
AmazonIA: When Elasticity Snaps Back

Sven Bugiel*, Stefan Nürnberger*, Thomas Pöppelmann†,
Ahmad-Reza Sadeghi*†, Thomas Schneider*

*System Security Lab / CASED,
Technische Universität Darmstadt, Germany

†Fraunhofer SIT,
Darmstadt, Germany

ABSTRACT
Cloud Computing is an emerging technology promising new
business opportunities and easy deployment of web services.

Much has been written about the risks and benefits of
cloud computing in the last years. The literature on clouds
often points out security and privacy challenges as the main
obstacles, and proposes solutions and guidelines to avoid
them. However, most of these works deal with either ma-
licious cloud providers or customers, but ignore the severe
threats caused by unaware users.

In this paper we consider security and privacy aspects of
real-life cloud deployments, independently from malicious
cloud providers or customers. We focus on the popular
Amazon Elastic Compute Cloud (EC2) and give a detailed
and systematic analysis of various crucial vulnerabilities in
publicly available and widely used Amazon Machine Images
(AMIs) and show how to eliminate them.

Our Amazon Image Attacks (AmazonIA) deploy an auto-
mated tool that uses only publicly available interfaces and
makes no assumptions on the underlying cloud infrastruc-
ture. We were able to extract highly sensitive information
(including passwords, keys, and credentials) from a variety
of publicly available AMIs. The extracted information al-
lows to (i) start (botnet) instances worth thousands of dol-
lars per day, (ii) provide backdoors into the running ma-
chines, (iii) launch impersonation attacks, or (iv) access the
source code of the entire web service. Our attacks can be
used to completely compromise several real web services of-
fered by companies (including IT-security companies), e.g.,
for website statistics/user tracking, two-factor authentica-
tion, or price comparison. Further, we show mechanisms to
identify the AMI of certain running instances.

Following the maxim “security and privacy by design” we
show how our automated tools together with changes to the
user interface can be used to mitigate our attacks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’11, October 17–21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-0948-6/11/10 ...$10.00.

Categories and Subject Descriptors
K.6.5 [MANAGEMENT OF COMPUTING AND IN-
FORMATION SYSTEMS]: Security and Protection

General Terms
Security

Keywords
Cloud Computing, Privacy, Awareness, Attacks, App Store,
Virtual Machine Images, Secure Shell

1. INTRODUCTION
Cloud computing offers fine-grained IT resources, includ-

ing storage, networking, and computing platforms, on an
on-demand and pay-per-use basis. The high usability of to-
day’s cloud computing platforms makes this rapidly emerg-
ing paradigm very attractive for customers who want to in-
stantly and easily provide web-services that are highly avail-
able and scalable to the current demands [36].

In the most flexible service model of cloud computing,
Infrastructure-as-a-Service (IaaS), customers can build en-
tire virtual infrastructures by renting resources like storage,
network, and computing platforms in form of virtual ma-
chines with administrative access to the whole operating sys-
tem. Images of these virtual machines can easily be shared
to be run by other users, similar to an app store for the
cloud.

Albeit the various advantages of cloud computing, serious
concerns about security and privacy hinder many users from
“going into the cloud”. Most solutions to preserve security
and privacy in the cloud proposed so far consider potentially
faulty/malicious cloud providers or technical savvy/rogue
customers. However, the much more serious and ubiquitous
threat of unaware users who unintentionally harm their own
or others’ security or privacy is often overseen.

The main goal of this paper is the investigation and eval-
uation of security and privacy threats caused by the un-
awareness of users in the cloud. Although the methods and
techniques described in this paper are applicable to arbitrary
IaaS providers, we focus on one of the major cloud providers,
Amazon’s Elastic Compute Cloud (EC2) [5] and adapt our
terminology accordingly. In the following, we describe the
players involved in the (Amazon) Cloud App Store and the
resulting security challenges.

The Cloud App Store. As shown in Fig. 1, the Cloud
App Store involves a Provider and typically two kinds of
users, Publisher and Consumer. The Provider, Amazon in

our case, operates the IaaS cloud infrastructure, authenti-
cates users and bills them for the resources they consumed.

The Publisher creates and publicly offers cloud apps, called
Amazon Machine Images (AMIs). For this, he selects an ex-
isting AMI (AMI-1 in Fig. 1), instantiates it (Instance-1AMI-1),
logs into the running instance to configure it, and finally
publishes a snapshot as a new AMI (AMI-2).

The Consumer selects this AMI from a list of available
AMIs, instantiates it (Instance-2AMI-2), and uses it for her
purposes. Optionally, a Publisher can declare an AMI as
paid AMI to earn money from Consumers invoking it.

!"#$%&'((&
)*#+,&

-.&/#012$+,& 3.&405*6076*,&

8.&$5,&

9.&($:"45;&

<.&405*6076*,&

!"#$%&'()*

+,-&".()*

!),/%0()*

=05*60/,>3'?=>3&

=05*60/,>-'?=>-&

'?=>3&

'?=>-&

Figure 1: Basic System Model of Cloud App Store

The Cloud App Store poses security challenges for both,
Consumers and Publishers (see also [48, 17]).

Security of Consumer. The Consumer must trust the
Publisher not to include any malware into the AMI. Such
a malicious AMI could contain a Trojan horse that spies
on or modifies the Consumer’s data, or a backdoor for mali-
cious remote login. Even though full protection against such
malicious AMIs is almost impossible, filters, virus scanners,
and rootkit detectors could provide at least some level of
protection [48].1

Security of Publisher. The Publisher on the other hand
might accidentally publish AMIs that contain highly sensi-
tive information. Examples include keys, credentials, pass-
words, command history/log files, or source code.

Although Amazon’s user guide recommends to ensure that
all confidential information is removed before publishing an
AMI [12, Sharing AMIs Safely], many users seem to be un-
aware of the crucial consequences of ignoring these recom-
mendations, do not have the appropriate tools at hand, or
simply forgot private data in their AMIs.

The Gap between Theory and Practice. The Pro-
vider could filter AMIs for Trojans, backdoors, or confiden-
tial information to reduce the chance of malicious or sen-
sitive data within AMIs. This was proposed in [48], but
although the automated filtering system presented in that
paper seems to be used already within the IBM Smart-
Cloud [32], the explicit filtering rules are not available to
the public.

In contrast, Amazon currently does not provide automated
scanning of public AMIs as they are not responsible/liable
for what users do with their own data. Though Amazon
quickly reacts on incidents reported to their security hotline

1In principle, this is similar to mobile app stores where
downloaded apps must be trusted as well. Recently,
Google’s mobile app store withdrew 25 Android apps that
were infected with malware [13]. As such attacks also
harm the reputation of the mobile app store provider, some
providers already review new apps submitted to the store to
ensure that they perform as expected [9, 31].

and informs affected customers, e.g., those running an AMI
in which a backdoor was found [15].2

In this paper we show that these previously reported inci-
dents are only the tip of the iceberg and many of the publicly
available AMIs have severe security vulnerabilities leaking
highly sensitive data.

Our Contribution and Outline.
After summarizing related work in §2 and giving back-

ground information on the Amazon Web Services (AWS)
in §3 we present the following contributions.

Extraction of Sensitive Information from Public
AMIs (cf. §4). Through an extensive analysis we were able
to extract highly sensitive information from several publicly
available EC2 AMIs. To make the analysis cost and time
effective we developed an automated tool that uses different
search strategies and exploits technology specific aspects of
the Amazon cloud. The costs for running our attack were
less than $20 while the information we extracted from the
AMIs would allow an attacker to cause financial damage of
several $10, 000 per day and could severely harm the reputa-
tion of several companies that operate services in the cloud.
After testing overall 1225 AMIs we got hold of the source
code repositories, administrator passwords and other types
of credentials of various web service providers.

