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Abstract Contextual policy search is a reinforcement

learning approach for multi-task learning in the con-

text of robot control learning. It can be used to learn

versatilely applicable skills that generalize over a range

of tasks specified by a context vector. In this work, we

combine contextual policy search with ideas from ac-

tive learning for selecting the task in which the next

trial will be performed. Moreover, we use active train-

ing set selection for reducing detrimental effects of ex-

ploration in the sampling policy. A core challenge in

this approach is that the distribution of the obtained

rewards may not be directly comparable between dif-

ferent tasks. We propose the novel approach PUBSVE

for estimating a reward baseline and investigate empir-

ically on benchmark problems and simulated robotic

tasks to which extent this method can remedy the is-
sue of non-comparable reward.

Keywords Contextual Policy Search · Multi-task

Learning · Active Learning

1 Introduction

An artificial system situated in a complex real world

environment which is supposed to act autonomously
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on a long-term mission will necessarily be confronted

with situations that have not been foreseen at its de-

sign time. Thus, a means for adapting to such unfore-

seen situations is a vital component for any long-term

autonomous systems. One of the most promising tech-

nical means for this is machine learning, which allows

learning and adapting models of the system and its en-

vironment, acquiring and improving system behaviors

and control policies, and detecting anomalies and sys-

tem failure. However, learning in an autonomous sys-

tem cannot be divided into a training and a deploy-

ment phase since this would limit the system’s capabil-

ity of adapting to unforeseen situations. Thus, machine

learning in long-term autonomous systems needs to be

a “lifelong learning” approach [17,22].

In contrast to classical offline, batch machine learn-

ing, where the goal of learning is to derive inductively

prediction and decision rules from a fixed, often manu-

ally curated training set for a clearly defined problem,

lifelong learning imposes additional challenges: (1) due

to possibility of unforeseen situations, the problem do-

main is not clearly defined and the system needs to be

able to facilitate transfer of learned knowledge from ex-

pected to unexpected situations. (2) An autonomous

system must not rely on an externally curated training

set since the necessity to learn might arise in situa-

tions where no external help or teacher is available. (3)

The system must be able to store, reuse, and combine

learned knowledge such that it can efficiently address

novel situations. We consider transfer and multi-task

learning approaches as suitable approaches to challenge

(1) and active learning as promising approach to chal-

lenge (2). Challenge (3) might be addressed by hierar-

chical learning approaches.

In this work, we focus on robot control learning,

specifically its active and multi-task learning aspects.
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We present a review of works in Section 2. In Section 3,

we propose the novel approach PUBSVE for addressing

a challenge arising in multi-task control learning: the in-

commensurability of performance in different tasks. In

Section 4, we present empirical evidence that this ap-

proach can improve the stability of multi-task control

learning methods by allowing to select the training set

of the policy update. Section 5 presents results indicat-

ing that PUBSVE can also improve the performance of

active multi-task control learning.

2 Review of Active Multi-Task Control

Learning

Thrun and Schwartz [21] suggested the notion of life-

long learning in the context of supervised learning for

object recognition. In lifelong learning, a learner expe-

riences a sequence of different but related tasks. Due to

this relatedness, learned knowledge can be transferred

across multiple learning tasks, which can allow general-

izing more accurately from less training data. The con-

cept of lifelong learning was extended to RL by, e.g.,

Sutton, Koop, and Silver [19] and by Ring [13] under

the term “continual learning”. Two important aspects

of lifelong learning, on which we focus in this work, are

multi-task/transfer learning and active learning.

Multi-task and transfer learning in robot control

learning is based on the idea that a control policy can

be represented hierarchically, for instance in a combi-

nation of a lower-level policy and an upper-level pol-

icy. The lower-level policy, e.g., a dynamical movement

primitive (DMP) [4], typically encodes a behavior for a

specific task in a parameter vector while the upper-level

policy encodes a mapping from task to a parametriza-

tion of the lower-level policy. Two different kinds of ap-

proaches for learning such a two-layer, hierarchical pol-

icy have been proposed; namely transfer-learning ap-

proaches, where the two layers are learned consecu-

tively, and multi-task learning approaches, where both

layers are learned jointly.

One transfer learning approach was proposed by da

Silva [16]. In this approach, the PoWER [5] method is

used to learn near-optimal low-level policies for each of

a set of tasks separately. Based on this, a training set is

constructed, which consists of parameters for the near-

optimal low-level policies in different tasks. Thereupon,

a regression algorithm is used to infer a determinis-

tic upper-level policy, the so-called parameterized skill,

which generalizes over the entire task space. The au-

thors considered the problem of simulated dart throw-

ing and observed that this domain has the additional

challenge of discontinuities in the mapping from task

parameters to meta-parameters of the policy.

