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ABSTRACT

Code reuse attacks allow an adversary to impose malicious
behavior on an otherwise benign program. To mitigate such
attacks, a common approach is to disguise the address or
content of code snippets by means of randomization or rewrit-
ing, leaving the adversary with no choice but guessing. How-
ever, disclosure attacks allow an adversary to scan a process—
even remotely—and enable her to read executable memory
on-the-fly, thereby allowing the just-in-time assembly of ex-
ploits on the target site.

In this paper, we propose an approach that fundamentally
thwarts the root cause of memory disclosure exploits by pre-
venting the inadvertent reading of code while the code itself
can still be executed. We introduce a new primitive we call
Execute-no-Read (XnR) which ensures that code can still be
executed by the processor, but at the same time code cannot
be read as data. This ultimately forfeits the self-disassembly
which is necessary for just-in-time code reuse attacks (JIT-
ROP) to work. To the best of our knowledge, XnR is the
first approach to prevent memory disclosure attacks of exe-
cutable code and JIT-ROP attacks in general. Despite the
lack of hardware support for XnR in contemporary Intel x86
and ARM processors, our software emulations for Linux and
Windows have a run-time overhead of only 2.2% and 3.4%,
respectively.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Unauthorized Access;
D.4.6 [Operating Systems]: Security and Protection—In-
formation Flow Controls
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1. INTRODUCTION
Buffer overflows, dangling pointers and related memory

corruption vulnerabilities constitute an important class of
security vulnerabilities. Despite such control-flow hijacking
attacks being known for more than two decades, they are still
one of the three most prevalent attack vectors, e.g. through
vulnerable PDF viewers, browsers, or operating system ser-
vices [30, 46]. Over the last few years, a number of attack
techniques have been proposed (e.g., [7, 11, 20, 27, 42]). In
practice, particularly so-called code reuse attacks are rele-
vant, since they enable an attacker to redirect control flow
through a program with the intent of imposing malicious be-
havior on an otherwise benign program. More specifically,
an attacker does not need to inject her own code into a vul-
nerable program, but she can reuse existing code fragments
(so-called gadgets) that perform malicious computations of
her choice by chaining several gadgets together (dubbed gad-
get chains [36]).

As part of the typical arms race in computer security,
a large number of potential defenses have been proposed
(e.g., [4–6, 37, 49]). In practice, techniques such as address
space layout randomization (ASLR) and data execution pre-
vention (DEP) are most widely deployed: these two tech-
niques are available in virtually all modern operating sys-
tems. More specifically, ASLR has been invented to make
it impossible to predict where specific code resides [34, 35].
While the technique has been widely adopted, researchers
demonstrated that it is often ineffective in practice [38, 39]:
Since only the code segment’s base address is randomized,
a leaked pointer is sufficient to infer all code addresses.

To overcome this problem, several sophisticated randomi-
zation techniques were proposed that perturb the code such
that the location of gadgets inside the code segment becomes
unpredictable. The basic idea of these fine-grained, load-
time ASLR schemes is to either slice the code into chunks
and shuffle them [18,24], or to reorder the instructions in the
code segment [47] or within individual basic blocks [32]. The
resulting systems have a rather small performance overhead
and they effectively protect against an adversary that uses
precomputed gadget chains during an attack.



However, a more powerful adversary can also compute
the gadget chains on-the-fly: Snow et al. introduced just-
in-time code reuse attacks [40] that enable an attacker to
find ROP gadgets in spite of fine-grained randomization of
the process’ memory. The attack exploits a known mem-
ory disclosure vulnerability, which allows reading arbitrary
memory and ultimately disassembling the disclosed memory
of the vulnerable process. Based on this information, she can
then dynamically compute gadget chains. Such just-in-time
code reuse (shortened as JIT-ROP in the following) attacks
bypass existing defenses and represent one of the most so-
phisticated attacks proposed up to now.

In this paper, we introduce a way to systematically pre-
vent JIT-ROP attacks by addressing the root cause. Our
approach is based on the insight that such attacks require
a disclosure vulnerability that enables an adversary to read
arbitrary memory locations, which allow searching for gad-
gets. As such, a viable approach to prevent JIT-ROP attacks
is to forbid code from being read and hence disassembled.
Consequently, our “Execute-no-Read”primitive prohibits an
attacker from constructing a gadget chain on-the-fly. Unfor-
tunately, contemporary Intel x86 processors are designed in
such a way that memory pages must always be readable in
order to be executable. The same applies to ARM proces-
sors since these CPUs also only feature one read/write bit,
an eXecute Never (XN) bit, and one bit to distinguish be-
tween user and kernel mode [1].

However, we can implement and enforce our primitive by
modifying the operating system and extending the memory
management system. In spirit, this is similar to the first im-
plementations of the W ⊕X (Writable xor eXecutable) se-
curity model [34]. We have implemented a prototype of our
new primitive as a kernel-level modification for both Linux
and Windows. Evaluation results show that XnR success-
fully thwarts memory disclosure attacks with the intent of
disassembling code, while benign programs continue to run
unaffectedly. Furthermore, the overhead introduce by our
new primitive is reasonable: in micro and macro benchmark
we found that average run-time increase is only 2.2% for
Linux and 3.4% for our Windows implementation. The se-
curity parameter we introduce defines a trade-off between
security and performance.

In summary, we make the following three contributions:

• We systematically study the root causes behind disclo-
sure vulnerabilities. Our insight is that current proces-
sors only allow memory to be marked as non-writable
or executable. However, code that is supposed to be
executed must remain readable in memory and hence
poses a risk for disclosure attacks.