SSH Vulnerabilities in AMIs (cf. §5). We discovered
several vulnerabilities in AMIs that are introduced by incor-
rect usage and configuration of SSH. About one third of the
tested 1100 public AMIs in Europe and the US-East region
contain an SSH backdoor, i.e., a (forgotten) public key that
allows remote login for the Publisher. We identified multi-
ple instances that use the same SSH host key which allows
an external attacker to correlate these instances running the
same or a similar AMI, identify candidates for corresponding
public AMIs, and mount several attacks, e.g., host imper-
sonation.

Countermeasures (cf. §6). We provide several mech-
anisms to protect against our attacks on public AMIs. Be-
sides organizational measures we propose to use our tools to
enhance the security of the interfaces for publishing AMIs
and also extensions to the interface of the Cloud App Store.

2. RELATED WORK
In this section we briefly revisit previous work on the se-

curity challenges of publicly sharing Virtual Machine (VM)
images (AMIs in our terminology) on which we build our
practical attacks. Afterwards we review the main related
work on general cloud security, security aspects specific to
the Amazon cloud, and methods for searching private data.

VM Image Analysis.
As summarized in §1, security and privacy risks for the

Consumer and Publisher when sharing VM images have
been identified in [48]. Shared VM images may contain ei-
ther malware that was intentionally or unintentionally in-
cluded by the Publisher. To protect against these threats,
the authors propose filtering of VM images by the Provider
which has been implemented in the Mirage image manage-

2“For security reasons, we (Amazon) recommend that any
instance based on a publicly available AMI that is dis-
tributed with an included SSH public key should be con-
sidered compromised and immediately terminated.” [14]

ment system [38]. The IBM SmartCloud [32] deploys a sys-
tem that is presumably based on (a mechanism like) Mi-
rage for automated patching [52] and periodical malware
scans [41] of public VM images.

We show that the risks pointed out in [48] ubiquitously
occur in Amazon’s Cloud App Store and have more severe
consequences than previously thought. As our results show,
Amazon does not apply any centralized filtering as proposed
in [48], and considers this as the responsibility of cloud users.
As countermeasure against these threats we propose tools
and extensions to the user interface of the Cloud App Store
that allow even technically less skilled users to protect their
published AMIs from containing sensitive data.

General Cloud Security Challenges.
The risks and threats for cloud computing as analyzed in

[23, 26, 21, 45] concern mainly the vulnerabilities inherent
to cloud infrastructures, e.g., protection of the outsourced
data and computations against eavesdropping and illegiti-
mate modifications; new threats induced by sharing phys-
ical resources with other users’ VMs (multi-tenancy); non-
availability of the users’ outsourced data and cloud-based
services; or vendor lock-in to a single provider.

The security threats induced specifically by the usage mo-
del and capabilities of VMs, e.g., massive scalability and VM
snapshots, i.e., copies of the current state of a VM, were dis-
cussed in [29, 40, 24]. These threats include, e.g., the roll-
back of a VM to an already compromised state, the conflict
between traditional security management systems and the
VMs’ flexibility, or the loss of entropy upon state rollback
affecting the freshness needed for cryptographic mechanisms
and protocols.

Recent guidances and best practices aim at mitigating
these threats and securing cloud computing [35, 22]. How-
ever, we show that many Publishers and Consumers do not
adhere to these recommendations.

Amazon Specific Cloud Security Challenges.
The documentation of the Amazon Web Services (AWS)

[8] contains several relevant security guidelines. Moreover,
the Elastic Compute Cloud (EC2) [5], an integral part of
AWS, has recently been subject to scientific and industrial
security research as summarized next.

AWS Security Recommendations. An overview of
the security processes in the AWS cloud infrastructure is
given in [47]. Further, Amazon provides security guidelines
and best practices on how to use AWS [19], including ad-
vises and references [43] on how customers can secure their
AWS credentials in EC2 instances with respect to the risk
of unintentionally embedding them in public AMIs. How-
ever, the proposed solutions require technical knowledge of
the AWS mechanisms which conflicts with the high usability
of the Cloud App Store. Thus, Cloud App Store users are
either unaware of the security risks/guidelines or are only
capable of using the store but not of implementing the secu-
rity guidelines. This assumption is underlined by the high
number and severity of our findings.

VM correlation. The possibility to gain insight into the
EC2 network topology, and how to exploit this knowledge
for placing a malicious VM A purposefully on the same phys-
ical host as a specific foreign VM B, and finally to eavesdrop
on VM B via side-channels, was demonstrated in [39]. Our
SSH correlation attack (cf. §5) provides additional informa-

tion about running VMs that can be used to enhance their
approach.

Malicious VMs. The attacks presented in [17] exploit
design flaws of the EC2 Cloud App Store such as phishing
by publishing a malicious AMI that appears high in the list
of available AMIs. Our countermeasures proposed in §6 can
be used to mitigate these attacks.

Private Data Search.
Several methods and sources exist to search for uninten-

tionally leaked private data in public resources. Examples
include recovery of sensitive data from second-hand hard-
drives [28], or “Google hacking” [16, 46] which allows to
query the Google search engine to find private information
in its indices, e.g., private keys, hashed passwords, or private
information about a person.

3. BACKGROUND ON AWS
In this section we recall the main aspects of the Ama-

zon Web Services (AWS) [8]: the Amazon Elastic Compute
Cloud (EC2) [5] in §3.1 and authentication to AWS in §3.2.
For detailed information we refer to Amazon’s documenta-
tion on AWS [18]. Readers already familiar with AWS can
skip this section.

3.1 Amazon’s Elastic Compute Cloud (EC2)
In 2006, Amazon introduced the Elastic Compute Cloud

(EC2) [5] as part of the Amazon Web Services (AWS). It al-
lows users to run Virtual Machines (VMs) on-demand on the
infrastructure provided by AWS. The VMs behave similar
to a physical server and contain a full-blown operating sys-
tem (currently supported are various Linux distributions,
FreeBSD, OpenSolaris, and Windows). Running VMs are
called instances and isolation between instances is enforced
by the XEN hypervisor [19]. Fig. 2 illustrates the instantia-
tion of VMs from Amazon Machine Images (AMIs) via the
AWS Cloud App Store. When a Consumer starts a VM, she
has to specify 1) an AMI from which the instance is derived
(AMI-ID), 2) a type defining the resources available to the
instance (Type), and 3) the geographical region in which the
VM is deployed (Region) as described next.

Region and Type.
The Region defines one out of five EC2 data centers (two

in the US, one in Europe, and two in Asia). To guarantee
failsafe operation, each data center of a region is currently
split into two or more independent availability zones.

The Type specifies how many resources are allocated for
the instance (CPU, RAM, temporary disk space, speed of
the network connection) and determines the costs ranging
from $0.02 to $2.10 per instance operation hour. Besides
costs for running instances, the user is also monthly charged
for I/O usage and consumed network bandwidth.

Amazon Machine Images (AMIs).
Amazon introduced the concept of pre-built VM image

templates, called Amazon Machine Images (AMIs) for rapid
deployment of instances. An AMI contains a whole operat-
ing system together with applications and data. When an
instance is started, a copy of the selected AMI is booted and
control over the instance is handed over to the user. AMIs
are managed in the Cloud App Store and are either provided

!"#$%&'()

!"#$"%&'('
)*+,-,./'012"/'!"34567!

