
ON-BOARD SIMULATOR FOR AUTONOMY ENHANCEMENT IN ROBOTIC SPACE
MISSIONS

Domı́nguez, Raúl1, Schwendner, Jakob1, and Kirchner, Frank2

1DFKI GmbH, Robotics Innovation Center, Robert-Hooke-Straße 1, 28359 Bremen, Germany
2DFKI GmbH, Robotics Innovation Center and University of Bremen, Robotics Research Group Robert-Hooke-Straße 5,

28359 Bremen, Germany

ABSTRACT

Space robotics missions are subjected to hard challenges
on deployment time and the higher the level of autonomy
the larger the magnitude of these difficulties. Its final be-
havior is always dependent of the current states of the
environment and of the system itself. In order to pro-
vide the required level of reliability, accurate predictions
of these behaviors is mandatory for planning. This docu-
ment proposes an approach based on the use of complex
simulations involving the models of the environment, of
the robot and of the whole control software as a tool to
provide this predictions and improve the available plan-
ners without modifying them internally. The approach
pursues affecting the planner’s behavior through differ-
ent external means (e.g. modification of it inputs, pa-
rameter adaptation) so that it will produce more reliable
solutions. An application for improving the efficiency of
a naive planner aiming to solve a salesman travel mission
scenario is presented. The connections between the dif-
ferent locations to visit are assumed by the planner to be
connected but the final scenario and the navigation lim-
itations of the robot do not allow the traverse of all the
paths. Through a simulation based on an aerial image the
valid paths are found and a plan is generated which is not
leading to a failure state.

Key words: On-Board Simulation, Internal Simulator,
Planning, Autonomy, Space Robotics, Validation, For-
ward Models.

1. INTRODUCTION

Space exploration demands robotic systems that perform
reliably and autonomously complex missions in unstruc-
tured environments (e.g. exploration of caves in Mars).
As the demands on autonomy increase, the complexity
of the software that control the robot does so, as well as
the physical complexity of the system. The combination
of these three factors: Behavioral, dynamical and envi-
ronmental complexity pose a hard challenge when aim-
ing for a reliable and intelligent system. A key factor for

achieving operational safety is the capacity of the sys-
tem to predict with realism the outcomes of its actions. It
is here proposed an approach in this direction based on
highly complex physical simulations in which it is pur-
sued to reproduce the whole system’s behaviors mirror-
ing as much as possible its real execution.

The concept of the Internal Simulator is present in cog-
nitive science theories to explain high level cognitive ac-
tivity (thinking)[Bar99, Hes12] . These theories have in-
spired robotics research where theories about imagina-
tion functions are proved functional[MH09] and useful.
On the other hand, Artificial Intelligence literature ex-
ists in which learning from an internal model and not
only from reality enhances efficiency [SB12] and appli-
cations of the same principle have been proposed in the
manipulation field [Mel88]. Some examples already exist
where on-board simulations are used in complex robotics
simulations of space missions [RmGA+14]. Though,
in the literature real missions applications with complex
robots are scarce. More applications are envisioned in our
group, mainly related to in operational safety and auton-
omy. Two crucial aspects in space missions because com-
munications might be impossible for long periods and er-
ror costs are very high.

An experiment aimed to point out is the capacity of the
Internal Simulator to improve available modules without
the need of human intervention is presented. In partic-
ular, the experiment shows two features that an Internal
Simulator can be useful for: efficiency enhancement and
design limitations overcoming.

In the experiment, a planner of a simulated robot will en-
hance its efficiency in solving a salesman problem with
non traversable paths. Initially, these non traversable
paths are assumed traversable by the planner and thus
proposed as valid solutions that fail at execution. The In-
ternal Simulator will use additional knowledge of the en-
vironment (a 2D overhead image of the area) to generate
and execute simulations of parts of the mission. Detect-
ing in advance the failures and avoiding them (see [VZ06]
for a similar experiment). Furthermore, the knowledge
obtained from the simulation will be integrated in a struc-
tured representation that will be integrated along the orig-
inal planner. Eventually, it will not be necessary to simu-

late in order to determine whether a path is traversable or
not.