• We propose the primitive “Execute-no-Read” (XnR)
that maintains the ability to execute code but prevents
reading code as data, which is necessary to disassemble
code and finally find ROP gadgets (especially when
they are constructed on-the-fly).

• We implemented a prototype of our approach in soft-
ware as a kernel-level modification for Linux and Win-
dows. We achieve such hardware emulations by patch-
ing the memory management system in order to detect
inadvertant reads of executable memory. Our proto-
type is available for both Linux and Windows and in-
troduces only a small performance overhead.

2. PREVENTING DISCLOSURE EXPLOITS
We now first review the intuition behind our approach

and define the threat model we use throughout this paper.
Afterwards, we provide an overview of the design of our
contribution to prevent ROP-style exploitation attacks and
also explain the rationale and interplay of XnR in this task.

2.1 Motivation
Traditional return-oriented programming (ROP) attacks

can (mostly) be contained with the help of address space lay-
out randomization (ASLR): this technique makes it harder
for an adversary to guess or brute-force addresses that are
needed for ROP gadgets. However, ASLR can be bypassed
if the attacker can exploit an information leakage vulnerabil-
ity, since such a vulnerability inadvertently reveals a valid,
current address inside the running program. Hence, an ad-
versary learns an address used inside a process, which allows
her to circumvent ASLR. Due to the fact that conventional
ASLR moves the entire code segment en bloc (which leaves
the relative locations of objects and functions intact), only
one such leaked address from the code segment is enough to
calculate the address of every instruction inside a process.
This effectively enables an attacker to infer all other objects
or functions relative to the leaked address because the rela-
tive distances between functions stay exactly the same.

In general, information leaks represent a challenging prob-
lem that is hard to solve. To prevent the actual exploitation
of such leaked pointers, several mitigations have been re-
cently proposed in the literature. For example, binary stir-
ring makes it impossible to reliably use ROP gadgets by sub-
stituting instructions with semantically equivalent instruc-
tions, thereby effectively concealing known patterns that
could be used for a ROP attack [47]. An alternative ap-
proach is to apply finer randomization such that a leaked
pointer reveals as little information as possible about its
surrounding code [18,26,48].

Unfortunately, in the light of a disclosure vulnerability, an
attacker may read the address space during runtime. This
enables her to disassemble a running process with the intent
of finding ROP gadgets. Snow et al. [41] demonstrated the
practical viability of such an attack: given a memory dis-
closure vulnerability, it is possible to assemble ROP gadgets
on-demand by dynamically compiling a gadget chain. Their
just-in-time code reuse attack repeatedly exploits a memory
disclosure vulnerability to map portions of a process’ ad-
dress space with the objective of reusing the so-discovered
code in a malicious way.

Our solution prevents such JIT-ROP attacks by eliminat-
ing its root cause, namely by detecting and preventing the
exploited disclosure vulnerability. More specifically, as soon
as a process tries to read its own code as data, XnR consid-
eres this illegal behavior. This prevents the first necessary
step of disclosure vulnerability. We demonstrate that this
primitive can be implemented and enforced with a reason-
able overhead on contemporary computer systems.

2.2 Threat Model
We make several assumptions about an attacker. First,

we assume a commodity operating system (i.e., Linux or
Windows) that runs a user mode process that contains a
memory corruption vulnerability. The attacker’s goal is to
exploit this vulnerability in order to divert the control flow
and execute arbitrary code of her choice. Furthermore, the



attacker knows the process’ binary executable and the OS
version of the attacked system. Hence, she can precompute
potential gadget chains in advance and use them during the
attack.

Second, we assume that the process has at least one mem-
ory disclosure vulnerability, which makes the process read
from an arbitrary memory location chosen by the attacker
and report the value at that location. This vulnerability
can be exploited any number of times during the runtime of
the process. Note that the process itself performs the read
attempt: both address space and permissions are implied to
belong to the process.

Third, the attacker can control the input of all communi-
cation channels to the process, especially including file con-
tent, network traffic, and data entered over the user inter-
face. However, we assume that the attacker has not gained
prior access to the operating system’s kernel and that the
program’s binary is not modified. Apart from that, the com-
putational power of the attacker is unlimited. In particular,
she can memorize disclosed memory, disassemble it, search it
for gadgets, and find meaningful chainings of those gadgets.

2.3 Assumptions
Given this attacker model, we aim at preventing JIT-ROP

attacks. As discussed before, the main challenge is that an
attacker can exploit an information leak to dynamically con-
struct gadget chains on-the-fly. When attempting to prevent
such an attack, we can thus prohibit the actual information
collection phase. Before elaborating on the details of our
solution, we discuss the assumptions that are necessary for
XnR to protect the system in a holistic way.

While XnR is a powerful primitive, we expect it to be
used in conjunction with two other security mechanisms: (i)
W ⊕X and (ii) fine-grained load time ASLR.

First, we expect that the W ⊕ X security model holds,
which states that memory cannot be writeable and exe-
cutable at the same time. This prevents an attacker from
modifying existing code to suit her needs, or writing data
and executing it as shellcode afterwards (at least without a
syscall in between). On modern operating systems, the en-
forcement of W ⊕X is a standard precaution based on data
execution prevention (DEP [29]).

When the W ⊕ X primitive is enforced, an attacker has
to take advantage of code that is already available in mem-
ory. As discussed earlier, diverting small fragments of code
from their intended purpose is usually called return-oriented
programming, and ASLR [35] is effective against traditional
ROP attacks: the location of gadgets changes at the load
time of a process, which makes it infeasible for an attacker
to guess their position (even if she has precomputed poten-
tial gadget chains in advance). Again, this state-of-the-art
protective measure is enabled by default on modern operat-
ing systems.