,6%&869"-,.!

*+,)

:;5$<'*22'=&5>"'

-!.) ,/)

?@='
*+,-,.'A5;$B"':521'

*C'?@=-D89E"<! 0C'=F-D89E"<!

G"D',6&">H89"'

*+,-,.'

=F'=&5>83"'

,6%&869"-,.*+,-,.'

Figure 2: VM instantiation in Amazon AWS. The Consumer chooses the image (AMI-ID), resources (Type),
and availability zone (Region) for her VM on the Web Interface of the AWS Cloud App Store. Depending on
the type of the AMI, the VM is instantiated (Instance-IDAMI-ID) either as (A) EBS-backed or (B) S3-backed.

directly by Amazon or by third party publishers. Users can
take these public AMIs to create their own AMIs which are
either kept for themselves (private AMIs), made accessible
to a group of users (shared AMIs), or made publicly avail-
able for every user of EC2 (public AMIs) as shown in Fig. 1.
AMIs are further distinguished by the storage type they are
based on – either S3 or EBS – as described next.

S3-backed AMIs. S3-backed AMIs are stored on the
highly available Simple Storage Service (S3) [7]. As shown
in Fig. 2, S3-backed AMIs are instantiated by first copying
the image onto the hard drive of a physical EC2 node which
then boots the image. A new S3-backed AMI can be created
from within a running S3-backed instance by a process called
bundling, which stores the current state of the instance’s file
system on S3 and registers this state with the Cloud App
Store as new AMI. The data in an S3-backed instance is only
persistent for the life of the instance and lost upon instance
termination or failure. This resembles the usage model of a
live CD.

EBS-backed AMIs. EBS-backed AMIs reside on the
Elastic Block Storage (EBS) [4]. EBS offers persistent, at-
tachable block devices, called volumes, which can hold an
arbitrary file system. When a user instantiates an EBS-
backed AMI, a bitwise copy of the image is created on EBS
and the VM is started from this new image as shown in
Fig. 2. Storing the instance’s data persistently on an EBS
volume enables the user to stop the execution of an EBS-
backed VM. He then has only ongoing costs for the storage
occupied by the block device. New EBS-backed AMIs are
created by storing a bitwise copy of the current state of a
volume, called snapshot, on EBS and registering this snap-
shot with the Cloud App Store as new AMI. EBS volumes
cannot only be used to hold bootable AMIs, but are also a
general way to store persistent data. They can be attached
on-the-fly to running instances (comparable to a USB flash
drive in the cloud).

Networking.
All instances are executed in an environment which pro-

vides logging, monitoring, and security capabilities such as
a simple firewall for inbound traffic (cf. [20]). On startup,

the instance is assigned an external IPv4 address for Inter-
net connectivity and an internal address for communication
with other EC2 instances. The user is only charged for data
traffic with the Internet over the external address.

3.2 Authentication in AWS
AWS uses different authentication mechanisms to provide

authenticated access to the AWS account and to running
instances as described next.

Authentication to the AWS Account. During the
initial account creation and verification, an AWS Customer
associates her email address with an AWS account, selects
a password, and provides credit card and personal informa-
tion for the monthly billing. After successful verification by
Amazon she obtains a password to log into a web manage-
ment system where she can inspect log files and the current
account activity, change personal information, and manage
instances. In this web management system, the Customer
can register credentials for an Application Programming In-
terface (API) to control the life cycle of an instance by means
of tools provided by 3rd parties or Amazon [34]. We refer to
those credentials as API keys.3 The API keys can be used
for example to start or terminate instances, create EBS vol-
umes, or to register public images. Moreover, API keys are
required within an S3-backed instance during the bundling
of the same instances in order to access the S3 storage. How-
ever, API keys do not provide direct access to personal or
credit card information.

Authentication to Instances. After an instance has
been started, the control needs to be securely transferred to
the Customer by providing her with a secure and authenti-
cated login channel. For this, Linux/Unix-based instances
commonly use Secure Shell (SSH) [51]. Here, a customer
generates an SSH key pair (pk, sk) and registers the public
key pk with AWS. Upon instantiation of an AMI, this key is
automatically made available to and imported by the SSH
server running in the newly created instance and can be used
for secure logins of the user who holds the corresponding se-
cret key sk.

3Technically, API keys provide authorized access to a SOAP,
Query, or REST-based web service.

4. AMI PRIVACY ANALYSIS
By systematically examining only little more than 10%

of all public Linux-based AMIs we were able to extract a
lot of private information. The results of our analysis are
summarized in §4.1. To automate the analysis we imple-
mented a tool as described in §4.2. We calculate the costs
for analyzing all AMIs in §4.3 and discuss the reasons for
and implications of our analysis in §4.4.

4.1 Our Findings
We analyzed a total of 1225 AMIs in the European and

US-East region of the Amazon EC2 cloud. In our privacy
analysis of these AMIs we discovered AWS API keys, pri-
vate keys and credentials, and private data, including source
code. For each of these categories we describe the possible
threats and our findings next. A summary of our findings
in EBS-backed AMIs is given in Tab. 1.

Finding US-East-1 EU-West-1

Analyzed AMIs 550 (100%) 550 (100%)
AWS API Keys 12 (2%) 2 (0.35%)
SVN Credentials 4 (0.7%) 3 (0.55%)
SSH/SSL User Keys 14 (2.5%) 5 (0.9%)
SSH Host Keys 205 (37%) 122 (22%)
SSH Backdoor 253 (46%) 93 (16%)

Table 1: Summary of the Findings of our Privacy
Analysis of Public EBS-backed AMIs (April 2011)

4.1.1 AWS API keys
Our most significant findings are API keys (cf. §3.2) which

could be used to abuse the AWS account of the AMI Pub-
lisher. Those keys had been used by the Publisher of the
examined AMIs to query the AWS API, in most cases for
authorization before publishing and registering the running
instance as new AMI.

Threats. The presence of AWS API keys in public AMIs
is a very serious threat to the owners of those keys. It allows
the adversary to destroy the victim’s virtual infrastructure
or to create his own infrastructure at the expense of the
victim [23]. For example, an attacker could discover multi-
ple API keys in the public images of other customers. He
then creates a public image of his own, which is configured to
mount a DDoS attack against a chosen target. Using the dis-
covered API keys he is able to instantiate several instances
of his DDoS-image and run the attack at the expenses of
the API keys’ holders. This is in particular a problem as
it is currently not possible to set a maximum limit of costs
to prevent excessive usage in case of an accident (e.g., mis-
configuration) or security breach [1]. With one AWS API
key an attacker can cause costs of more than $3000 per day
for running instances and additional charges for traffic and
storage (cf. calculation in §A). Moreover, before the intro-
duction of improved key management with the Identity and
Access Management (IAM) [10] service in September 2010,
customers had to use a single API key to control all their
AWS services like EC2, the S3 storage or the SimpleDB
database [42] engine. It seems that many EC2 customers
have not migrated to this new service yet, e.g., because of
unawareness or of being technically overwhelmed, and thus
a discovered API key can be used to extract private infor-
mation also from AWS services beyond EC2.

Findings. We retrieved 20 AWS API keys from S3 and
EBS-backed AMIs in the US-East and European region.

4.1.2 Private Keys and Credentials
Private keys and login credentials are quite frequently

stored or cached on a computer’s hard drive. For instance,
they are used to login to other hosts via SSH or to provide
secure communication channels using SSL certificates.