Thanks to the advances in computer science and engi-
neering it is now feasible to integrate complex simulators
in the control software architectures of robotic systems.
Meanwhile, the physics simulation engines and the simu-
lation models are increasingly efficient and realistic. For
instance, models for terramechanics simulation is an ac-
tive research area in the field of space robotics. In this
work, it is aimed to study the applications that an on-
board simulator can have in space missions performed by
robotic systems. Reliability, efficiency and autonomy en-
hancement are some of the envisioned uses.

In Section 2 the ideas on how to integrate the tool in the
robotic controller are explained in detail. In Section 3
an illustrative experiment is presented in which a robotic
system enhances its chances to success on a navigation
mission thanks to the Internal Simulator. Finally Section
4 summarizes the most important ideas and explains the
next research objectives.

2. PROPOSED APPROACH

For introducing the concepts a first brief look on the cog-
nitive paradigm in which the Internal Simulator is intro-
duced from a functional point of view is presented. Then
in the Second part of this section a more close to robotics
engineering vision of the approach is provided.

2.1. Cognition and the Internal Simulator

The Internal Simulator is a high level tool, which can per-
form different tasks. In general, it brings robustness and
safeness to the system but it can also provide a tool for
learning new behaviors. Following the Levels of Behav-
ior model of cognition [KRS+12] (Figure 1), the Internal
Simulator takes the highest position, here the challenge
is to detect failures and limitations in the plans and the
models, explain them and apply this knowledge to im-
prove the system.

The cognitive hypothesis is that some intelligent behav-
ior is performed automatically, when for instance the task
is repetitive or known. But to achieve some tasks an ex-
pansion of this automatic thinking is often required and
there is where the Internal Simulator as highest cogni-
tive feature is used. Its task is to simulate acting, conse-
quences and furthermore learn to predict and adapt with
this knowledge the automatic thinking.

This idea is being brought to the field of space robotics.
The planners and models that the system uses for per-
forming a task must reduce the complexity of the space
of search (i.e. the environment model) to a computably
feasible one. Furthermore, they may not account with
the whole interaction of other components (e.g. reactive

Internal Simulator

Reward

Reaction

Decision

Perceptors Actuators

Model Policy
Reward

Figure 1: The Levels of Behavior Model is chosen as
the architectural paradigm upon which the modules of the
robotic system are presented. In this figure, the area out-
side the circle represents the environment.

behaviors). Thus, the space for possible failures in ex-
ecution time becomes large. On the other hand, simu-
lations can represent the reality and the robot itself with
its all complete behavior accurately but its computational
cost and the high dimensionality of the space of search
makes its use inefficient for planning. The Internal Sim-
ulator that is envisioned pursues to get the best from both
elements by validating the plans and performing only ex-
pensive simulations in the cases where the plan success is
not guaranteed.

2.2. Modular Robotics and the Internal Simulator

The Internal Simulator is therefore closely related to the
Planners, the Models and finally to the Environment rep-
resentation. This last component includes more informa-
tion than those present in the Models about the environ-
ment and the system itself but it would be impossible to
account with it all for real time planning in general. On
the other hand, when a limitation on the system is de-
tected some solution might be possible if the information
included in this environment were taken into account.

An Internal Simulator can affect the behavior of a planner
in several ways. Here we present an example in which by
changing the order of the goals, it is achieved the genera-
tion of valid solutions. Other manners in which an Inter-
nal Simulator could affect the planner is by modifying its
policies or by introducing non existing elements in the en-
vironment representation so that the generated models for
planning encode this artificial information (e.g. [CM09]).

For an Internal Simulator to provide useful results four
main requirements are identified:

• Generative: Capability to generate, from the exist-

ing information about the environment a simulation
environment.

• Executive: Capability to execute, based on the par-
ticular constraints of the mission to be validated, the
necessary simulations.

• Adaptive: Capability to alter the existing software
so that the information from the simulation can be
integrated in the execution loop.

• Supervisory: Capability to supervise the execution
of the mission either in real world and in simulation
to enable the detection of failures and successes,

Given these requirements the Internal Simulator provides
the tools to detect the regions in the space of possible
solutions generated by the running components which ei-
ther for limitations on the software side or hardware lim-
itations will not produce the desired results.

• Software that attempts solutions which can not be
physically executed.

• Software that attempts solutions which are not de-
sired by the designer.

• Software and hardware that generate an undesired
behavior.

• Hardware features that are not exploited by the soft-
ware and that are not desired.

• Hardware features that are not exploited by the soft-
ware and that are desirable.