Unfortunately, conventional ASLR only changes the base
address of the entire code segment and hence a single leaked
pointer might uncover all the gadget’s addresses since the
relative addresses between them did not change. Therefore,
we require a more fine-grained variant of ASLR that also
changes the relative address among gadgets. Several such
fine-grained load time ASLR methods were recently pro-
posed in the literature [18,24,47] and we assume that one of
these methods is used in conjunction with XnR.

Figure 1: The XnR primitive distinguishes between legiti-
mate code execution (instruction fetch) and illegal access to
code using load/store instructions.

2.4 The Execute-No-Read Primitive
The goal of our“Execute-no-Read”(XnR) primitive is pre-

venting attacks that leverage just-in-time code reuse for ex-
ploitation. To this end, XnR prevents the step of dynami-
cally gathering gadgets, which is a necessary precondition in
the context of fine-grained ASLR, as the gadgets and their
positions are not known to the attacker.

Since contemporary processors all feature a von-Neumann
memory architecture that mixes code and data, the determi-
nation whether a particular piece of memory contains code is
challenging. Moreover, the concept of non-readable, but ex-
ecutable, memory does not exist: memory permissions only
allow to toggle the ability to write to memory or the abil-
ity to execute memory, where executable permissions imply
read permissions. As a result, XnR cannot be implemented
with current hardware.

Emulating XnR in Software.
To counteract this deficiency, we propose a way to em-

ulate XnR in software by extending the memory manage-
ment system of the operating system. To demonstrate the
practical feasibility of this approach, we modified up-to-date
versions of the two mainstream operating systems Windows
and Linux. Our experiments (see Section 4) show the effec-
tiveness of our solution against memory disclosure attacks
and that legitimate execution is not hindered, except for a
small performance overhead.

For XnR to work, we need to distinguish memory accesses
between legitimate access to data and read attempts to code
(see also Figure 1 for an illustration). The memory manage-
ment unit (MMU) present in virtually all modern processors
such as x86 and ARM introduced the notion of a process,
which is a complete address space that exists from each
process’ point of view. Each such address space can have
memory regions marked as writable and others as read-only.
While the MMU can detect write attempts to any part of a
process’ memory, detecting read attempts is not supported.
Read attempts can only be detected by declaring a certain
memory region to be non-present in the MMU. However, a
non-present memory region cannot be executed anymore.

To overcome this challenge, our solution makes use of the
so-called page fault handler. Every time the MMU detects
a memory access violation in a process, the page fault han-
dler of the operating system kernel is called. An access vi-
olation may occur when a process tried to read memory
that is marked as non-present or when a process tried to
write to memory that is marked as read-only. The granular-
ity at which memory regions can have writable and present



attributes is defined by the hardware as so-called memory
pages (usually 4 kB). When a page fault occurs, the process
is halted and control is switched to the kernel, which tries
to handle the page fault. A page fault is no exception in
the ordinary run of a program but happens thousands of
times during normal execution. The reason is demand pag-
ing , a performance feature that starts every process with an
empty address space and only maps pages that are actually
accessed. Demand paging is handy for our solution since ev-
ery first access to a page is caught due to the initially empty
process space.

Our modified page fault handler checks the violation con-
ditions and decides whether to continue normally (i.e., to
map the missing page into the address space) or to termi-
nate execution if a memory disclosure was detected. Each
page fault is provided with additional information such as
the address where the fault occurred and whether the ac-
cess was generated during an instruction fetch. The latter
is crucial information for our XnR solution: If the CPU was
trying to execute an instruction in a memory page that was
non-present, this constitutes a legitimate operation and we
let the usual demand paging routine of the kernel fetch the
page and mark it present. If, on the other hand, the access
violation did not occur due to an instruction fetch, then the
processor was trying to read memory as data. In this case,
XnR has to distinguish whether the violating address is in-
deed inside a valid region of data or points to code. If the
address lies inside a data region of the process, our page
fault handler continues normally by mapping the missing
page. Otherwise, the process tried to read from a code re-
gion, which is illegal, as we assume executable code not to
be readable. In this case we terminate the process with an
error and prevent the attack.

Distinguishing between data and code regions in a process
is achieved by interpreting the executable file formats, which
provide information as to which memory region is executable
(code) and which is readable (data).

To overcome the problem that only the first access to every
page is detected by the page fault handler, we need to make
pages non-present again after data access in a particular
page has finished. However, the halting problem dictates
that it is not generally possible to decide when and if a
program finished executing a particular memory region. Our
solution is to wait until another page than the currently
used one is accessed and then we mark the last used page
as being non-present. This guarantees new page faults will
be triggered whenever an already accessed page is accessed
again. Whenever execution runs outside of one memory page
into another, the last page gets inaccessible while the new
page is set to present in the same atomic operation.

Sliding Window.
Instead of keeping only one page present at all times,

we introduce a security and performance parameter, which
keeps the last recently used n pages present while setting
all the others to non-present (see Figure 2). This allows the
kernel to keep more than one page active at the same time,
which reduces the chance of an congestion because the code
is constantly jumping between two pages.

The parameter n constitutes a trade-off between perfor-
mance and security. For n = 1, only the page in which
execution currently takes place is mapped at any time. This
is the only page that does not trigger a page fault when

Figure 2: To improve performance, the parameter n adjusts
the window length of the sliding window that keeps up to
n pages in the address space. At the same time n is the
security parameter.

being accessed and hence is the only page that could poten-
tially be read by an attacker without being noticed by our
XnR detection. Since the attacker can only read the page
in which execution takes place, she has to know the cur-
rent execution address (instruction pointer) at the time of
the exploit. Even if it were possible to guess the execution
address correctly and the attacker exploits the disclosure
vulnerability, she would only have access to the single page
in which the code for the disclosure vulnerability resides be-
cause accessing another position of code would trigger an
XnR exception.