Threats. Although most private keys are encrypted with
a password when stored on disk, this data can be recov-
ered [50]. Thus, these unintentionally published keys and
credentials can compromise the security of the Publisher’s
IT infrastructure. For instance, an attacker can use private
keys of SSH user authentication to log in to other hosts the
key is authorized for. These hosts may be located within the
virtual infrastructure of the Publisher in the cloud or even in
the conventional IT infrastructure of the Publisher. Leaked
private keys of valid SSL certificates that are used on com-
mercial websites/services would allow an attacker to carry
out man-in-the-middle attacks on those sites or implement
ideal phishing attacks.

Findings. We discovered 16 unencrypted private keys
for SSH user authentication, 3 unencrypted private keys of
valid SSL certificates, and various other private keys. Most
of the SSH keys we found were associated with an account
with administrative privileges.

4.1.3 Private Data
Most AMIs contain information about their Publisher, re-

sulting from the configuration and usage of the instance from
which the AMI was created. This information can be ob-
tained by analyzing, e.g., log, cache, or configuration files.

Threats. Private data can be used to profile Publishers,
e.g., to identify their name, email address, other hosts they
connected to, browser history, or their affiliation. The value
of private information found by a random attacker is hard
to estimate. However, leakage of private information might
harm the reputation of a person or company, cause financial
harm, or even entail legal consequences.

Findings. In one particular AMI we found a picture of
the owner of the AMI, holding a badge stating his name
and employing company. In other cases we were able to find
out the name of the AMI publisher by using information
in the bash history and the name of the SSH key used for
login. However, we cannot give concrete numbers as privacy
violations are hard to categorize.

4.1.4 Source Code
The Amazon cloud is well suited for software development

and testing of new software products and especially start-up
companies make use of it.

Threats. Obtaining and analyzing source code of new
proprietary applications or websites allows an attacker to
steal unpublished ideas and concepts. Moreover, it gives him
enough insight to mount further attacks on these products
(or their users) and even the ability to insert malicious code
if he gains access to the source code repository.

Findings. We obtained credentials for 7 different private
source code repositories. Most of these repositories were
operated by businesses and the repository’s copy stored in
the AMI contained highly valuable intellectual property and
hard coded passwords for administrative access.

!"#$%&'()

*+),"-.#"/#.')
!01)

2$345)!66)
7.3(')

!87)

9+)-'#(:;)

<+),"-6':.)

=+)-.3(')

1"-.#":'>9!01>9)

1"-.#":'>*!01>*)

?)

1"-.#":'>9!01>9)

!"#$%&

!"#$'&

!"#$(&

@'-4$.)
7.3(#A')

Figure 3: Approach for Analysis of AMIs

4.2 Tool for AMI Privacy Analysis
Next, we explain our tool for privacy analysis of AMIs and

give details on its technical background and our strategy for
cost- and time-efficient attacks. We have implemented our
tool in the Python programming language and made use
of the Boto library [34] in order to access the AWS API.
We concentrated our analysis on Linux based AMIs, which
form the majority of the provided AMIs (see [11] for detailed
statistics), and thus designed our tools specifically for the
Linux directory structure and key formats.

Fig. 3 depicts our approach of iteratively inspecting public
AMIs for private information. It consists of (1) the instanti-
ation of target AMIs, (2) the search for fingerprints, private
information, or keys, and (3) the storing of the results in a
data store. The last step (4) is a semi-automated inspection
and analysis of all findings.

We describe how our tool accesses the data inside the
AMIs (§4.2.1) and extracts private content from it (§4.2.2).

4.2.1 AMI Access
In order to analyze an AMI we mount its volume directly

into the file system of our Analyzer instance (cf. Fig. 3). By
running it in the cloud, we avoid expensive network traffic
(e.g., downloading the image) and are able to profit from the
scalability of cloud computing. Further by mounting target
AMIs as volumes or via the SSH File System (SSHFS) [44]
we minimize assumptions on the environment our analysis
tools runs in (e.g., software dependencies). We describe the
two methodologies in more detail next.

SSHFS. The SSHFS allows to mount remote volumes into
the local file system by means of the SSH protocol. As SSH is
the standard tool to perform system administration on EC2
Linux based instances and thus is supported by most AMIs,
this approach is widely applicable. Although this method
does not make any restrictions on where the Analyzer is
run (e.g., it could be executed on a local host), deploying it
on a dedicated EC2 instance reduces the network overhead
significantly. Moreover, Amazon does not charge for cloud-
internal data traffic.

EBS-Mount. Analyzing EBS-backed images is substan-
tially faster than using SSHFS as EBS volumes provide raw

Pattern Explanation (Common Usage)

*.pem Specifies a file containing a private key,
public key or a certificate

*.priv File extension for private keys
*.pub Used to store public keys
*.crt C ert ificates
id rsa Default file name of private SSH keys
*.gpg | *.pgp Files related to use with the encryption

and signing application GPG/PGP
*.jks Acronym for Java key-store [37]
secret | *key*
| *private*

Potentially interesting files

.bash history User’s history of executed commands

.svn/ | .git/ | .hg/ Common source code repositories

Table 2: Example of Search Patterns (∗ denotes the
wildcard character and | alternatives)

disk access. As described in §3.1, EBS-backed images are
stored on and booted from EBS volumes. Therefore, our
analyzer tool first starts a public EBS-backed AMI to instan-
tiate it on a new EBS volume. By dissolving the mapping
between this instance and the new volume its file system is
stored on, the tool obtains the EBS volume that contains the
AMI to be tested. This EBS volume is then mounted by the
Analyzer instance. This method allows also to analyze EBS-
backed AMIs that are explicitly configured without SSH ac-
cess (e.g., to protect the source code of an appliance).

4.2.2 Extraction of Private AMI Content
Once an AMI is mounted into the file system of the An-

alyzer instance, the Analyzer searches for keys and private
information in the AMI and stores its findings locally for
later evaluation. Some of the patterns for file or directory
names that our tool is searching for are listed in Tab. 2.
These patterns include common names for key files/stores,
shell history files, and source code repository directories.

The primary targets of the automated search are high-
value findings, i.e., private keys and credentials, usually to
be discovered in the home directories of users, the home
directory of the superuser (root), and common locations for
(custom) programs and configuration files.

If a search result indicates the presence of further, not
automatically discovered private data, e.g., a source code
repository directory was found or the shell history is non-
empty, we manually investigate the corresponding AMI for
further findings such as source code or private information.

Forensic Analysis of EBS Volumes. As described in
§3.1, EBS-backed AMI instances are created as a bitwise
copy of the original AMI volume they are derived from and
hence provide access to raw blocks on the newly created
volume. This enables our analyzer to apply forensic meth-
ods [28, 27] in order to recover and scrutinize deleted files
which may contain private information.

4.3 Costs for AMI Privacy Analysis
Our analysis tool described in §4.2 currently takes ap-

proximately 10 minutes to start and completely analyze an
AMI. However, as Amazon charges for each started instance
hour [3], the costs for starting an AMI are one instance hour.
For EBS-backed AMIs the smallest available type is the“Mi-
cro” instance for $0.03/h. The costs for S3-backed AMIs

depend on the AMI’s architecture: a 32-bit S3-backed AMI
can be started as “Small” instance for $0.10/h while 64-bit
AMIs only support the “Large” instance type for $0.40/h. A
medium scale analysis can even be done “for free” as Ama-
zon offers free services to new customers in the first year
(currently 750 “Micro” instance hours per month plus some
storage and traffic volume).

