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Abstract—We present a method for proximity detection with
mobile phones that is based on a combination of Bluetooth
communication (for the detection of coarse proximity) and sound
beacons in an inaudible spectrum around 18kHz for a finer
spatial resolution. The system performs a real-time recognition of
personal encounters in two common situations: standing together
and walking by each other. We evaluate our approach in a variety
of settings ranging from office corridor, through a busy street to
a shopping mall.

I. INTRODUCTION

Knowing when people are close together is a relevant piece
of information for a variety of applications ranging from social
interactions recognition [1] through crowd density analysis to
support of indoor localization [2]. In our work we aim to
develop a system that can detect proximity with nothing more
than a mobile phone in a pocket and without the need for
any external infrastructure or additional sensors. While many
methods have existed for proximity detection in general, there
are only two possibilities that fulfill the above criteria. One
is ambient sound analysis as proposed by [3]. This has the
disadvantage that it requires appropriate sound to be present,
which may not always be the case. Another is Bluetooth
which has been extensively used for indoor localization. While
special purpose hardware with elaborate facilities for the
control and analysis of signal strength can provide proximity
information with an accuracy of between 5 and 10 meters,
standard mobile phone APIs (e.g. on the iPhone) perform
significantly worse.

Experiments revealed that Bluetooth connections initiated
by the iPhone API had a surprisingly high operational range,
making it unsuitable for proximity detection. Two persons
carrying an iPhone 4 in their pants pocket and walking around
in an office building, resulted in a visibility of up to 60 meters,
even through several walls. With the persons facing each other
in a shopping mall, the connection was operational within a
range of up to 80 meters, the longest possible distance to
be found in that mall. A similar test outdoors where the two
persons’ backs were facing each other while approaching, an
operational connection could be established at a distance of
25 meters, still a long distance considering the fact that the
radio waves were shielded by two people.

In this paper we describe an algorithm which improves
upon the resolution of the Bluetooth-based proximity detection
method. Our solution

i) is implemented as a standalone iPhone application,
ii) is robust enough to be run on-line on the device,

iii) is reliable (99.95% True Negative rate).
The method consists of two steps. First, Bluetooth paring
is used to confirm that the two devices are broadly in the
same space i.e., are ‘eligible’ for the close-proximity test.
Next, the one device starts emitting repeating sound patterns
in a predefined inaudible narrow spectrum and the other
tries to detect them. The method works well in a variety of
environments ranging from empty office space to a busy mall.

II. RELATED WORK

There are several infrastructure-based indoor-localisation
systems using radio signals (i.e. WiFi, Bluetooth), but they
are as such not relevant to the paper, since our approach is
entirely infrastructureless. Localisation using sound, on the
other hand, has been proposed for several use cases, though
none of them tries to capture interpersonal encounters of
persons walking around using only software and off-the-shelf,
ubiquitous hardware like cell phones.

Scott et al. [4] propose a system where microphones are
pre-installed in a room and the system detects and locates
user-genareted sounds (i.e. clapping). In [3], Wirz et al. used
fingerprinting to verify the existence of a relation between
the distance of two devices and the similarity of the recorded
ambient sound. Girod et al. present ENSBox, a custom-
built platform for rapidly deploying self-calibrating distributed
localisation using acoustics in [5].

Arentz et al. [6] demonstrate that near-ultrasonic sound
processing is feasible on iPhones and can even be used for
data transfer in the short range. In [7], Peng et al. implemented
an acoustic ranging system using smartphones yielding a high
accuracy (up to 2cm in the 10 meter range), though the phones
were in line of sight. Acoustic localisation using smartphones
is even possible in 3D space, as shown by Qiu et al. in [8],
using two microphones per phone in an unobstructed low-noise
environment.

However, most of these approaches are hardly applicable to
the case where both phones are carried in the persons’ pockets,
as the noise caused by the phone rubbing against the fabric
during movement is dwarfing most signals. Instead of trying
to measure the distance, we focus on detecting whether two
persons are standing proximate to each other or encountering
each other through walking by.



III. THE ALGORITHM

Experimenting with the speakers of an iPhone 4 and aiming
for minimal annoyance of users, we discovered that the fre-
quency range of 18–23 kHz – being inaudible to most people
– is applicable for sound emission as well as detection. The
phone’s speaker is able to produce sound in that range and
the microphone’s frequency response is fairly linear and big
enough to be measured; our findings are consistent with [6].

Consider two devices DA and DB being in the pockets of
two people walking relatively distant, but approaching each
other. As soon as DA ‘sees’ DB via Bluetooth, it connects to
DB, they negotiate a carrier frequency f and assign the roles of
sender and receiver. Using these two roles is a concession to
the iOS-platform, as it turned out that simultaneous playback
and recording is artificially limited in playback volume by
the OS and the delays introduced by dynamically switching
between these modes were too high to be considered a viable
option.

The sender starts emitting a sine wave oscillating at the
negotiated frequency f . Sending does not take place continu-
ously rather than being amplitude modulated. Amplitudes are
determined by a certain pattern containing k binary entries,
which represent intervals of length ls, the length of one pattern
is lp = k · ls. This approach is closely related to On-off keying
(OOK), although in contrast to data transmission, we aim at
detectability of the signal at all.