For n > 1 mapped pages, the situation is more complex
as there are now n pages which can be accessed without
our XnR detection mechanism noticing. If the attacker can
now determine the address of one of those pages at runtime,
she can read that page and search for gadgets. However, as
the last visited pages depend on the past control-flow, she
is either limited to the same n pages each time (in case of
invariant control-flow) or runs the risk of picking a path,
which was not executed this time and hence crashes the
program. If n is equal to the total number of code pages of
a process, then all pages stay mapped in the process’ address
space forever. This would resemble XnR not being active at
all.

3. IMPLEMENTATION
As discussed above, XnR would be a very helpful hardware

feature, but unfortunately this primitive is not present in
any modern processor. To show the general feasibility and
effectiveness of our approach, we implemented a software-
based prototype of our XnR solution for two mainstream
operating systems, i.e., Microsoft Windows and GNU Linux.

The two implementations share the same concept, namely
using hardware page faults to emulate an XnR hardware fea-
ture. However, their specific implementations differ vastly
due to the different natures of Windows and Linux. While
the Linux kernel is freely available as open source, the Win-
dows kernel is closed source and was not designed for third
parties to modify fundamentals such as the memory man-
agement. This naturally led to different approaches with
respect to how and where XnR was engaged in the specific
kernels. In general, the fact that the Linux kernel is pro-
vided in source code allows for a proper integration with
the existing memory management and process run-time sys-
tem, whereas Windows prohibits any modifications in the
first place and hence forces the Windows implementation of
XnR to be an outer shell around the immutable Windows
kernel functions.



The concept that both our implementations share is to
intercept any access to code or data, and to then decide
whether that access was triggered due to an instruction fetch
(i.e., the processor is executing code) or due to data access
(i.e., load and store operations on data). In order to decode
and execute instructions, the processor must read them from
memory. This so-called instruction fetch resembles implicit
access to memory. Additionally, an instruction being exe-
cuted by the processor might also explicitly access memory
by means of load/store operations (i.e., reading memory to a
processor register or storing a processor register to memory).

This leaves us with three types of memory access that we
need to distinguish:

Instruction Fetch: The processor fetches a byte from mem-
ory in order to decode and execute the instruction that
it resembles. This constitutes a legal operation that
takes place during code execution.

Load/Store of Data: An instruction may accesses mem-
ory that either contains code or data. If the load/store
instruction targets data, this constitutes a legal oper-
ation that is necessary to operate on data.

Load from Code: However, if a load instruction targets
code, this constitutes a programmatic disassembly that
we consider illegal.

Since it is impossible to efficiently intercept each access
to memory in software, we chose to leverage the already
existing memory management unit (MMU) of modern pro-
cessors. The MMU implements virtual memory and thereby
enables process isolation. The operating system, in concert
with the MMU, allows for the illusion of a contiguous vir-
tual address space for every process. Only the used parts of
each address space (i.e., each process) are actually mapped
to physical memory, which is done completely transparent
to each process.

The MMU divides memory in the smallest addressable
unit, a memory page, for which a translation from virtual
memory address to physical memory pages can be set up
for each page and for each process. The MMU also allows
trapping access to a certain memory page. In particular, op-
erating systems detect illegal access to memory (e.g., writing
to read-only portions of memory) that way. Moreover, dy-
namic growth of memory portions can be implemented using
those access traps. This way the stack can grow dynamically
and only consumes as much memory as is actually used. The
so-called demand paging is responsible for mapping memory
only when it is first accessed, thereby saving memory that
is never accessed or whose size is even unknown a priori.

Because the demand paging already facilities a framework
to detect access to memory, it was a suitable position to
entrench our XnR solution in the Linux kernel. The closed-
source nature of Windows, however, does did not allow us to
change already defined page mappings (present/non-present)
and we had to resort to marking pages kernel-only in order
to trigger access violations from user mode.

3.1 Linux Kernel
The advantage of an implementation in the demand pag-

ing subsystem of Linux is that an illegal access can be de-
tected before it can actually happen, i.e., before the targeted
code is accessible by the user mode process. As a basis for

our implementation we chose the recent stable Linux ker-
nel version 3.13.7 for 64-bit x86 CPUs. The Linux memory
management is fairly sophisticated and uses page faults not
only to detect illegal access to memory but to transparently
implement demand paging , Copy-on-Write (COW), and to
map files to memory.

A general overview of how XnR is integrated in the Linux
kernel is given in Figure 3. A typical XnR check works as
follows: For every page fault, Linux first checks if the fault is
due to access to invalid memory (i.e., the accessed position
is not supposed to contain memory) or if the fault can be
gracefully resolved by mapping a new page of memory and
continuing execution. If the page fault handler detects that
the allegedly non-present memory is actually supposed to be
present, demand paging is invoked to pretend the accessed
page existed in the first place. This way, the address space
of a process can be built on demand, rather than wasting
memory and time by pre-loading the entire address space at
program start.

We added XnR detection and decision logic as well as
bookkeeping to the commodity demand paging procedure.
Before the actual demand paging procedure is invoked, we
check whether the page fault was caused due to an instruc-
tion fetch operation or due to a load instruction that read
memory (2.). For this purpose, the x86 CPU pushes a word

to the stack that encodes the type of access violation (e.g.,
read, write, user, kernel, instruction fetch, data access). If
an instruction fetch happened, we engage bookkeeping that
logs which page we allowed to execute and let the demand
paging logic do its conventional job of mapping the partic-
ular page that was not present (4.). If the target address is
data, it is checked to which logical area it belongs to (3a.).
If the faulting address lies in a segment that is marked exe-
cutable but not readable, the process tried to read instruc-
tions from memory.

