

[67] JONATHAN J. HULL, BERNA EROL, JAMEY

GRAHAM, QIFA KE, HIDENOBU KISHI,
JORGE MORALEDA, AND DANIEL G. VAN

OLST. Paper-Based Augmented Reality. In
the Proceedings of the International Conference
on Artificial Reality and Telexistence (ICAT),
2007. — 21

[68] NILS PETERSEN AND DIDIER STRICKER.
Continuous natural user interface: Reducing
the gap between real and digital world. In the
Proceedings of the International Symposium on
Mixed and Augmented Reality (ISMAR), 2009.
— 21, 168, 169

[69] ARTHUR TANG, CHARLES OWEN, FRANK

BIOCCA, AND WEIMIN MOU. Comparative
Effectiveness of Augmented Reality in Object
Assembly. In the Proceedings of the SIGCHI
Conference on Human Factors in Computing
Systems, 2003. — 21, 23, 131

[70] DAVID J. HANIFF AND CHRIS BABER. User
evaluation of augmented reality systems. In
the Proceedings of the International Conference
on Information Visualization, 2003. — 21

[71] JOHANNES TUMLER, RÜDIGER MECKE,
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[112] CHRISTIAN KNÖPFLE, JENS WEIDEN-
HAUSEN, LAURENT CHAUVIGNE, AND INGO

STOCK. Template Based Authoring for AR
based Service Scenarios. In the Proceedings
of the Virtual Reality Conference (VR), pages
237–240, 2005. — 25

[113] ELIZABETH CARVALHO, HUGO DOMINGUES,
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UNER. Efficient mixed reality application
development. In the Proceedings of the Con-
ference on Visual Media Production (CVMP),
2004. — 25

[116] STEVEN FEINER. APEX: An experiment in
the automated creation of pictorial explana-
tions. Computer Graphics and Applications,
5(11):29–37, 1985. — 25

[117] WILMOT LI, MANEESH AGRAWALA, BRIAN

CURLESS, AND DAVID SALESIN. Automated
generation of interactive 3D exploded view
diagrams. In the Proceedings of SIGGRAPH.
ACM, 2008. — 25

[118] L DA XU, CHENGEN WANG, ZHUMING BI,
JIAPENG YU, AND LI DA XU. AutoAssem:
an automated assembly planning system for
complex products. Transactions on Industrial
Informatics, 8(3):669–678, 2012. — 25

186

http://linkinghub.elsevier.com/retrieve/pii/S0959475212000187
http://linkinghub.elsevier.com/retrieve/pii/S0959475212000187
http://www.ncbi.nlm.nih.gov/pubmed/22923042
http://www.ncbi.nlm.nih.gov/pubmed/21702825
http://www.ncbi.nlm.nih.gov/pubmed/21702825
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6162888
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6162888
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1492779&contentType=Conference+Publications&queryText=Template+Based+Authoring+for+AR+based+Service+Scenarios
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1492779&contentType=Conference+Publications&queryText=Template+Based+Authoring+for+AR+based+Service+Scenarios
http://dl.acm.org/citation.cfm?id=2385971
http://dl.acm.org/citation.cfm?id=2385971
http://dl.acm.org/citation.cfm?id=2385971
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.6440&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.6440&rep=rep1&type=pdf
http://dl.acm.org/citation.cfm?id=1360700
http://dl.acm.org/citation.cfm?id=1360700
http://dl.acm.org/citation.cfm?id=1360700
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6158599
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6158599
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6158599


REFERENCES

[119] JOHANNES BEHR, PATRICK DÄHNE, AND

MARCUS ROTH. Utilizing X3D for immersive
environments. In the Proceedings of the In-
ternational Conference on 3D Web Technology,
2004. — 25

[120] TIMO ENGELKE, MARIO BECKER, HARALD

WUEST, JENS KEIL, AND ARJAN KUIJPER.
MobileAR Browser A generic architecture
for rapid AR-multi-level development. Expert
Systems with Applications, 40(7):2704–2714,
2013. — 25