A disadvantage of this approach is that transfer is

only possible once a set of near-optimal low-level poli-

cies have been learned. In contrast, multi-task learn-

ing approaches try to achieve positive transfer between

tasks already for suboptimal low-level policies and be

more sample-efficient accordingly. One such approach is

cost-regularized kernel regression (CrKR) [6], in which

a non-parametric upper-level policy is learned based

on cost-regularized regression. CrKR has been used to

learn throwing movements as well as table tennis. An-

other algorithm that can be used to learn the upper-

level policy is contextual relative entropy policy search

(C-REPS) [8]. REPS [12] is an information-theoretic

approach to policy search, which aims in each itera-

tion at maximizing the expected return of the new pol-

icy while bounding the Kullback-Leibler divergence be-

tween this new policy and the policy from which the

training data has been sampled. Bounding this diver-

gence enforces that the new policy is not too differ-

ent from the data generating policy as large changes of

the policy could for instance be dangerous in a robotic

setting. C-REPS is an extension of this approach to

the multi-task learning scenario. A further alternative

is Variational Inference for Policy Search (VIP) [11],

which is also based on the Kullback-Leibler divergence

but is cost-averse rather than reward-attracted and can

thus deal better with multi-modal or non-concave tar-

get distributions.

An interesting extension of transfer and multi-task

learning is a combination with active learning [14]. In

this context, active learning refers to a setting where the

agent can select autonomously in which task it would

like to perform the next trial during learning rather
than being confronted with an externally selected task.

This has the advantage that the agent might focus on

tasks in which its current performance is suboptimal

but it is confident that it may improve its performance

by further experience.

Da Silva et al. [15] proposed an extension of their

parameterized skill approach with a novel criterion for

skill selection. In this criterion, the performance in a

task is modeled using Gaussian process regression with

a spatiotemporal kernel which addresses the inherent

non-stationarity of tracking the skill performance. The

next task is chosen based on this estimate of the task

performance such that the maximum expected improve-

ment in this tasks performance would be obtained if the

outcome of learning this task is assumed to be an opti-

mistic upper bound.

Recently, Fabisch and Metzen proposed an active

approach for multi-task learning [2], which is based on

heuristically optimizing the expected learning progress.

For this, different proxies of the learning progress are
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defined and non-stationary multi-armed bandit learn-

ing is used for task selection based on an intrinsic re-

ward that is related to this learning progress proxies.

An important yet largely unexplored issue in active

multi-task robot control learning is the incommensura-

bility of performance in different tasks, i.e., how a learn-

ing system can account for the relative (unknown) diffi-

culty of a task: for instance, if a relatively small reward

is obtained when executing a specific low-level policy

in a task, is it because the low-level policy is not well

adapted to the task or because the task is inherently

more difficult than other tasks? Giving a principled an-

swer to this question promises performance gains in ac-

tive multi-task learning. We present one approach for

estimating the task-difficulty in the next section.

3 Estimating Task Difficulty

In this section, we introduce contextual policy search

more formally and discuss the issue of task incommen-

surability. We then outline an approach to make the

rewards obtained in different tasks comparable by es-

timating an upper bound and a typical value of the

possible rewards in different contexts.

3.1 Contextual Policy Search

A probabilistic formulation of contextual policy search

has been presented by Deisenroth et al.[1]; however, in

this work, we restrict ourselves to deterministic, uni-

modal, continuous upper-level policies π : S 7→ A,

where S ⊆ RM is the space of contexts, where we

use the terms context and task interchangeably, and

A ⊆ RN is the feasible set of, e.g., lower-level policy

parameters or actions. In this setting, contextual pol-

icy search can be considered as a contextual function

optimization problem:

π(s) = arg max
a∈A

E{r(s,a)},

where E{r(s,a)} is the expected reward for a in con-

text s. Thus, we are looking for π that generates an

optimal a ∈ A for a specific context s. In practice,

a close-to-optimal a is sufficient. Contextual function

optimization can be regarded as a family of standard

optimization problems parametrized by the context pa-

rameter.