In order to know the access permissions of a particular
memory area, we use the access type information provided in
the section meta data of the executable file or shared library
file. For dynamically allocated memory(malloc(), mmap()),
the permissions are provided with the respective syscalls.
This flexible method allows the developer to selectively pro-
tect single executables, single shared libraries or even specific
mmap’ed memory inside a process. The latter is particularly
useful in the case of Just-in-Time compilation, such as Java
or Mono.

To ensure that pages that have already been paged into
the address space of a process (e.g., by demand paging) will
be checked again when they are accessed again, they need to
trigger a page fault again, otherwise accessing them might
evade XnR detection. To this end, we implemented a sliding
window that evicts pages from a process’ address space in
order to ensure that at most n pages are mapped into the
address space at any time. This guarantees that access to
memory outside the n mapped pages will be caught and can
be checked by our XnR implementation. At the same time,
the number of simultaneous pages n is a parameter for both
security and performance. If n is set to 1, only one page is
active at any time and hence every access to another location
in memory will trigger a page fault and therefore an XnR
check.

The Linux implementation is designed as a patch against
the 3.13.7 kernel and works with 64 bit and 32 bit pro-
grams running on an x86-64 kernel. The patch modifies the



Figure 3: Flow diagram of how the CPU, MMU and parts of the Linux kernel interact in order to implement XnR.

existing minor page fault handler as well the file mapping
part of demand paging and adds the“Execute-no-Read”-sub-
subsystem to the memory management subsystem of Linux.
In total, we have modified 570 lines of code.

3.2 Windows Kernel
Lacking the ability to modify the Windows kernel as freely

as the Linux kernel, we opted for a minimally invasive ap-
proach. Our custom page fault handler is invoked before
the normal Windows handler by inserting it directly into
the Windows kernel’s interrupt descriptor table (IDT). Since
Patchguard [28] prevents modifications of the IDT, our proof-
of-concept implementation can only be run in test mode.
We applied the Windows kernel patch to the 64 bit version
of Windows. Our Windows XnR implementation protects
64 bit and 32 bit processes. All applications need to explic-
itly activate our protection using control functions exposed
by our created virtual device.

In contrast to Linux, Windows does not provide a frame-
work to selectively page-in memory that is currently ac-
cessed or to page-out memory that is not recently used. In-
stead, our Windows implementation resorts to setting the
privileged flag for memory pages that contain code. This
in turn causes page faults whenever a user application tries
to access them. The raised page fault handler then decides
whether to allow or deny access. In case of a legitimate ex-
ecution (instruction fetch), the privileged flag is removed,
resulting in unaffected execution. In case of an XnR viola-
tion, the exception is passed to the Windows handler, which
results in termination of the faulting program. Analogously
to the Linux implementation, we use a sliding window to
keep at most n pages accessible at all times, while all the re-
maining pages have their privileged bit set. Our Windows
implementation has a total of 1,540 lines of code.

4. EVALUATION
In this section, we show the effectiveness of XnR. To this

end, we demonstrate that memory disclosure attacks are suc-
cessfully caught by XnR (no false negatives), while benign
programs are not affected by our modifications (no false pos-
itives). Moreover, we conducted performance evaluations
that demonstrate the low overhead of our XnR solution.

4.1 Precision and Effectiveness
To evaluate the precision, we conducted several experi-

ments that on the one hand ensure that memory disclosure
attacks are successfully caught by XnR. This is achieved by

showing that a typical exploit fails. On the other hand, we
need to ensure that benign programs are not affected, i.e.,
legitimate code reads are still possible and no false positives
occur.

Detection of Exploits.
To demonstrate the security of our solution, we exploited

a memory disclosure vulnerability in the standard Linux
netcat program, which is a powerful utility for establish-
ing or listening on TCP/UDP network connections. To this
end, we weakened the netcat source by implementing a mem-
ory disclosure vulnerability that can be triggered by TCP
packets that are too long. In the course of this buffer over-
run, the attacker’s input data overwrites an internal buffer
pointer. This buffer pointer is used to assemble network
packets. This enables an attacker to craft malicious packets
in such a way as to intentionally overwrite the buffer pointer
and thereby directing the TCP response buffer to arbitrary
memory.

When our modified version of netcat is run on an un-
protected Linux, we can successfully direct the memory dis-
closure vulnerability to return arbitrary data and code to
the attacker. With enabled XnR protection, however, the
offending netcat process is killed as soon as the memory
disclosure vulnerability is directed to a region containing
executable code. Since JIT-ROP relies on the necessary
precondition of reading memory such that gadgets can be
constructed on-the-fly, such an exploitation technique can
be successfully detected and prevented by our approach.

Legitimate Code Reads.
Since XnR prevents all access if it detects reads from the

code segment, one must ponder whether there are legitimate
reasons to read from the code segment. If a benign program
reads its own code segment as data for a legitimate reason,
blocking such access would constitute a false positive.

In our evaluation, we found that both common Linux pro-
grams and standard Windows DLL functions attempted to
read code during normal program execution. For the open
source Linux programs it was easy to find and fix the reason
for their behavior so that they work with XnR. For Win-
dows, we introduced a heuristic that decides whether ac-
cessing code is legitimate or illegal. In the following, we
explain both aspects in detail.