[121] JOHANNES BEHR, ULI BOCKHOLT, AND DI-
ETER FELLNER. Instantreality - a frame-
work for industrial augmented and virtual
reality applications. In Virtual Reality &
Augmented Reality in Industry, pages 91–99.
Springer, 2009. — 25

[122] FLORIAN LEDERMANN AND DIETER

SCHMALSTIEG. APRIL: a high-level
framework for creating augmented reality
presentations. In the Proceedings of the
Virtual Reality Conference (VR), 2005. — 25

[123] M. L. YUAN, S. K. ONG, AND A. Y. C. NEE.
Assembly guidance in augmented reality en-
vironments using a virtual interactive tool.
Innovation in Manufacturing Systems and Tech-
nology, 2005. — 25

[124] JAKOB NIELSEN. Finding usability problems
through heuristic evaluation. In the Proceed-
ings of the SIGCHI conference on Human Fac-
tors in Computing Systems, 1992. — 25

[125] TIMO ENGELKE, SABINE WEBEL, ULI

BOCKHOLT, HARALD WUEST, NIRIT GAV-
ISH, FRANCO TECCHIA, AND CARSTEN

PREUSCHE. Towards automatic generation
of multimodal AR-training applications and
workflow descriptions. In the Proceedings of
the International Symposium in Robot and Hu-
man Interactive Communication, 2010. — 26

[126] JEFFREY M. ZACKS AND BARBARA TVER-
SKY. Structuring information interfaces for

procedural learning. Journal of Experimental
Psychology: Applied, 9(2):88–100, 2003. — 26

[127] KATHARINA MURA, NILS PETERSEN,
MARKUS HUFF, AND TANDRA GHOSE.
IBES: A Tool for Creating Instructions
Based on Event Segmentation. Frontiers in
Psychology, 4(994), 2013. — 26, 165

[128] M. M. SAYLOR AND D. A. BALDWIN. In-
fants’ on-line segmentation of dynamic hu-
man action. Journal of Cognition and Devel-
opment, 2007. — 27, 46

[129] DARE BALDWIN, ANNIKA ANDERSSON,
JENNY SAFFRAN, AND MEREDITH MEYER.
Segmenting dynamic human action via sta-
tistical structure. Cognition, 2008. — 27, 46

[130] EKATERINA H. SPRIGGS, FERNANDO DE LA

TORRE, AND MARTIAL HEBERT. Temporal
segmentation and activity classification from
first-person sensing. In the Proceedings of
the Computer Vision and Pattern Recognition
Workshop (CVPRW), 2009. — 27, 28

[131] ARDHENDU BEHERA, ANTHONY G. COHN,
AND DAVID C. HOGG. Workflow Activ-
ity Monitoring Using Dynamics of Pair-Wise
Qualitative Spatial Relations. Advances in
Multimedia Modeling, 2012. — 27

[132] FABIAN NATER, HELMUT GRABNER, AND

LUC VAN GOOL. Unsupervised workflow dis-
covery in industrial environments. In the Pro-
ceedings of the Workshops of the International
Conference on Computer Vision (ICCV Work-
shops), 2011. — 27

[133] F VANDEWIELE AND C MOTAMED. An unsu-
pervised learning method for human activity
recognition based on a temporal qualitative
model. In the Proceedings of the International
Workshop on Behaviour Analysis and Video Un-
derstanding, 2011. — 27

[134] OREN BOIMAN AND MICHAEL IRANI. De-
tecting irregularities in images and in video.