The receiver records the ambient sound and performs a Fast
Fourier Transform (FFT) for every interval of length ls of the
input signal. Figure 1 shows the ideal pattern [1, 1, 0, 1, 0, 0],
which is being sent on a carrier frequency of 18 kHz, overlaid
with the magnitudes of the corresponding FFT result for f
of the signal received under ideal circumstances. We chose a
sampling rate of 44.1 kHz and intervals of 512 samples, which
makes the interval length ls = 44,100

512 ≈ 0, 01161s and with
k = 6 values per pattern, the pattern length is lp ≈ 0, 07s. We
decided to use a rather short pattern, as this allows for shorter
window length and hence faster detection, while increasing the
possibility to ‘slip through’ in low-noise phases. Furthermore,
variance in signal amplitude per window is lower using shorter
windows in case the persons move. The FFT has been chosen
over a finite impulse response filter (FIR) because it allows us
to analyze several frequencies (i.e. another sender) at once
at little additional cost. Furthermore, we leverage the fact
that iOS offers high-performance vector-based functions for
performing FFTs.
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Fig. 1. An ideal sequence of patterns, overlaid with the recorded signal when
speaker and microphone face each other in 10 cm distance.

As the FFT yields complex results and we are only inter-
ested in the signal’s amplitude, we compute their magnitude
m = |z f | for each FFT bin z f = (x, y) ∈ C where f is a
frequency of our interest. The same is being done for an
adjacent but unused frequency, which we take as a sample
of the overall noise level in that frequency range.

Noise, in this case, is mainly created by the phone rubbing
against the pocket’s fabric and is both, extremely loud and
quite evenly distributed across adjacent frequencies. Figure 2
shows samples of frequency spectra as recorded by the receiver
with both phones in different positions. As one can easily see,
the signal in line of sight (see Fig. 2(a)) is already several
orders of magnitude louder than the sample with both phones
in the pocket and standing still (see Fig. 2(b)), which is still
excellent compared to Fig. 2(c), in which the signal is literally
drowned in noise created by rubbing against the pocket. This
kind of noise poses the most severe challenges to our detection
approach.
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(a) in line of sight 10cm apart
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(b) in pocket, standing 1m apart
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(c) in pocket, walking 1m apart

Fig. 2. Samples of frequency spectra as recorded by the receiver, while both
phones are positioned as stated in (a) – (c)

Each k magnitudes of the carrier frequency as well as the
frequency used as a noise sample are considered one window
and are cross-correlated with the window earlier in time,
yielding the correlation coefficients cs for the signal and cn for
noise, respectively. The beauty of this approach lies in auto-
correlating windows of length lp, which are known to contain
exactly one pattern, albeit offset by an unknown amount of
time. Consequently, synching the receiver with the sender can
be omitted and clock drift is mitigated, as it is quite small
between two windows.

We create a new correlation measure cd = cs − cn, which
approximates the amount by which our signal outgrows the
noise. Subsequently, the signal auto-correlation cs as well as



cd are averaged using sliding windows of different sizes to
account for different characteristics:

– ad is the sliding average of cd over a larger window of
kad = 16 values in order to statistically collect traces of
the signal in noise, while bursts of noise yielding small
or negative values should even out over time

– as is the sliding average of cs over a smaller window
of kas = 8 values, which – if high – represents a fairly
low-noise situation in the short term

These two averages are subject to a simple thresholding in
order to cover two scenarios, for which tH > tL:

1) A high-noise scenario, typically arising while walking.
A detection candidate satisfies the following condition:

d1 = (ad > tH) ∨ (as > tH),

which enforces candidates to have a relatively high
auto-correlation despite noise in the long term or a
relatively high autocorrelation in the short term, typically
in between two steps.

2) A low-noise scenario, typically arising while not mov-
ing. A detection candidate satisfies the following condi-
tion:

d2 = (ad > tL) ∧ (as > tL),

which enforces candidates to have a moderate auto-cor-
relation despite noise in the long-term and a moderate
autocorrelation in short-term, which is the case when
standing still or sitting, even when the signal is weak
and mixed with moderate ambient noise.

The signal is considered partially detected if dp = d1 ∨ d2
is true. However, in the top-most abstraction layer, each 14
(because lp · 14 ≈ 1s) values of dp are counted and required
to exceed yet another threshold, tailored for the two investi-
gated situations: standing and walking. Constants are chosen
carefully to almost entirely rule out false positives as well as
successful detections too far away to be considered proximate.

IV. EVALUATION

Overall, we have collected 137 minutes of audio data
(thereof 64 minutes without emitting a signal for estimating
algorithm’s precision) for the standing and walking scenarios
as listed in Table I and Table II. Phones were carried in jeans
pockets, with no extra cases. The parameters of the program
were chosen with an ambitious goal of delivering reliable
results, with no time lag, high resolution (up to 2.5m), live on
the device. In particular, we considered False Positives (which
according to our definition included also proximity detection
of people standing more that 3m apart) much more harmful
than False Negatives (i.e. not detecting proximity) and thus,
at the price of a slightly lower recall rate, we set the bar for
the precision of the algorithm very high.