Code Reads on Linux.
All code read attempts of Linux programs that we ob-

served during our evaluation were accessing the header of
the ELF executable file or the header of an ELF shared li-
brary. This header is parsed by library functions that iterate
over the loaded sections (PHDRs). In contemporary Linux
ELF executables, this header resides in the .text segment,
which is strictly speaking semantically wrong because the
header (data) is not supposed to be executed. Should the
program have a vulnerability, the ELF header unnecessarily
resembles ROP gadgets.

For XnR, storing the header in an executable segment does
no longer work. Reading the header in memory triggers an
illegal access in XnR because it belongs to .text, which is
marked executable.

The fact that the ELF header resides in the loaded .text

segment is a result of file size optimizations by the linker
stemming from an era that was not aware of the security
implications of a header that is executable.

After modifying the standard Linux linker script that cre-
ates executables and shared libraries, the ELF headers reside
in the read-only data section (.rodata) and can be accessed
without triggering an XnR violation. As a side effect, this
prevents the ELF headers from being executable.

Unaffected Execution.
To ensure that benign programs are not affected by XnR,

we used 352 standard command line programs for Linux
that are packed in the busybox [2] project. All 352 com-
mands were executed successfully on an XnR-enabled Linux
3.13.7 without any illegal read detected by the XnR kernel
subsystem. On Windows we performed a similar test using
the 231 utilities provided by Cygwin64 [3], all of which suc-
cesfully executed. That is a very good indication that XnR
does not affect the normal execution of programs.

Code Reads on Windows.
On Windows, we also found cases where a benign exe-

cutable reads its own code. This happens, for example,
when an application uses GetModuleHandle and GetProcAd-

dress to dynamically obtain function addresses. Starting
with Windows 7, common API functions can be accessed
not only via the plain DLL name they are contained in, but
also via a special API layering naming scheme beginning
with “API-” [44]. For example kernel32.dll imports mul-
tiple functions from api-ms-win-core-memory-l1-1-0.dll.
The prefix is stored as a static string inside the .text sec-
tion of ntdll and not, as one would expect, inside .data

or .rodata. Thus, any call to GetModuleHandle would lead
to a false positive and termination of the application. A se-
mantically correct solution would be, analogously to Linux,
to place the offending data in the proper section. Since
the system libraries are closed source we cannot recompile
them. Instead, we introduce a heuristic to account for oc-
curing code reads. A counter is increased for every code read
and reduced for each first legitimate access to a code page.
Should the counter reach a configurable threshold, the cur-
rent code read is considered illegal. Thus a limited number
of code reads are permitted, while an excessive scan of the
.text section is detected and prevented.

This heuristic enables legacy applications to run with XnR
protection. However, programs that are available in source
can be forced to store all data in a separate region, similar to

Linux programs with a modified linker script. Those specif-
ically compiled Windows programs can benefit from the full
security guarantees of XnR without needing to resort to a
heuristic for compatibility. As part of our future work, we
plan to revise and extend the support of XnR on Windows
beyond the current prototype implementation.

4.2 Performance Evaluation
To evaluate the efficiency of XnR, we used the de facto

standard SPEC CPU2006 integer benchmark suite. All bench-
marks on Linux were performed on an Intel Core i7-3770
CPU running at 3.4 GHz with 4 GB of RAM. This partic-
ular CPU features four hardware cores with two symmetric
hardware threads each (HyperThreading).

The run-time overhead of XnR is mainly introduced by the
modified page fault handlers. Both implementations ensue
that the number of pages that are mapped into an XnR-
enabled process are at most n at any time. Usually, compil-
ers optimize code layout so that the locality of code is high,
i.e., functions that call each other or functions that resem-
ble hot spots reside next to each other in the compiled code.
For programs that heavily jump between different code po-
sitions, the probability is higher that they access different
memory pages. If their jumping is constrained to at most
n pages, our XnR virtually has no impact as no page faults
will be triggered during execution. However, if a program
continuously accesses more than n pages, this results in con-
stant eviction of pages from the process’ address space and
results in a performance degradation compared to a stock
Linux kernel without XnR checks.

Since the locality of code and the window size n influence
performance, we also conducted benchmarks for different
values of n. Figure 4 depicts the performance depending on
the window size n = 2 pages, n = 4, n = 6 and n = 8 pages.

Even for a small window size of only n = 2 pages, the av-
erage overhead is a moderate 2.2%. These good performance
figures make choosing the right n fairly easy as small values
of n allow for high security but remain decent performance.
Suppose the security parameter and window size was cho-
sen to be n = 2. Then for the attacker to be successful, she
needs to know the two addresses of the two active pages.
Even in that unlikely case, she would be left with only 8 kB
of code to use for an attack.

The low overhead slightly contradicts the traditional as-
sumption that a large working set is necessary for good per-
formance. However, by making pages non-present, we do
not actually reduce the working set size. In contrast to an
unmapped page, removing the present bit leaves the con-
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Figure 4: SPECint2006 benchmark suite for Linux showing
the performance for each of the 12 benchmarks (and aver-
ages) dependent on the parameter n.



tent of a memory page intact and also does not touch any
caches. That means that in contrast to a reduced working
set size, our XnR solution only re-enables the present bit,
which causes a TLB miss but at the same time profits from
a cache that is still filled. Hence, the overhead is mainly due
to the CPU switching to kernel mode after the hardware
page fault and switching back to user mode after enabling
the present bit.