187

http://dl.acm.org/citation.cfm?id=985051
http://dl.acm.org/citation.cfm?id=985051
http://www.sciencedirect.com/science/article/pii/S0957417412012134
http://www.sciencedirect.com/science/article/pii/S0957417412012134
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1492773
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1492773
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1492773
http://dspace.mit.edu/handle/1721.1/7442
http://dspace.mit.edu/handle/1721.1/7442
http://dl.acm.org/citation.cfm?id=142834
http://dl.acm.org/citation.cfm?id=142834
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5598613&contentType=Conference+Publications&queryText=harald+wuest
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5598613&contentType=Conference+Publications&queryText=harald+wuest
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5598613&contentType=Conference+Publications&queryText=harald+wuest
http://doi.apa.org/getdoi.cfm?doi=10.1037/1076-898X.9.2.88
http://doi.apa.org/getdoi.cfm?doi=10.1037/1076-898X.9.2.88
http://www.tandfonline.com/doi/abs/10.1080/15248370709336996
http://www.tandfonline.com/doi/abs/10.1080/15248370709336996
http://www.tandfonline.com/doi/abs/10.1080/15248370709336996
http://www.sciencedirect.com/science/article/pii/S0010027707001837
http://www.sciencedirect.com/science/article/pii/S0010027707001837
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5204354&contentType=Conference+Publications&queryText=temporal+segmentation+and+activity+classification+from+first-person+sensing
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5204354&contentType=Conference+Publications&queryText=temporal+segmentation+and+activity+classification+from+first-person+sensing
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5204354&contentType=Conference+Publications&queryText=temporal+segmentation+and+activity+classification+from+first-person+sensing
http://www.springerlink.com/index/X2108K077U026533.pdf
http://www.springerlink.com/index/X2108K077U026533.pdf
http://www.springerlink.com/index/X2108K077U026533.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6130482 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6130482&contentType=Conference+Publications&queryText=nater+unsupervised
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6130482 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6130482&contentType=Conference+Publications&queryText=nater+unsupervised
http://hal.inria.fr/inria-00624367/
http://hal.inria.fr/inria-00624367/
http://hal.inria.fr/inria-00624367/
http://hal.inria.fr/inria-00624367/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1541291&contentType=Conference+Publications&searchField=Search_All&queryText=Detecting+irregularities+in+images+and+in+video http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1541291
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1541291&contentType=Conference+Publications&searchField=Search_All&queryText=Detecting+irregularities+in+images+and+in+video http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1541291


REFERENCES

In the Proceedings of the International Confer-
ence on Computer Vision (ICCV), pages 462–
469 Vol. 1, 2005. — 27

[135] RAMA CHELLAPPA, NARESH P. CUNTOOR,
SEONG-WOOK JOO, V. S. SUBRAHMANIAN,
AND PAVAN TURAGA. Computational Vision
Approaches for Event Modeling. In T F SHIP-
LEY AND J M ZACKS, editors, Understanding
events - From Perception to Action, pages 473–
521. Oxford University Press, Oxford, 2008. —

27

[136] MASAKAZU MATSUGU, MASAO YA-
MANAKA, AND MASASHI SUGIYAMA.
Detection of activities and events without
explicit categorization. In the Proceedings of
the Workshops of the International Conference
on Computer Vision (ICCV Workshops), pages
1532–1539, November 2011. — 27

[137] H. KATO AND M. BILLINGHURST. Marker
tracking and HMD calibration for a video-
based augmented reality conferencing sys-
tem. In the Proceedings of the International
Workshop on Augmented Reality (IWAR), 1999.
— 28

[138] STEVE BOURGEOIS, HANNA MARTINSSON,
QUOC-CUONG PHAM, AND SYLVIE NAUDET.
A practical guide to marker based and hy-
brid visual registration for AR industrial ap-
plications. In Computer Analysis of Images and
Patterns Proceedings, 2005. — 28

[139] GABRIELE BLESER AND DIDIER STRICKER.
Advanced tracking through efficient image
processing and visual-inertial sensor fusion.
Computer & Graphics, 33:59–72, 2009. — 28

[140] GABRIELE BLESER AND GUSTAF HENDEBY.
Using optical flow for filling the gaps in
visual-inertial tracking. In European Signal
Processing Conference (EUSIPCO), 2010. —

28

[141] GEORG KLEIN AND DAVID MURRAY. Par-
allel Tracking and Mapping for Small AR

Workspaces. In the Proceedings of the Inter-
national Symposium on Mixed and Augmented
Reality (ISMAR), 2007. — 28, 31, 51