Samples (s,a, r(s,a)) are required for contextual

policy search to update the estimate of π, i.e. we per-

form trials by testing parameters a in context s and

observing the corresponding reward r(s,a). Popular

approaches are based on cost-regularized regression [6]

or weighted maximum likelihood [8]. These algorithms

internally weight samples based on obtained rewards:

higher rewards result in higher weights. An issue with

this approach is that rewards are often incommensu-

rable between contexts: the maximum reward value in

one context could be far from optimal in an other con-

text. Algorithms like C-REPS [8] learn a baseline, which

maps contexts to a “typical” reward level to make re-

wards comparable. What is considered a typical reward

level depends on an additional temperature parame-

ter and the amount of exploration of the agent. A re-

lated issue arises in active contextual policy search, in

which the learning agent can actively control in which

contexts additional samples for the policy update are

acquired. As proposed by Fabisch and Metzen [2], per-

forming trials in contexts in which the learning progress

is comparatively large can speed up contextual policy

search. As the learning progress is related to an increase

in reward, the issue of incommensurable rewards needs

to be addressed in such an active learning approach as

well.

In the following, we propose a novel approach for

addressing task incommensurability. This approach al-

lows to estimate an upper boundary of the achievable

reward and a typical reward range and thus, allows to

make rewards comparable by normalizing them. We can

then use these normalized rewards for weighting experi-

ence samples in the policy update (see Section 4) and to

identify contexts in which we can make greater learning

progress (see Section 5).

3.2 Positive Upper Boundary Support Vector

Estimation

We are given a set of observations D = {(si, ri)}ni=1.

We assume that ri depends on si via ri = V (si) − ei,
where ei is some noise term. In contrast to standard

regression problems, we assume ei ≥ 0, i.e., we always

observe values ri which are less than or equal to the

true function value V (si). This model is appropriate for

instance when V (si) is a value function, that is when it

returns the maximum reward possible in a context si,

i.e., V (si) = maxa∈A r(si,a), and ri = r(si,ai) are the

actual, noise-free rewards obtained by a learning agent

which often selects suboptimal ai.

We are interested in inferring the function V from

observations D, i.e., learn an estimate V̂ of V . One nat-

ural constraint on the estimate is that V̂ (si) ≥ ri, i.e.,

V̂ shall be an upper boundary on D. Since this con-

straint does not uniquely determine the estimate, we

add two additional objectives: (a) V̂ should be smooth,

i.e., similar inputs s1 ≈ s2 should have similar values

V (s1) ≈ V (s2). (b) V̂ should be less or equal to V , i.e.,
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it should be a pessimistic estimate with a bias towards

too small values. Since V corresponds to the value of

the optimal policy, the current policy will always ob-

tain rewards smaller or equal to V and a pessimistic

estimate V̂ will necessarily be closer to the level of per-

formance of the current policy than a too optimistic

estimate with the same overall error |V − V̂ |.
Since a linear model of V̂ is often too restrictive,

we use a non-parametric, kernelized model for V̂ , e.g.,

V̂ (s) = b+
∑n

i=1 αik(si, s) with offset b and RBF ker-

nel k(si, sj) = exp(−γ||si − sj ||2) for bandwidth γ.

This model allows both a very smooth (constant) upper

boundary by setting αi = 0 and b ≥ maxi′ yi′ and a very

pessimistic upper boundary for large γ and small b. We

propose now a new method, the positive upper bound-

ary support vector estimation (PUBSVE), for learning

such a model of the upper boundary. Without loss of

generality we assume that all ri are positive (because

we subtract mini′ ri′ for normalization). This implies

that b ≥ 0. The PUBSVE has the following objective

min
α,b

1

2

∑
i,j

αiαjk(si, sj) +
H

2
b2

subject to: b+
∑
j

αjk(si, sj) ≥ ri ∀i .

H is a hyperparameter which allows to handle the

trade-off between a very pessimistic upper boundary

(b→ 0 when H →∞) and a constant upper boundary

(b → maxi′ ri′ and α → 0 when H → 0). Typically,

H = 100� 0 gives good results empirically and is used

in our experiments. The RBF’s bandwidth γ controls

the generalization between similar data: the greater γ

is the less similarity between similar inputs is assumed

and the more local will be the generalization. The model

has similarities to support vector machines and allows

to use related implementation techniques [9,18]. Fur-

ther details are provided by Krell [7].