3. EXPERIMENTS

The experimental results here presented were imple-
mented using the Rock, the Robot Construction Kit[Roc]
and the simulation environment Mars [Mar]. Rock is a
framework for programming and controlling robotic sys-
tems. It is based on the principle of having modular com-
ponents (i.e. tasks), each with an specific function that
are connected through ports. Mars is an application for
simulating robots and the environment where they are in-
mersed, it is integrated in the Rock framework but can
also be used independently. Mars internally uses Open
Dynamics Engine [ODE] for computing the physical in-
teraction between the components of the simulation.

To exemplify the potential capabilities of the approach, a
case of the classical salesman problem is presented. The
robot has the mission to visit certain positions of an un-
explored area, of which aerial imagery is available.

Figure 2: The experiment was performed with two robots
of different morphologies. In the picture the real and its
correspondent simulation are shown.

3.1. Robotic Systems

The experiments were performed with two simulated
robots. Both robots are equipped with a laser sensor for
environment perception. Crex robot is a 6 legs robots de-
signed for negotiating complicated surfaces such as caves
and crater surfaces. The Asguard robot has a combina-
tion of wheels and legs, that are more energy efficient
than legs and allows the traverse on more unstructured
surfaces than wheels (e.g. rocks surface).

The components that enable the robot to perform the
navigation task are depicted in the diagram in Figure 3.
The localization is performed in this experiment based
on odometry. There is no slam algorithm or global model
of the environment. The perception of the environments
is based on the data provided by a tilting laser sensor lo-
cated at the front part of each robots. The sensor pro-
duces a pointcloud from which a local traversability map
is built. This map is then converted to a grid upon which
the local planner plans a trajectory avoiding the obsta-
cles. The local trajectory pursues to follow the global
orientation which is a straight vector between the current
position and the target position.

The environment representation module uses data from
different sensors such as laser sensors and inertial mea-
surement units to generate a model of the environment.
This module also incorporates the geo-referenced aerial
image. The environment representation is used by differ-
ent tasks that generate models in which the planning al-
gorithms search for action chains in order to arrive to the
goal state. Furthermore, the Environment Representation
module includes external information about the environ-
ment where the mission will be performed. For this case

Local PlannerLocal Map

ActuatorsTilt Scan

IMU

Odometry

Laser Scanner Leg / Wheel JointsDynamixel

Environment
Representation

Global Map Global Planner

Goal Positions

Internal Simulator

Figure 3: Modules that control the navigation of the
robots. The Internal Simulator uses the Environment
Representation to generate the simulation environment.
The Internal Simulator overrides the goals input to the
global planner. In this way, only validated outputs will be
generated.

a post processed aerial image is available from which a
simulation can be generated (see Figure 4).

(a) Possible post processed aerial
image of the deployment sce-
nario. The stars represent the po-
sitions to visit. The circled one is
the start position. The gray areas
correspond to heightmaps.

(b) Automatically generated
simulation scene. In Mars[?]
this 3D object is used as terrain
object.

Figure 4: From the available information about the envi-
ronment, the Internal Simulator should generate a realis-
tic as possible simulation.

3.2. Problem Description

The goals are provided to the global planner which deter-
mines using a global model the global path to follow. The
limitation that is proposed here to overcome with the In-
ternal Simulator is one of the global model. This task as-
sumes that all paths are traversable but reality is different.
The system can get stuck in certain regions due to char-
acteristics of the environment not accounted in the design
of the model. In this particularly simplified case the most
repeated failures is that the robot arrives to a local min-
imum (dead end in the straight trajectory between two
points). Nevertheless other cases of failure have taken
place due to a not enough fine parametrization of some of
all the tasks (Figure 5).

(a) ASGUARD arrives to a Dead End Corridor. The Figure in the low
right part shows in green where the robot can plan to navigate. The
planner cannot find any trajectory towards the goal (yellow dot).

(b) CREX falls when walking down from a too high obstacle.

Figure 5: Two cases of failure. The first was caused by
limited environment model (5a). The second one due to
bad parametrization of the navigation components (5b).