[142] WEI TAN, LIU HAOMIN, ZILONG DONG,
GUOFENG ZHANG, AND HUJUN BAO. Ro-
bust Monocular SLAM in Dynamic Environ-
ments. In the Proceedings of the International
Symposium on Mixed and Augmented Reality
(ISMAR), 2013. — 28, 31

[143] ALESSANDRO MULLONI, MAHESH RA-
MACHANDRAN, GERHARD REITMAYR,
DANIEL WAGNER, RAPHAEL GRASSET, AND

SERAFIN DIAZ. User Friendly SLAM Initial-
ization. In the Proceedings of the International
Symposium on Mixed and Augmented Reality
(ISMAR), 2013. — 28

[144] CHRISTIAN PIRCHHEIM, DIETER SCHMAL-
STIEG, AND GERHARD REITMAYR. Handling
Pure Camera Rotation in Keyframe-Based
SLAM. In the Proceedings of the International
Symposium on Mixed and Augmented Reality
(ISMAR), 2013. — 28, 32

[145] RICHARD A. NEWCOMBE, SHAHRAM IZADI,
OTMAR HILLIGES, DAVID MOLYNEAUX,
DAVID KIM, ANDREW J. DAVISON, PUSH-
MEET KOHLI, JAMIE SHOTTON, STEVE

HODGES, AND ANDREW FITZGIBBON.
KinectFusion: Real-Time Dense Surface
Mapping and Tracking. In the Proceedings
of the International Symposium on Mixed and
Augmented Reality (ISMAR), 2011. — 28, 31

[146] A. GEE AND W. MAYOL-CUEVAS. 6D Re-
localisation for RGBD Cameras Using Syn-
thetic View Regression. In the Proceed-
ings of the British Machine Vision Conference
(BMVC), 2012. — 28, 31

[147] BEN GLOCKER, SHAHRAM IZADI, JAMIE

SHOTTON, AND ANTONIO CRIMINISI. Real-
Time RGB-D Camera Relocalization. In the
Proceedings of the International Symposium on

188

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4538852&contentType=Conference+Publications&queryText=G.+Klein+and+D.+Murray.+Parallel+tracking+and+mapping+for+small+AR+workspaces
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4538852&contentType=Conference+Publications&queryText=G.+Klein+and+D.+Murray.+Parallel+tracking+and+mapping+for+small+AR+workspaces
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4538852&contentType=Conference+Publications&queryText=G.+Klein+and+D.+Murray.+Parallel+tracking+and+mapping+for+small+AR+workspaces


REFERENCES

Mixed and Augmented Reality (ISMAR), 2013.
— 28

[148] RONALD POPPE. A survey on vision-based
human action recognition. Image and Vision
Computing, 2010. — 28

[149] Y. TSUBUKU, Y. NAKAMURA, AND Y. OHTA.
Object tracking and object change detection
in desktop manipulation for video-based in-
teractive manuals. In Advances in Multimedia
Information Processing, 2004. — 28

[150] D. DAMEN, P. BUNNUN, A. CALWAY, AND

W. MAYOL-CUEVAS. Real-time Learning
and Detection of 3D Texture-less Objects: A
Scalable Approach. In the Proceedings of the
British Machine Vision Conference (BMVC),
2012. — 28

[151] D. DAMEN, A. GEE, W. MAYOL-CUEVAS,
AND A. CALWAY. Egocentric Real-time
Workspace Monitoring using an RGB-D
Camera. In the Proceedings of the Inter-
national Conference on Intelligent Robots and
Systems (IROS), 2012. — 28

[152] MARKUS MIEZAL, GABRIELE BLESER, AND

DIDIER STRICKER. Towards practical inside-
out head tracking for mobile seating bucks.
In the Proceedings of the Workshop on Track-
ing Methods and Application during the Inter-
national Symposium on Mixed and Augmented
Reality (ISMAR Workshops), 2012. — 28, 29

[153] NICOLAS VIGNAIS, MARKUS MIEZAL,
GABRIELE BLESER, KATHARINA MURA,
DOMINIC GORECKY, AND FRÉDÉRIC MARIN.
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