3.3 Incremental Reward Normalization

In this section, we describe how PUBSVE allows to

normalize the obtained reward: for a given context s,

we map the PUBSVE prediction V̂ (s) onto 1 and the

context’s typical reward level r̃(s) onto 0. This can

be achieved via ri = ri−r̃(si)
V̂ (si)−r̃(si)

. Estimating a lower

boundary on the rewards cannot be performed anal-

ogously to estimating an upper boundary since con-

textual policy search tries to avoid sampling regions of

small reward and in some problems, no lower bound-

ary exists. For that reason, we normalize rewards based

on their estimated typical reward level r̃(s) obtained

Iteration 1

Iteration 2

Iteration 3

s
r

Iteration 4

Fig. 1 Four iterations of the incremental learning of upper
boundary V̂ (solid line) and medium reward level r̃ (dashed
line): for each update of the PUBSVE, the new samples (black
dots) and the support vectors of PUBSVE from the previous
iteration (highlighted by large circles) are used as training set.
All previous samples that are not used for the incremental
training are displayed as small crosses. r̃ is learned using an
SVR on the whole data. New samples are drawn uniform
randomly from the white background area.

from a standard support vector regression (SVR) model

trained on D. The reason for using SVR is that it is rel-

atively robust to outliers.

Since the PUBSVE needs to be updated once new

samples arrive, an incremental training procedure is de-

sirable. For this, instead of training the PUBSVE on

the whole set D = {(si, ri)}ni=1, we can update it incre-
mentally [20], where we forget every old example (si, ri)

except the support vectors si with αi > 0, collect new

samples, and use the new samples and the retained sup-

port vectors to update V̂ . Note that this heuristic does

not guarantee that the same results are obtained as in

the non-iterative PUBSVE; however, it provides good

results in practice. For the SVR model, we don’t per-

form an incremental update but keep the computational

cost limited by subsampling the set D to a size of 5000.

An illustration of this approach is given in Figure 1.

4 Training Data Selection

Contextual policy search methods like C-REPS perform

a search through the space of policies where updates of

the policy are done such that one moves in the direc-

tion of increasing expected return while, at the same

time, bounding the loss of information (measured using

relative entropy) between the observed data distribu-
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tion and the data distribution generated by the new

policy [12]. Bounding the information loss results effec-

tively in “small steps” in the policy space and avoids

that a large step is taken into an unknown area of the

policy space, which might contain policies whose exe-

cution is dangerous for a robot.

It remains to define the observed data distribution.

Possible choices are the samples drawn from the last

policy or from the last K policies [1]. The former choice

has the disadvantage that all prior experience not gen-

erated by the last policy is effectively “forgotten” and

the latter choice typically slows down learning initially

as the new policy is enforced for K iterations to stay

close to the data generated by the initial policies, which

are typically behaving badly and strongly exploratory.

In principle, it would be appealing if the old data dis-

tribution would consist of the “best” samples from the

entire history as this enforces the new policy to stay

close to what has worked well in the past. Note that

one potential risk of this strategy is premature conver-

gence to local optima; it is thus important to maintain

a sufficient level of exploration.

As discussed above, the main challenge for deter-

mining the “best” samples is the incommensurability

of rewards in different contexts. Fabisch and Metzen [2]

proposed an approach to a simplified setup, in which

only a discrete set of K contexts exists, by storing the

best N/K obtained rewards for each context and use

these for the update of the upper-level policy, where

N is the number of examples for each update. As the

method proposed in Section 3.2 allows to make the re-

wards from different contexts comparable, we can now

extend this training data selection to continuous con-

text spaces by selecting the training examples with the

highest normalized reward for training. However, to

avoid premature convergence and to be more robust

to errors in the estimate V̂ , we suggest to use a soft-

max for training set selection instead of the maximum,

which means that each of the samples (si,ai, ri) that

we observed will be selected with probability

p(si,ai, ri) =
exp(τri)∑
j exp(τrj)

,

where τ = 10 in our experiments and ri is the normal-

ized reward (see Section 3.3). We call the combination

of C-REPS with this active training set selection ap-

proach aC-REPS. We compare standard C-REPS and

aC-REPS in the following sections.

4.1 Benchmark Function

We evaluate both standard C-REPS and aC-REPS on a

benchmark function. The solution π of the benchmark

is a quadratic function and the upper reward boundary

V is quadratic as well.

The contextual optimization objective is defined in

terms of a function f from the BBOB testbed [3]:

r(a, s) = −f(a) +
1

10M
sTV s, −5 ≤ ai ≤ 5.

The parameters W 1, . . . ,WN ∈ RM×M ,V ∈ RM×M ,

and b1 . . . , bN ∈ R are generated randomly and scaled

so that all context-dependent optima are within [−5,5].