Costs of Our Analysis. During our analysis, we exam-
ined 1225 AMIs (100 S3-backed 32-bit AMIs, 25 S3-backed
64-bit AMIs and 1100 EBS-backed AMIs). As we have split
our analysis into two months, the costs for starting the EBS-
backed AMIs were covered by the free offer and for the S3-
backed AMIs we paid in total $20.

Costs for Analyzing All Public AMIs. Scanning all
free and Linux based 9864 public AMIs that are currently
available4 (cf. Fig. 4) would cost approximately $1550: Start-
ing all AMIs would cost around 3058“Micro” instance hours,
4449“Small”instance hours, and 2357“Large”instance hours
to start all AMIs. As the Analyzer component of our tool
takes on average 10 minutes per AMI this adds 9864∗10

60
=

1644 “Micro” instance hours. We note that such an exhaus-
tive search can be highly parallelized and therefore carried
out very fast, e.g., in less than one day with 70 analyzing
instances, without increasing the costs.

1219

558 525 487
269

2894 701 368 316 170

1452

366

248
181

110

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

US-East EU-West US-West AP-Southeast AP-Northeast

S3-backed (64-bit)

S3-backed (32-bit)

EBS-backed

Figure 4: Linux Based Public AMIs per Region

Attack Optimization. One could even reduce the costs
for the attack to almost zero by first scanning public AMIs
that are likely to contain AWS API keys and then using
these keys to start further analyzer instances at the expense
of these initial victims. Candidates for the initial attacks are
AMIs from inexperienced or unaware users, i.e., those who
published only few AMIs or give suspicious names to their
AMIs such as “backup” or “test”.

4.4 Discussion
We discuss the reasons for and implications of our suc-

cessful extraction of private information from public AMIs.

Reasons for Forgotten AWS API Keys.
We discovered AWS API keys in both S3- and EBS-backed

AMIs. Our inspection of S3-backed AMIs revealed that
those keys were unintentionally included during the bundling

4Note that the number of public AMIs changes frequently.

process when the AMI was created. Since S3-backed in-
stances require an API key within the instance for bundling,
the success rate to find API keys within this kind of AMIs
is high. Our inspection of EBS-backed AMIs showed, that
the Publishers used their API keys within their instances
in order to access further AWS services such as S3 or EBS
storage, and that the Publishers simply forgot to delete the
key before publishing.

EBS Specific Problems.
In general our analysis shows that EBS-backed images

contain more private information than S3-backed AMIs. We
attribute this to the fact that data in EBS-backed instances
is persistent (cf. §3.1). In fact, EBS-backed AMIs are much
more dangerous than S3-backed AMIs for various reasons:

Loss of intellectual property. Publishers who want
to protect their intellectual property by limiting access to
the actual VM should not distribute it as an EBS-backed
AMI. Indeed, in our analysis we found appliances which were
configured explicitly without SSH access but could easily be
inspected by mounting them as EBS volumes (cf. §4.2.1).

Forensic attacks. EBS backed AMIs or EBS volumes
that once contained any valuable information, should not
be made public. By applying forensic methods [27, 28] on
a raw EBS volume we were able to reconstruct and inspect
several deleted files, containing private information.

Snapshots. Snapshots are non-bootable EBS volumes
with the purpose to ease sharing of (large volumes) of data.
Snapshots can be created as new volume and filled with
data, but they can also be created from instances. Thus,
they also bare the risk of unintentionally publishing (foren-
sically retrievable) private information. For instance, a first
analysis of various snapshots revealed a private picture of
the Publisher.

5. CLOUD SPECIFIC SSH THREATS
In this section we discuss vulnerabilities of the Secure Shell

(SSH) protocol [30], which result from the cloud’s dynamic
nature and the usage model of AMIs. In particular, we eval-
uate SSH-based backdoors of instances (§5.1) and present
new attacks due to the SSH-based identification of the AMI
from which an instance is derived (§5.2).

SSH provides confidentiality and integrity, supports asym-
metric key pairs for user authentication (sku, pku) and for
host authentication (skh,pkh). The SSH protocol is well-
established and is the primary method for remote admin-
istration of Linux based instances in EC2 (cf. §3.2). For
details on authentication in SSH we refer to §B.

5.1 AMIs with SSH Backdoor
Recently, Amazon informed several of its customers that

a public AMI contained an SSH user authentication key pku
and thus a backdoor allowing the publisher of the AMI who
holds the corresponding sku to log into instances derived
from that particular AMI [15]. Amazon strongly advises
customers to terminate such instances and regards them as
compromised [14]. However, this problem is not an isolated
incident and, as we will show in this section, many of the
publicly available AMIs contain SSH backdoors.

Threats. An SSH user authentication key deployed in a
public AMI poses a severe threat to the AMI Consumer’s
privacy, as the key owner is able to log in to the affected
Consumer’s instances. A potentially malicious Publisher

is thus able to deliberately eavesdrop or modify the Con-
sumer’s data and services in the instance.

Findings. Our analysis revealed that 30% of the 1100
analyzed EBS-backed AMIs in the European and US-East
region at the time of the analysis contained pku and thus a
backdoor for the AMI Publisher (detailed numbers are given
in Tab. 1). By examining the affected AMIs we discovered
that the backdoor problem is not limited to AMIs created by
individuals, but also affects appliances of well-known open-
source projects and even of companies that offer IT-security
products. Moreover, our investigation yields that an over-
whelming number of AMIs allows SSH login and that most
users have administrative privileges5.

5.1.1 Approach
Our approach to identify AMIs with a SSH backdoor is

based on our analysis tool presented in §4.2. For this, we
analyzed the .ssh/authorized keys file. It is located in the
users’ home directories and contains the public keys pkui

of
users that are allowed to log in.

5.1.2 Discussion
Reasons for Forgotten Public Keys. The reasons why

such a huge number of AMIs contain backdoors for the Pub-
lisher are similar to those for unintended inclusion of private
information as discussed in §4. However, the Publisher has
no strong incentives to remove his public key before publish-
ing an AMI, as the only negative consequence of not doing
this is that he can be traced among AMIs.

Countermeasures against SSH Backdoors. In case
a Consumer decides that she wants to run a particular AMI
(e.g., because of the unique features offered by this AMI),
she should check the authorized keys file in every home di-
rectory and delete all public keys pku (except for her own).
In addition to that she should examine the configuration of
the SSH server in case other authentication methods (like
insecure password authentication) are enabled or other lo-
cations for authorized keys are specified. Another counter-
measure is to use the Amazon provided inbound firewall to
generally restrict the IP range from which users are allowed
to login via SSH. It also supports features for the implemen-
tation of a multi-tier infrastructure with a central gateway
that validates access attempts to other instances [20].

5.2 AMI Identification via SSH
Some public AMIs contain an SSH host key pair (skh, pkh)

which is generally used to prove the identity of the remote
host to the client during login (cf. §B for details). Usually, a
host key pair is generated from fresh entropy when installing
SSH or the operating system. However, in cloud apps, where
instances of an AMI are only a copy of the hard drive’s state
of an already configured machine, the SSH host key pair is
not regenerated. Hence, all instances of an AMI are using
the same SSH host key pair.

The severity of this vulnerability can be amplified by com-
bining it with the technique for extracting information from
public AMIs described in §4.2. The attacker can examine
several (or all) public AMIs and extract the SSH host key
pairs (skh, pkh) from it. Afterwards, he can use the host key
fingerprint f(pkh) of an instance to look up the correspond-
ing public AMI and the secret key skh.