3.3. Proposed Solution

The solution using the Internal Simulator is as follows.
First, all the potentially valid connections (paths) are sim-
ulated in both directions. This has to be done in both
directions because the failure might only occur when go-
ing from state i to j but not in the transition from j to
i. The Internal Simulator then executes a simulation of
the navigation of each path. The simulation is evaluated
and a cost for each path ci,j is assigned based on a cost
function Φ

ci,j = Φ(Σ(i, j)) | i 6= j and i, j ∈ S (1)

Where S is the set of states or in this case the subgoals,
ci,j the cost of going from state i to j. Σ(i, j) is the sim-
ulation of the execution of the transition from state i to
j and Φ, the function that evaluates the cost of the sim-
ulated execution. For simplicity, the cost can be set to
infinity for the plans which failed in simulation and to 1
for those which succeeded.

Φ =

{
1 if success
∞ otherwise (2)

Once all the simulations have been performed and eval-
uated, a Validation Graph G(S,C) is built. Where the
directed edges are denoted by

C = {ci,j} ∀i, j | i 6= j, i, j ∈ S and ci,j 6=∞ (3)

and the vertices correspond with S the states.

This graph can be used to find a validated solution using
a graph search algorithm. The solution is then executed.

In the generated Validation Graph, the nodes represent
the different initial and final points of a path (i.e. initial
and final states of the proposed plan). Each directed edge
encodes the cost of executing that particular path. The re-
sulting graphs after removing the edges with infinite cost
are directed graphs. In particular the graphs may contain
parts connected only with only one edge (i.e. either leav-
ing or arriving to them is impossible) and unconnected
components (i.e. unaccessible from other components)

In Figure 6 the graphs resulting from running the exper-
iments with both robots are presented. In both graphs
there is an unconnected node (16, 9). This is because no
execution was able to neither reach the subgoal from an-
other subgoal nor get from that node to any other. Assum-
ing that the start position is (7, 4.5), Asguard for robot it
is possible to visit all the subgoals with exception of the
one that correspond to the unconnected node. In the case
of Crex, two more states (i.e. subgoals) are unreachable
from the initial position. Those states are only connected
through an incoming path to the symmetric component
where the initial state is.

A comparison of the system with and without the Inter-
nal Simulator would show how, in this experiment the
robot would enter a failure state. One of the goals (16,
-9) is neither reachable from any of the other goal nor the
initial position. Thus, a global planner which assumes
that every two goals are reachable will fail in this specific
mission (independently of the policy of search). Further-
more, the failure could be critical because some of the
paths proposed will likely make the robot fall. The solu-
tion using the Internal Simulator will neither reach to all
the goals, but those paths which were found to generate
a failure in simulation won’t be executed increasing the
chances of reaching more goals.

4. CONCLUSIONS

In space robotics robustness while performing au-
tonomous missions is a crucial and hard problem. The
systems are deployed in an environment where they are

-16, 15

2.5, 15 7, 4.5

-15, -7

-2, -9

16, 15

16, -9

1
23

4
5

6

7
8

9

(a) Validated paths for the
wheeled robot ASGUARD.

-16, 15

2.5, 15 7, 4.5

-15, -7

-2, -9

16, 15

16, -9

1
2

3 4

5

(b) Validated Paths for the legged
robot CREX.

Figure 6: The Internal Simulator executes the plan gen-
erated between every two subgoals in both directions to
find out with paths are valid. The results are stored in a
directed graph. The numbers on the edges indicate vali-
dated solutions for the mission.

expected to work for long periods of time without main-
tenance. Ideally, the system would adapt its software to
the current physical reality and overcome previously un-
known design limitations. Autonomous adaptations, un-
known environments and changes in the physical robot
are potential sources of failures at execution time in space
missions. Validation of the system behavior in an On-
board simulation before execution is proposed to mini-
mize these problems.

The Internal Simulator will operate in close relation with
the planners, the environment representation and robot
representation. Using this information to pursue to pre-
dict where failures might occur. The challenges for an
effective Internal Simulator can be summarized into gen-
erative (i.e. realistic simulations production), evaluative
(i.e. performance supervision), executive (i.e. computa-
tional and time constraints) and adaptive (i.e. integrating
knowledge from the simulation). The Internal Simula-
tor is conceptually general enough to work with different
planners and in different time ranges (Prediction Hori-
zons in [RmGA+14]).

A simulation of an exploration mission is presented as
conceptual experiment to show the potential of the Inter-
nal Simulator. The robot must reach a set of goal points
given its 2D position in a non visited area. The system
has a serious limitation when attempting to execute the
mission: no global map is built. The global map only
contains the positions of the goals and the current posi-
tion of the robot and only the robot position updates on
execution. This map is used to generate straight trajecto-
ries towards the subgoals under the assumption that they
will be traversable. This assumption is often wrong and
the robot fails in execution time.