The optimum of the benchmark function depends on

the context via aopt,i(s) = 1
100M s

TW is + bi. In the

following evaluation, we use the Rastrigin function f3
from the BBOB testbed as f . The contextual objective

function as well as the optimal π and a non-optimal

solution are displayed in Figure 2 (a).

We use 200 samples for each policy update and set

the minimum allowed temperature η to 10−8; more-

over, we employ quadratic features of the context for

the linear upper-level policy, bound the output of the

upper-level policy to the interval [−5, 5], and initialize

the upper-level policy such that it generates zeros for all

inputs. The parameter γ for the kernels of the bound-

ary estimations is set to 10d, where d is the average

distance of the training contexts. The specific choice is

often not critical as long as it does not make the model

too smooth. We are looking for a configuration that is

stable on the one hand and fast on the other hand. To

guarantee both, we select critical parameters by a grid

search so that the performance after 5,000 episodes is

optimized. There are two critical parameters of (a)C-

REPS that have to be selected: the number of episodes

between policy updates (options: 50, 100, 200) and the

upper limit ε on the allowed Kullback-Leibler diver-

gence between successive search distribution (options:

0.1, 0.2, 0.5, 1, 2).

We perform 50 runs with 10,000 episodes. The learn-

ing curves are displayed in Figure 2 (b). We can see that

both methods reach a similar optimum but the active

training set selection (“aC-REPS”) is much faster in

the beginning. There are configurations of C-REPS that

reach the optimum similarly fast but these are unsta-

ble so that the algorithm diverges after finding a good

solution.

4.2 Catapult Domain

The catapult benchmark problem has been introduced

by da Silva et al. [15]. It is shown in Figure 3 (a). The

goal is to learn an upper-level policy that generates ap-

propriate actions ai, consisting of the angle θi ∈ [0, π/2]

and velocity vi ∈ [5, 10] of the catapult’s shot, such that

a specific target-position, the context si ∈ [2, 10], is hit.
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(a) Rastrigin
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Fig. 2 (a) Contextual Rastrigin function. The function value
is indicated by the background color. (b) Learning curves for
standard C-REPS (update after 200 episodes, ε = 1) and
aC-REPS (update after 100 trials, ε = 2). The 3 lines corre-
spond to the quartiles.

The target surface is unknown to the agent, which re-

quires him to learn by trial-and-error. The reward of a

trial is computed as ri = −|si − sh| − 0.5vi, where sh
is the position that was actually hit. Because certain

target positions such as those behind the top of a hill

are more challenging than others, the rewards obtained

in different contexts are not directly comparable.

We use 200 samples for each policy update and set

the minimum allowed temperature η to 10−8; moreover,

we employ a Nyström approximation [23] of an RBF

kernel with γ = 10−5 and 10 components as context

features for the linear upper-level policy and initialize

the upper-level policy such that it generates velocity 7.5

and angle π/4 for each context. The optimum parame-

ter configuration is determined after 7,500 episodes sim-

ilar to Section 4.1.

We perform 50 runs with 15,000 episodes. We found

that aC-REPS is more robust with respect to parameter

configuration which we demonstrate with a Wilcoxon

signed-rank test in Table 3 (b). This property is de-

(a) Catapult

0 2 4 6 8 10
Target

(b) Comparison of (a)C-REPS after 7,500 episodes

ε 0.1 0.2 0.5 1 2

Update after 50 samples + + + + o
Update after 100 samples + + + + o
Update after 200 samples + + o o o

(c) Learning curves
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Fig. 3 (a) Illustration of the catapult problem: the objective
is to shoot an object from a catapult situated at position
0 such that it hits a pre-specified target position s. Several
example trajectories are shown. (b) Comparison of aC-REPS
and C-REPS for several configurations with Wilcoxon signed-
rank test. “+” means aC-REPS is significantly better and “o”
means the difference is not significant. (c) Learning curves
for standard C-REPS (update after 200 episodes, ε = 0.5)
and aC-REPS (update after 200 trials, ε = 0.2). The 3 lines
correspond to the quartiles.

sirable for learning e.g. with robots because we would

otherwise require a lot of episodes to find the optimum

configuration. The learning curves in Figure 3 (c) show

that both variants of C-REPS improve initially; how-

ever, the best configuration of standard C-REPS is not

as reliable as aC-REPS because there are some runs

that do not improve beyond a moderate level of perfor-

mance. aC-REPS does not exhibit this problem.