Micro Benchmarks.
As our XnR solution only needs to protect executable

pages, the performance overhead is more distinct for applica-
tions that heavily jump between many code areas. Examples
of such are the Perl interpreter (benchmark 400.perlbench)
and XSLT transformers (benchmark 483.xalancbmk). The
other extreme are programs that heavily operate on data like
compression algorithms such as BZip2. In this case study,
we demonstrate the different memory access behavior by
picking prominent examples of their respective groups: Perl
for code-intense programs and BZip2 for data-intense pro-
grams.

As can be seen from Table 1, the different access patterns
(code vs. data) already result in different access times for
pages faults on an unmodified stock Linux. When run on
a Linux without our XnR solution enabled, the difference
is even more distinct as the heavy code execution of Perl
results in a slightly higher performance penalty. Figure 5
shows a distribution of page fault durations for the two dis-
tinct programs BZip2 and Perl. The graph shows that the
sliding window results in a higher amount of page faults for
the code-intense program Perl. In contrast, for the com-
pression algorithm BZip2 only a few more page faults are
generated for the relatively steady code access. However, the
additional checks on every access result in a slightly broader
distribution of page fault times. The total overhead in terms
of run-time for the same input is almost negligible for BZip2
(only 0.3% for n = 4), whereas the total runtime given the
identical input to Perl was increased by 7.0%.

Table 1: Microbenchmarks for data-intensive example
(bzip2) and code-intensive example (perl). Sliding window
set to n = 4.

Program
∅ Page Fault Page Faults / s

Stock
Kernel

With
XnR

Stock
Kernel

With
XnR

Bzip2 9.1 µs 12.9 µs 307 401
Perl 5.4 µs 8.3 µs 108 512
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Figure 5: Distribution of the duration of page faults that
have been triggered over a period of 2s.

Windows Performance.
We also evaluated the performance impact of our proof-

of-concept XnR implementation for Windows. The bench-
marks were conducted in a virtual machine with 2 GB of
RAM running on one core of an Intel Core i7-950 with
3.06GHz. Our tests show that the current implementation
introduces more overhead compared to the Linux version,
mostly due to the additional processing required in order to
make decisions on whether or not to allow an access before
the actual page fault handler is executed (see Figure 6 for
details).

On Windows, we used window sizes of n = 2, n = 4
and n = 8 with a selection of SPEC tools to illustrate the
effects of varying window sizes. While the performance is
not as good as on Linux, the results show that we can also
deploy XnR on a proprietary Windows system. With an
appropriate window size of n = 4, the overhead is on average
3.4%, but decreasing the window to only n = 2 results in
8.4% overhead.
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Figure 6: SPECint2006 benchmark suite for Windows show-
ing the performance for each of the 6 benchmarks dependent
on the parameter n.

5. RELATED WORK
The broad adoption of non-executable memory (write-xor-

execute (W ⊕ X) for short) successfully mitigates code in-
jection attacks. However, this defense primitive gave rise to
a form of attack that reuses existing code by intelligently
stitching small code fractions, so-called gadgets, together in
order to execute arbitrary code [10,12,14,27,36,38]. These
gadgets are well selected so that they end in an instruction
that transfers control to the next gadget, e.g. a return in-
struction which pops its target off the stack. Hence the name
return-oriented programming (ROP [38]).

ROP Detection and Prevention.
Over the last few years, code reuse attacks and their mit-

igation has been an ongoing cat and mouse game. Some of
the code reuse mitigation techniques address the problem at
its roots by preventing buffer overruns [5,6] or by confining
the control flow to the destined control-flow graph [4]. Sev-
eral efficient approaches for the enforcement of control-flow
integrity (CFI) were proposed over the years (e.g., [50,51]),
but recent research results suggest that an adversary can
easily bypass them [22].

Other mitigation techniques make it hard for the adver-
sary to guess or brute-force addresses that are necessary for
successful execution of malicious code. Besides the more
general control flow integrity [4, 16], there are two common



types of defenses proposed in the literature that were de-
signed to prevent or mitigate those type of attacks. (1)
Address Space Layout Randomization (ASLR [35]), which
was designed to make the addresses of functions and gad-
gets unpredictable, and (2) ROP gadget elimination, which
programmatically replaces basic blocks of a program with se-
mantically equivalent, but different instructions [25, 31, 32,
47].

The first category of defense (1) used finer and finer rando-
mization to counteract the fact that a single leaked pointer
may revert low-entropy randomization [39]. The different
randomizations solutions have different approaches, result-
ing in different entropy, and are applied at different stages of
the software lifecycle. While Bhatkar et al. [8] makes source
code self-randomizing, Kil et al. [26] modify the binaries on
disk. Another approach is to randomize the processes at
load-time, which gives a different randomization for every
process start [18, 47]. Hiser et al. [24] even randomize run-
ning programs dynamically, similarly to the execution of a
virtual machine.

The other category (2) randomizes instructions and reg-
isters within a basic block to mitigate return-oriented pro-
gramming attacks [32]. However, often those solutions can-
not prevent return-into-libc attacks, which have been shown
to be Turing-complete [45], since all functions remain at
their original position.

Over the last few years, several approaches to detect ROP
exploits at runtime such as kBouncer [33], ROPecker [15],
and ROPGuard [19] were also proposed. These methods
employ different heuristics to detect suspicious branch se-
quences hinting at an ongoing ROP exploit. Recent research
results suggest that such approaches can be bypassed by an
attacker since she can construct gadget chains that bypass
all proposed heuristics [13,17,23].

JIT-ROP.
Recently, Snow et al. [41] showed that given a memory dis-

closure vulnerability, it is possible to assemble ROP gadgets
on-demand without knowing the layout or randomization of
a process. They explore the address space of the vulnerable
process step-by-step by following the control flow from an
arbitrary start position. After they have discovered enough
ROP gadgets, they compile the payload so that it incorpo-
rates the actual current addresses that were discovered on
site.