5Many Linux distributions for EC2 allow the default user to
execute commands as superuser via “sudo”.

Attack Prerequisites

Correlation of System Config. -
Whitebox Attacks

public AMI identified
Impersonation Attacks
Man-in-the-Middle Attacks
Co-Location Attacks
Phishing Attacks owner of public AMI

Table 3: Attacks based on identical SSH host keys.

We describe the consequences of our attacks in §5.2.1, our
findings in §5.2.2, our approach in §5.2.3, and the underlying
causes in §5.2.4.

5.2.1 Threats
The possibility to identify instances that are using the

same SSH host key or potentially even identifying the corre-
sponding public AMI from which these instances are derived
allows a variety of attacks as summarized in Tab. 3 and de-
scribed in the following.

Correlation of System Configurations. Even if the
attacker only detects instances with an identical fingerprint
f(pkh), but does not manage to identify the corresponding
AMI (e.g., because it is not public), he knows that these
instances are likely to be instances of the same AMI (or a
derived AMI). This enables him to discover test systems or
forgotten servers which are not as secure as the productive
system.

If the attacker identifies the corresponding public AMI he
has more options:

Whitebox Attacks. The attacker can examine the con-
tents of the AMI for potential vulnerabilities and misconfig-
urations like usage of default passwords or insecure services
to launch attacks on the victim instance.

If the attacker extracts the host key pair (skh, pkh) from
the AMI and has control over the network between the Con-
sumer and the Provider (e.g., [25]) he can launch imperson-
ation and man-in-the-middle attacks on SSH:

Impersonation Attacks. The attacker can redirect the
SSH connection attempt of the Consumer to an instance
under his control. In this case, verification of the host key
fingerprint f(pkh) does not protect the Consumer as the at-
tacker is able to equip his fake instance with the host key
pair obtained from the public AMI. The Consumer may get
suspicious that the impersonating instance is only similar to
the expected environment, but there is a chance that the
Consumer reveals private information or credentials before
recognizing this, e.g., passwords upon login to other ser-
vices. The attack especially works when automated scripts
are used, e.g., a script that automatically uploads a backup
copy onto an instance in the cloud. By impersonating this
instance the attacker can obtain such a backup copy.

Man-in-the-Middle Attacks. If SSH is configured for
password-based user authentication, an attacker can use skh
to play as man-in-the-middle and eavesdrop or modify the
communication between the Consumer and the VM.

Co-Location Attacks. The AMI type narrows down
the possible instance type as 32-bit AMIs do not support
the more powerful instance types because they cannot make
use of the offered resources. This information can be ex-

ploited by an attacker to narrow down the search space in
co-location attacks [39].

Phishing Attacks. If the attacker himself is the Pub-
lisher of the executed malicious AMI he can deniably identify
victims of his own VM phishing attacks. The malicious AMI
might contain intentionally embedded vulnerabilities [17, 48]
or SSH backdoors (cf. §5.1).

5.2.2 Findings
Our analysis shows that approximately 29% of the 1100

analyzed AMIs (in US-East and EU-West) are misconfig-
ured such that their derived instances do not recreate the
SSH host key pair (skh, pkh) on first boot (cf. Tab. 1). We
discovered that 62 distinct SSH host keys in the EC2 Tokyo
region were used by more than one instance. We identified
the public AMI of 11 of those host keys, which were con-
tained in 278 instances running in this region.

Our experiment also revealed that 604
2533

≈ 23% of the in-
stances in the Tokyo region with SSH access are using a
non-unique host key pair (skh, pkh). However, we were not
able to map all duplicate SSH host keys to public AMIs and
believe that these misconfigured instances are derived from
private AMIs owned by one user or a small group and are
thus potential production or test systems with similar vul-
nerabilities (cf. Correlation of System Configurations de-
scribed above).

5.2.3 Approach
Our approach for finding public AMIs using not freshly

generated SSH host keys is illustrated in Fig. 5. Based
on our analysis tool for public AMIs (cf. §4.2), we first ex-
tracted the SSH public key fingerprints f(pkh) of all AMIs
in the Tokyo region and used this to obtain a mapping from
615 fingerprints to their corresponding AMI ID. Further, by
making SSH connection attempts to all IP addresses in the
Tokyo region’s IP range (175.41.192.0/18), we gathered all
mappings from IP addresses to host key fingerprints for the
region. By matching the SSH fingerprints in both results,
we found a mapping between the IP addresses of running
instances to their corresponding AMI ID. Moreover, the di-
versity of SSH fingerprints in the region’s IP range gave us
the statistic about duplicated SSH host keys as explained in
§5.2.2.

SSH ID IP Address

A1:CS:DS 10.122.230.214

B2:D9:24 10.122.230.215

C3:9A:42 10.122.230.216

D4:25:13 10.122.230.217

… …

AMI SSH ID

ami-124 EE:CS:DS

ami-257 B2:D9:24

ami-374 B2:D9:24

ami-424 D4:25:13

… …

2) Scanned IP addresses1) Scanned AMIs

3) Matching

Figure 5: Matching Between AMIs and Instances

5.2.4 Discussion
In summary, our findings in §5.2.3 show that AMIs which

do not recreate their SSH host key occur frequently.
The main reason for SSH host keys being included in pub-

lic AMIs is presumably the same as for private information

(cf. §4.4) and SSH user authentication keys (cf. §5.1.2) and,
thus, countermeasures are similar. We therefore extend this
discussion to the whole process of secure authentication and
administration in the cloud, as it is negatively affected by
the flexibility and usage model of computing clouds.

Alternatively, an attacker could use other publicly avail-
able information than the SSH host key to identify the AMI
of an instance, e.g., the software version and configuration
of a web-server running in the instance. However, the SSH
host key is a much more distinguishing characteristic than
the software configuration. Nevertheless, this is supplemen-
tary information to identify the AMI of an instance if more
than one candidate image exists (e.g., ami-257 and ami-374
in Fig. 5).

Static vs. Dynamic Environments.
So far, the SSH protocol has been used mostly in and

is designed for relatively static networks. Hence, manual
verification of the host keys is only necessary in case of
relatively infrequent changes to the underlying infrastruc-
ture (e.g., change of the server’s IP address or hostname, or
newly generated host key). In contrast, the cloud provides
a highly dynamic environment with much shorter life time
of instances and dynamically assigned IP addresses. Addi-
tionally, the use of preconfigured VMs instead of installation
from scratch opens new vulnerabilities as shown in §5.2.

Trust on First Use.
This leads to the general challenge of secure authenti-

cation to started EC2 instances which is not sufficiently
addressed in the current implementation of EC2 and even
worse for AMIs with non-unique host keys. As described in
§3 and shown in Fig. 2, the Consumer issues a request to
start a public AMI and is returned the Instance-ID which
can be used to look up the IP address of the instance (over
the AWS API or Web Interface). When she connects to
the IP address of this newly created instance, she has no
prior knowledge on the contents of the AMI and its host
key (“Trust-on-first-use”, cf. [49]). The only option is to
use an out-of-band method, provided by Amazon, to obtain
the console output of the started instance to which the SSH
server writes the host key fingerprint f(pkh) after the host
key pair has been freshly created. However, as it takes a few
minutes until the output of the console becomes available
to the user, we assume that most users do not make use of
this technique when establishing the first connection to a
newly started instance. The situation is even worse when
the instance’s SSH server does not create a fresh host key
pair where the user has no means to verify that he really
connects to the machine he started.