4.3 Ball Throwing

We use the simulated arm of the robot Artemis [10]

(see Figure 4 (a)) with 6 degrees of freedom to gener-

alize a throwing movement over a target area on the

ground. The targets are drawn from s ∈ [−3, 3]× [3, 6].

We use a dynamical movement primitive (DMP) as de-
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(a) Artemis robot arm

(b) Learning curves
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Fig. 4 (a) Artemis robot arm. (b) Learning curves for stan-
dard C-REPS (update after 200 trials, ε = 2) and aC-REPS
(update after 50 trials, ε = 2). The 3 continuous lines cor-
respond to the quartiles. The dashed lines correspond to the
best values over all runs.

fined by Ijspeert et al. [4] with an execution time of

200 ms, a control frequency of 250 Hz, and 10 basis func-

tions per dimension to generate the throwing motion

in joint space. The ball is attached to the end-effector

and is released after 140 ms. An initial throwing mo-

tion, which throws into the middle of the target area,

has been learned with standard REPS [12]. Only the 60

weights of the DMP are to be adapted.

Each policy update is based on 200 samples and

the minimum value allowed for η is 10−8. We employ

quadratic features of the context. The optimum con-

figurations are determined with grid search so that we

optimize the performance after 7,500 episodes.

In the experiment, we perform 30 independent runs

and 15,000 episodes per run. Figure 4 (b) shows the

results of the experiment: while aC-REPS learns good

policies fast and reliably, standard C-REPS is slower

and less reliable which is consistent to the results of

Sections 4.1 and 4.2.

5 Active Task Selection

In a setting in which the agent is able to actively se-

lect the contexts that it explores, selecting each con-

text randomly or equally often is not necessarily the

optimal strategy because some contexts might be eas-

ier to learn at the beginning and the knowledge that the

agent can extract from these contexts can be transferred

to similar but more difficult contexts later on. Fabisch

and Metzen [2] proposed a solution for the context-

selection problem by modeling it as a non-stationary

multi-armed bandit problem (MABP) with custom in-

trinsic reward heuristics that approximate the learning

progress.

Some of the evaluated intrinsic reward heuristics use

a baseline to estimate the learning progress so that it

is comparable between different contexts. This baseline

can be an estimate of the upper boundary of the reward

in the corresponding context; for instance, the mono-

tonic progress heuristic computes the learning progress

depending on the maximum of the previous rewards b

as max(0, r(s,a) − b). We can now replace b by V̂ (s).

Note that we have to select a set of training contexts

in this approach.

We compare the active context selection method

that has been proposed by Fabisch and Metzen [2], us-

ing the monotonic progress heuristic and the estimate

of the upper reward boundary V̂ (s) as baseline, with

context selection in a fixed order (“Round Robin”) in

the catapult domain. We use the same parameters for

C-REPS as in Section 4.2, ε = 2, and the parameters

γ = 0.99, B = 10, and ξ = 10−4 for the context selec-

tion method. The result is displayed in Figure 5. 100

runs with 50 updates are performed and 200 samples

are used for each update. The learning curve shows the

mean and the standard error over all 100 runs.

We can see that initially, both approaches perform

about equal, but in the long run, active context se-

lection learns slightly better policies. Closer inspection

shows that these policies are better primarily in the

more difficult context behind the hill at s = 5. This

can be explained by the observation that active con-

text selection focuses more on improving in this area

since it is still possible to make progress here.

6 Conclusion and Outlook

We have proposed the novel approach PUBSVE for ad-

dressing the incommensurability of rewards in multi-

task learning with tasks of different difficulty. This ap-

proach can be employed in contextual policy search and

achieves more robust and faster learning by allowing to

select high quality data for the policy update and to se-

lect the task of the next trial actively. Potential future

work might employ manifold learning approaches to ad-

dress situations in which policy and value function are

non-smooth. Moreover, active contextual policy search
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(b) Context-dependent performance
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Fig. 5 Comparison of round-robin and active context selec-
tion in catapult benchmark (see Figure 3 (a)). (a) Learning
curve. It can be seen that active context selection achieves
lower error in the long run. (b) Error of learned policy
in different contexts. Active context selection focuses more
strongly on hard contexts (s ∈ [5, 7] correspond to targets
behind a hill and s ≈ 10 are difficult because of the RBF-
based policy.)

algorithms that do not require a discretization of the

context space are desirable. A combination of PUBSVE

with other contextual policy search algorithms such as

CrKR or VIP would also be worth investigation.
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