Assuming available a post processed aerial image of the

surface, it is presented how an Internal Simulator would
improve the behavior of the system. In the proposed solu-
tion, the final path through as many as possible subgoals
has to be obtained from a directed graph, which encodes
which sub plans have been validated by the Internal Sim-
ulator (Validation Graph).

This structure represents known states for the Internal
Simulator of the planner and whether its transition is ac-
tually prune to fail. The structure is then analyzed, in this
particular case to go generate a plan that passes through
as many nodes as possible as efficiently as possible. This
same structure could also be used for different tasks (e.g.
get to certain position as fast as possible). Furthermore,
it is appropriate to be used with any state based planner

The experiment aims to emphasize that an Internal Sim-
ulator to improve the behavior of an state based plan-
ner without modifying it by exploiting information of the
environment representation not accounted, analyzing the
executive features of the whole system (e.g. detect that
some transitions might fail due to inaccurate parametriza-
tion of subtasks)

In future works it is intended to improve the generative
capabilities of the Internal Simulator so that realistic sim-
ulations are generated automatically from the environ-
mental knowledge available and using the experiences of
the robots. The Internal Simulator will be tested with dif-
ferent real robots in scenarios that resemble challenges of
extraterrestrial missions (e.g. lava tubes). It is also envi-
sioned the use with other types of planners (e.g. manip-
ulation) or even combinations of various (e.g. navigate
and grasp).

It is envisioned a future were robots will be able to test
themselves and discover new strategies and behaviors
while reassuring the success of the missions.

ACKNOWLEDGMENTS

The Entern project is funded by the Space Agency of the
German Aerospace Center with federal funds of the Fed-
eral Ministry of Economics and Technology (BMWi) in
accordance with the parliamentary resolution of the Ger-
man Parliament, grant no. 50RA1407.

REFERENCES

[Bar99] Lawrence W Barsalou. Perceptual symbol
systems. Behavioral and Brain Sciences,
22(4):577–609; discussion 610–660, Au-
gust 1999.

[CM09] Antonio Chella and Irene Macaluso. The
perception loop in CiceRobot, a museum
guide robot. Neurocomputing, 72(4-
6):760–766, January 2009.

[Hes12] Germund Hesslow. The current status of
the simulation theory of cognition. Brain
research, 1428:71–9, January 2012.

[KRS+12] Tim Köhler, Christian Rauch, Martin
Schröer, Elmar Berghöfer, and Frank
Kirchner. Concept of a Biologically In-
spired Robust Behaviour Control System.
In Proceedings of International Confer-
ence on Intelligent Robotics and Applica-
tions 2012, volume 7507, pages 486–495.
Springer Berlin Heidelberg, 2012.

[Mar] Mars. An Open-Source, flexible 3D phys-
ical simulation framework. http://rock-
simulation.github.io/mars/, Last visited:
2015-30-04.

[Mel88] Barlett W. Mel. MURPHY: A robot that
learns by doing. Neural information pro-
cessing systems, pages 544–553, 1988.

[MH09] Hugo Gravato Marques and Owen Hol-
land. Architectures for functional imagina-
tion. Neurocomputing, 72(4-6):743–759,
January 2009.

[ODE] ODE. Open Dynamics Engine.
http://www.ode.org/, Last visited: 2015-
30-04.

[RmGA+14] Jürgen Roß mann, Eric Guiffo Kaigom, Li-
nus Atorf, Malte Rast, Georgij Grinshpun,
and Christian Schlette. Mental Models
for Intelligent Systems: eRobotics Enables
New Approaches to Simulation-Based AI.
KI - Künstliche Intelligenz, 28(2):101–110,
March 2014.

[Roc] Rock. The Robot Contruction Kit.
http://rock-robotics.org, Last visited:
2015-30-04.

[SB12] Richard S Sutton and Andrew G Barto.
Reinforcement Learning : An Introduction
(Second Edition). 2012. Chapter 8: Plan-
ning and Learning with Tabular Methods.

[VZ06] Richard Vaughan and Mauricio Zuluaga.
Use your illusion: Sensorimotor self-
simulation allows complex agents to plan
with incomplete self-knowledge. From An-
imals to Animats 9, 4095:298–309, 2006.