Snow et al. also proposed potential mitigations of their
own attack. However, the proposed solutions are either very
specific to their heap spraying exploitation or are as general
and slow as frequent re-randomization of a whole process.
Note that the latter is potentially bypassable if the attack
takes place between two randomization phases.

Blind-ROP.
Bittau et al. [9] presented blind ROP attacks against server

processes with unknown binaries. Their attack consist of
three stages: First, they apply a stack reading attack to
bypass stack canaries and find the return address. Second,
they infer gadget positions by repeatedly altering the return
address on the stack and observing the server’s behaviour
when executing the code at the altered return address. They
end this stage once they found enough gadgets to perform a
write()-syscall to transmit the executable memory over the

network. Lastly, they scan the dumped binary for gadgets
to launch a common ROP attack.

While XnR successfully prevents the full attack (because
the third stage cannot read the executable memory), we have
to note that the second stage could still execute sucessfully.
However, the authors need a large number of request to find
even a single gadget, which makes finding enough gadgets
for a full ROP chain likely impractical.

Re-Randomization.
The only work that implemented and benchmarked re-

randomization was presented by Giuffrida et al. [21]. Based
on the LLVM framework, their Minix microkernel can re-
randomize itself every x seconds. However, this procedure
has a significant run-time overhead of 10% for a randomi-
zation every x = 5 seconds or even 50% overhead when
applied every second. Note that an attacker can potentially
abuse this long time window to perform a JIT-ROP attack.

To the best of our knowledge, in this paper we present the
first solution that prevents the general problem of memory
disclosure attacks conceptually, which makes it the first so-
lution that is secure against the new just-in-time ROP by
Snow et al.

Related Techniques.
Our implementation shares some properties with Shadow

Walker [43]. The common idea is to distinguish between
code and data accesses. However, Shadow Walker’s goal is
to hide code when it is read as data in order to evade detec-
tion. Additionally, they use very processor-specific caching
manipulation to achieve their goal while we only rely on
standard paging mechanisms.

Shadow Walker exploits the fact that the x86 CPUs use
two distinct caches, the ITLB (Instruction TLB) and DTLB
(Data TLB) to perform lookups of pages. While these are
usually transparent to the OS, it is possible to return dif-
ferent page translations depending on whether an access oc-
curred due to a data or code read and thus fill the caches
with inconsistent values. These are cached until evicted by
more recent entries. However, we chose not to use this tech-
nique as it is heavily dependent on the availability of split
TLBs and the actual implementation of the caching algo-
rithms. While these can be considered fit for our purpose
on basically all modern x86 CPUs, we wanted to show a
general solution that can be applied to architectures with
one TLB or even no TLB at all.

6. DISCUSSION
Our prototype implementations for Windows and Linux

show the general feasibility of our approach. However, sim-
ilar to W ⊕ X, to become widespread and usable without
restrictions, they need compiler support in the future. Be-
fore W⊕X was introduced, executing the stack was normal1

and a paradigm shift was needed to mark the stack not exe-
cutable by default. We have observered that both Windows
and Linux programs were linked so that the resulting exe-
cutable files contained data stored in the code segment. This
is not just semantically wrong, but also hindered our XnR
solution. While it was easy to fix open source programs by
re-compiling them with a modified linker script, the Win-
dows core DLLs remain closed source. With a change of

1E.g., trampolines need an executable stack



the default binutils linker script, XnR could become default.
The same is true if Microsoft changed their default linker to
put data in read-only data sections of the EXE and DLL
files, rather than code.

It is noteworthy that XnR prevents memory disclosures,
but the protected program might still suffer from a pointer
leakage vulnerability. This is possible because the address a
pointer represents is data even though it might point to code.
Such a leaked pointer (e.g., through a malformed printf)
may reveal function addresses. Therefore, the most simple
form of code reuse attacks—return-to-libc—would poten-
tially be possible. In a broader sense, the attacker could use
functions as very coarse grained gadgets. However, return-
to-libc attacks can be detected by the callee. The callee
needs to check whether the last address on the stack is its
own address. Usually, it must be any other address but the
callee’s address because it represents the return address of
the caller who used a regular call instruction. A call pushes
the return location to the stack, whereas a return pops the
address of the targeted function (callee) off the stack. This
prevention technique is a very simple form of control-flow
integrity checks [4, 16]. It could either be patched to the
prologue of every function by means of binary rewriting or
require compiler support.

Our XnR solution might hinder debuggers. On a Linux
machine, the gdb debugger reads bytes from the code section
and even overwrites bytes in the code section to place break-
points. This is prevented by XnR. However, we assume that
a developer using a debugger can also control the XnR ker-
nel featue in order to allow debugging. On Windows, debug-
ging is done from a remote process using ReadProcessMemory

(internally NtReadVirtualMemory) APIs and therefore is not
impaired by XnR.

7. CONCLUSION
We presented a novel technique that detects and prevents

the root cause of memory disclosure exploits. This thwarts a
whole attack vector that is based on those types of exploits,
most prominently attacks that exploit the disclosure vulner-
ability to disassemble the address space with the intent of
finding usable code for a code reuse attack.

Even though there is no hardware support yet for our
“Execute-no-Read”(XnR) primitive, our software emulation
shows benign programs are not affected by this new primi-
tive while XnR successfully prevents disclosure exploits be-
fore they could take effect. Our performance benchmarks
demonstrate that even the software implementation has a
rather low overhead of just 2.2% (Linux) and 3.4% (Win-
dows). To stimulate future research on this topic, we are
making our XnR implementation available in support of
open science.
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