With auto-correlation thresholds tL = 0.355, tH = 0.42, and
9 out of 14 dp-values for a positive detection (translating
to a time resolution of approximately one second), the True
Negative rate amounted to 99.95%, meaning a nearly perfect
precision of the algorithm.

TABLE I
STANDING SCENARIO (INDOOR & OUTDOOR). RECALL RATES FOR 1S AND

10S WINDOW (MAJORITY-DECISION). IN A 10S VARIANT, DISTANCES UP
TO 2M ARE WELL RECOGNIZED, PROXIMITY OF 4M AND GREATER IS

CONSIDERED BEING TOO FAR AWAY, AS DESIRED.

Activity Dist. [m] Recall (1s) Recall (10s)

Office corridor 0.6 0.95 1
Shopping mall escalator 1 0.71 1
Supermarket queue 1 0.53 0.60
Office corridor 1.2 0.94 1
Busy street crossing 1.2 0.80 1

Busy street crossing 2 0.22 0.25
Neighbouring rooms 2 0 0
Office corridor 2.5 0.38 0.31
Shop shelf in between 3 0.06 0.11
Busy street crossing 3 0.01 0
Office corridor 4 0.14 0
Busy street crossing 4 0 0
Busy street crossing 5 0 0
Office corridor 6 0.09 0
Supermarket 6 0 0
Office corridor 10 0 0

First, we investigated the social interaction scenario, i.e. a
situation, when two people are standing next to each other.
For this static case we used a majority-decision window of
10 seconds (which is not too long, considering nobody is
moving). The results are presented in Table I and Fig. 3. Figure
3 shows the proximity detection rate as a function of distance
between the two persons and the majority threshold cut-off for
the 10-second recognition window.

In overall, the algorithm almost perfectly recognized prox-
imity up to 2m (both indoor & outdoor), while situations when
people were more than 3m apart were correctly classified as
non-proximate.
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Fig. 3. Overall recall rates as a function of distance with both persons
standing: indoors (dashed), near a busy street crossing (solid), E© on an
escalator, Q© in a supermarket queue, S© remotely at different supermarket
shelves. Hortizontal line corresponds to the majority-decision window of 10
seconds (see Table I).

Next, we investigated the walking scenario. In this case,
when the receiver starts walking, the signal-to-noise ratio
(SNR) drops from 9.5 dB to 2 dB, thus making it extremely
hard to cover both, standing and walking, with a fixed set of
parameters. This can also be seen in Fig. 4, which depicts
the average detection rate of 11 recordings increasing every



second as the sender approaches the standing receiver, bearing
a peak of nearly 100% when closest and more rapidly falling
than rising due to acoustic shielding of the leaving person’s
body. With the receiver walking, on the other hand, the
detection rate both, increases at a slower rate and the duration
of subsequent detections is significantly lower.

0 5 10 15 20 25 30 @sD
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Fig. 4. Average detection rates with one person standing: (a) sender walking
past receiver (dashed) and (b) receiver walking past sender.

Results for the walking scenario are shown in Table II.
As anticipated, there is a big discrepancy in the recall rates
between the ‘standing receiver’ and the ‘walking receiver’
scenario. One of the reasons of the 0.33 recall rate for the
walking receiver is a very high bar on the precision rate of
the algorithm.

Although the walking scenario poses a major challenge
due to the low signal-to-noise ratio, the is still room for
improvement. We plan swapping the sender and the receiver
role every few seconds (and thus be able to detect proximity
if at least one person is static).

TABLE II
WALKING IN A SPORTS SHOP: SENDER WALKING TOWARDS AND AWAY OF

THE RECEIVER (11 RECORDINGS), RECEIVER WALKING TOWARDS AND
AWAY OF THE SENDER (9 RECORDINGS).

Activity Precision Recall

Receiver Standing 1 1
Receiver Walking 1 0.33

V. CONCLUSION

In this paper we have presented an algorithm which uses
inaudible sound patterns to accurately detect whether two
mobile phones are within few meters from each other. The
algorithm is implemented as a standalone iPhone application
and is fast enough to be run live on the device. Tests in a
variety of environments confirm the robustness of the method.

In authors’ view, an extremely promising application of
the results lies in the collaborative localization domain [2].
Indoor positioning algorithms running on the mobile phones
(e.g. algorithms using motion sensors for inertial navigation)
could leverage proximity information to constantly calibrate
their location estimates during social encounters.

Future work needs to look at improving recognition rates
when both users are walking and, in order to make the deploy-
ment of the algorithm on a bigger scale feasible, address the
scalability issue, when dozens of devices are within Bluetooth
range. As for the former, using wider frequency ranges and
more complex codings may be another option to improve
performance. With some phones having two microphones for
noise canceling, differential approaches may be used to get rid
of noise generated by the phone rubbing on the fabric when
the user is moving.
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