This problem is aggravated when the instance is stopped
and restarted with a newly assigned external IP address.
In this case, the console output does not contain the host
key fingerprint as no new host key was generated, and the
user is forced to store the correct fingerprint upon the very
first connect in order to be able to securely authenticate his
instance after reboot or change of the external IP address.

6. COUNTERMEASURES
Finally, we present and discuss several countermeasures

that create awareness, reduce the impact of lost credentials,
or assist users in realizing that they accidentally published

sensitive information. Some general countermeasures have
been proposed and discussed in [48], however, we believe
that the high popularity and deep integration of Amazon
specific services, e.g., S3 and EBS, into the EC2 Cloud App
Store prevents adoption of these countermeasures as it would
require fundamental changes to the architecture. We there-
fore present mechanism that specifically address the envi-
ronment provided by Amazon and its limitations.

Organizational Measures.
Most problems that led to our attacks could have been

prevented by the Publishers themselves. Especially as most
public AMIs do not provide any additional value to other
consumers, e.g., due to lacking functionality and documen-
tation, they should not have been made public in the first
place. Therefore, the first and most effective step should
be to provide better information to users on the risks they
are facing when publishing an AMI and to create problem
awareness. In addition to that, despite the novelty of cloud
computing and AMI publishing, companies and individu-
als should develop and follow guidelines, best practices, and
processes for releasing their AMIs to the public. In this case
AMIs do not differ from documents, software, or mediums
containing confidential information (e.g., discharging of old
hard drives §2). Another effective way to reduce the impact
of an accidentally lost AWS API key is the recently intro-
duced AWS Identity and Access Management (IAM) [10]. It
allows managing of multiple security credentials for an AWS
account with a different set of permissions which could be
used to limit the damage an attacker can cause (cf. §A).

Tool Assistance for the Publisher.
Additionally, Publishers can be protected by enhancing

Amazon’s toolchain.
S3-backed AMIs. As discussed in §4.4 some Publishers

of S3-backed AMIs have exposed their AWS API key used
for authorizing the bundling operation [2]. We propose to
extend the bundling command in a way that a warning is
issued in case the AWS API key is included into the new
bundle (cf. Fig. 6 for an example) or information about
the key is stored in the command line history. Moreover,
the extension can provide a safe bundling option to warn
Publishers about data which is potentially private (e.g., by
applying search patterns similar to those in Tab. 2).

$ ec2−bundle−vo l −k / root /sk−HKZYCLO.pem
WARNING: The key sk−HKZYCLO.pem used to

author i z e the bundl ing opera t i on w i l l be
inc luded in the image f i l e . Pub l i sh ing the
AMI may l eak i t to the pub l i c !

Do you want to proceed (y/n) : n

Figure 6: Improved Bundling Tool

EBS-backed AMIs. Protection for EBS-backed AMIs
has to be implemented differently than for S3-backed AMIs.
EBS-backed AMIs can be almost instantly generated out
of running instances and made public entirely over the web
interface. As the underlying storage engine just instructs the
storage layer to create a bitwise copy of a volume, we have
to apply different countermeasures. Here, Amazon could
extend their interface to inform the user on potential risks of
private data being included and also offer tools to deal with

them. This can be realized by a service (e.g., a public AMI)
that is given an EBS volume as input, creates a report on
potential privacy problems, and outputs a low-level sanitized
volume to prevent forensic analysis.

Regular Scanning.
As described in [33], Providers have to find a trade-off be-

tween the benefits of providing security measures and the
costs for implementing and operating them. However, we
believe that it is possible for a provider like AWS to reg-
ularly scan the provided AMIs (cf. cost analysis in §4.3)
while still ensuring that the Provider does not take any li-
ability on undiscovered problems. As hackers are likely to
re-implement the techniques described in our paper (espe-
cially given the high damage that can be caused), public
cloud service providers should take immediate action.

For this, Amazon and other providers could adopt our
tools, eventually increase their efficiency by integrating them
into their infrastructure, and scan the Cloud App Store reg-
ularly, or when a new AMI is published. Although the scan-
ning may result in more time and effort for manually ver-
ification of the results and informing affected customers of
a discovered vulnerability, this approach would underline a
proactive approach to security problems.

Improving the Cloud App Store.
As we have described in §5 a great deal of AMIs, de-

ployed by a large number of consumers, does not satisfy
even lowest quality standards (e.g., contains an SSH back-
door). This situation can be improved by combing an auto-
mated rating system that checks AMIs for predefined prop-
erties together with a reputation system that allows users
to evaluate the usefulness and quality of an AMI. Such fea-
tures are commonly available in today’s mobile app stores
as well as for online auction and shopping platforms to rate
vendors and products, but still missing in Amazon’s Cloud
App Store and its web console. Moreover, the AWS web
console should be extended to provide more information on
particular AMIs like the date of publishing or more detailed
descriptions about the AMI’s purpose and its publisher. A
process for submitting AMIs and extended documentation
already exists, but this information [6] is not available in
the web console. Additionally, well known and trusted AMI
Publishers could be rewarded with a special status visible to
the consumer (star/gold Publisher). Before earning such a
status, a Publisher would have to earn good reviews or pass
an analysis of their AMIs by Amazon.

Acknowledgements
The authors would like to thank Michael Waidner for helpful
discussions.

We would also like to thank the AWS security team for
their quick, professional response after we have notified them
about our findings and their immediate reaction to protect
their customers.

The research leading to this paper was in part funded
by the European Union’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement n◦257243 (TClouds
project: http://www.tclouds-project.eu).

http://www.tclouds-project.eu

7. REFERENCES

[1] All Together Now: Amazon, we need those caps on
billing. http://forums.aws.amazon.com/thread.
jspa?threadID=50075#jive-message-217130.

[2] Amazon EC2: ec2-bundle-vol.
http://docs.amazonwebservices.com/AmazonEC2/

dg/2006-10-01/CLTRG-ami-bundle-vol.html.

[3] Amazon EC2 Pricing.
http://aws.amazon.com/ec2/pricing.

[4] Amazon Elastic Block Store (EBS).
http://aws.amazon.com/ebs/.

[5] Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2/.

[6] Amazon Machine Images (AMIs) .
http://aws.amazon.com/amis.

[7] Amazon Simple Storage Service (S3).
http://aws.amazon.com/s3/.

[8] Amazon Web Services. http://aws.amazon.com.

[9] Apple App Store Review Guidelines. http:
//developer.apple.com/appstore/guidelines.html.

[10] AWS Identity and Access Management (IAM)
Documentation.
http://aws.amazon.com/documentation/iam/.

[11] The Cloud Market. EC2 Statistics.
http://thecloudmarket.com/stats.

[12] Amazon Elastic Compute Cloud User Guide, 2011.
http://awsdocs.s3.amazonaws.com/EC2/latest/

ec2-ug.pdf.

[13] An Update on Android Market Security, March 3
2011. http://googlemobile.blogspot.com/2011/03/
update-on-android-market-security.html.

[14] AWS Developer Forums: Email from Amazon EC2
about my AMI being compromised, April 8 2011.
https://forums.aws.amazon.com/thread.jspa?

messageID=235613.

[15] Compromised EC2 image includes root access SSH
key, 2011. http://pastebin.com/q1VH4rmF.

[16] A. Abdelhalim and I. Traore. The impact of google
hacking on identity and application fraud. In Pacific
Rim Conference on Communications, Computers and
Signal Processing, pages 240 –244. IEEE, 2007.

[17] N. Arvantis, M. Slaviero, and H. Meer. Clobbering the
Cloud!, 2009. http://www.sensepost.com/labs/
conferences/clobbering_the_cloud.

[18] Amazon Web Services Documentation.
http://aws.amazon.com/documentation.

[19] Amazon Web Services: Overview of Security
Processes, August 2010. http://awsmedia.s3.
amazonaws.com/pdf/AWS_Security_Whitepaper.pdf.

[20] S. Bleikertz, M. Schunter, C. W. Probst,
D. Pendarakis, and K. Eriksson. Security audits of
multi-tier virtual infrastructures in public
infrastructure clouds. In ACM Cloud Computing
Security Workshop (CCSW’10), pages 93–102. ACM,
2010.

[21] Y. Chen, V. Paxson, and R. H. Katz. What’s new
about cloud computing security? Technical Report
UCB/EECS-2010-5, Jan 2010.

[22] Cloud Security Alliance (CSA). Security guidance for
critical areas of focus in cloud computing v2.1,

December 2009.
https://cloudsecurityalliance.org/csaguide.pdf.

[23] Cloud Security Alliance (CSA). Top threats to cloud
computing, March 2010. cloudsecurityalliance.
org/topthreats/csathreats.v1.0.pdf.

[24] Ionut Constandache, Aydan Yumerefendi, and Jeff
Chase. Secure control of portable images in a virtual
computing utility. In ACM workshop on Virtual
machine security, VMSec ’08, pages 1–8. ACM, 2008.

[25] Danny Dolev and Andrew C. Yao. On the security of
public key protocols. Technical report, 1981.

[26] European Network and Information Security Agency
(ENISA). Cloud computing security risk assessment,
May 2009.
http://www.enisa.europa.eu/act/rm/files/

deliverables/cloud-computing-risk-assessment/.

[27] S.L. Garfinkel. Automating disk forensic processing
with SleuthKit, XML and Python. In Workshop on
Systematic Approaches to Digital Forensic
Engineering, pages 73–84. IEEE, 2009.

[28] S.L. Garfinkel and A. Shelat. Remembrance of data
passed: a study of disk sanitization practices. IEEE
Security and Privacy, 1(1):17 – 27, January 2003.

[29] T. Garfinkel and M. Rosenblum. When virtual is
harder than real: security challenges in virtual
machine based computing environments. In Workshop
on Hot Topics in Operating Systems (HotOS’05),
page 20. USENIX, 2005.

[30] B. Hatch. SSH Host Key Protection, Oct 2004.
http://www.symantec.com/connect/articles/

ssh-host-key-protection.

[31] C. Heath. Symbian OS Platform Security. John Wiley
& Sons, 2006.

[32] IBM Cooperation. IBM SmartCloud.
http://www-935.ibm.com/services/us/igs/

cloud-development/#tab:details-security.

[33] D. Molnar and S. Schechter. Self hosting vs. cloud
hosting: Accounting for the security impact of hosting
in the cloud. In Workshop on the Economics of
Information Security (WEIS 2010), June 2010.

[34] J. Murty. Programming Amazon Web Services: S3,
EC2, SQS, FPS, and SimpleDB. O’Reilly Media, 2008.

[35] NIST. Guidelines on security and privacy in public
cloud computing. 2011. Special Publication 800-144.

[36] NIST. The NIST Definition of Cloud Computing
(Draft). 2011. Special Publication 800-145 (Draft).

[37] O. Pirttikoski and Y. Kortesniemi. Local Key and
Certificate Storage in JDK 1.3. Proceedings of the
NordSec2000, Reykjavk, Iceland, 2000.

[38] D. Reimer, A. Thomas, G. Ammons, T. Mummert,
B. Alpern, and V. Bala. Opening black boxes: using
semantic information to combat virtual machine image
sprawl. In SIGPLAN/SIGOPS international
conference on Virtual execution environments
(VEE’08), pages 111–120. ACM, 2008.

[39] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage.
Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds. In ACM
conference on Computer and communications security
(CCS’09), pages 199–212. ACM, 2009.

[40] T. Ristenpart and S. Yilek. Randomness goes bad:

http://forums.aws.amazon.com/thread.jspa?threadID=50075#jive-message-217130
http://forums.aws.amazon.com/thread.jspa?threadID=50075#jive-message-217130
http://docs.amazonwebservices.com/AmazonEC2/dg/2006-10-01/CLTRG-ami-bundle-vol.html
http://docs.amazonwebservices.com/AmazonEC2/dg/2006-10-01/CLTRG-ami-bundle-vol.html
http://aws.amazon.com/ec2/pricing
http://aws.amazon.com/ebs/
http://aws.amazon.com/ec2/
http://aws.amazon.com/amis
http://aws.amazon.com/s3/
http://aws.amazon.com
http://developer.apple.com/appstore/guidelines.html
http://developer.apple.com/appstore/guidelines.html
http://aws.amazon.com/documentation/iam/
http://thecloudmarket.com/stats
http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-ug.pdf
http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-ug.pdf
http://googlemobile.blogspot.com/2011/03/update-on-android-market-security.html
http://googlemobile.blogspot.com/2011/03/update-on-android-market-security.html
https://forums.aws.amazon.com/thread.jspa?messageID=235613
https://forums.aws.amazon.com/thread.jspa?messageID=235613
http://pastebin.com/q1VH4rmF
http://www.sensepost.com/labs/conferences/clobbering_the_cloud
http://www.sensepost.com/labs/conferences/clobbering_the_cloud
http://aws.amazon.com/documentation
http://awsmedia.s3.amazonaws.com/pdf/AWS_Security_Whitepaper.pdf
http://awsmedia.s3.amazonaws.com/pdf/AWS_Security_Whitepaper.pdf
https://cloudsecurityalliance.org/csaguide.pdf
cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/
http://www.symantec.com/connect/articles/ssh-host-key-protection
http://www.symantec.com/connect/articles/ssh-host-key-protection
http://www-935.ibm.com/services/us/igs/cloud-development/#tab:details-security
http://www-935.ibm.com/services/us/igs/cloud-development/#tab:details-security

Virtual machine reset vulnerabilities and hedging
deployed cryptography. In Network and Distributed
Security Symposium (NDSS’10). ACM, 2010.

[41] M. Satyanarayanan, W. Richter, G. Ammons,
J. Harkes, and A. Goode. The case for content search
of vm clouds. In Computer Software and Applications
Conference Workshops (COMPSACW’10), pages 382
–387. IEEE, 2010.

[42] Amazon SimpleDB.
http://aws.amazon.com/simpledb.

[43] S. Swidler. How to Keep Your AWS Credentials on an
EC2 Instance Securely, August 2009.
http://shlomoswidler.com/2009/08/

how-to-keep-your-aws-credentials-on-ec2.html.

[44] M. Szeredi. SSH filesystem.
http://fuse.sourceforge.net/sshfs.html.

[45] H. Takabi, J. B.D. Joshi, and G.-J. Ahn. Security and
privacy challenges in cloud computing environments.
IEEE Security and Privacy, 8:24–31, 2010.

[46] E.I. Tatlı. Google Reveals Cryptographic Secrets. In
Kryptowochenende 2006 – Workshop über
Kryptographie. Universität Mannheim, page 33, 2006.

[47] J. Varia. Architecting for the cloud: Best practices,
January 2011. http://media.amazonwebservices.
com/AWS_Cloud_Best_Practices.pdf.

[48] J. Wei, X. Zhang, G. Ammons, V. Bala, and P. Ning.
Managing security of virtual machine images in a
cloud environment. In ACM Cloud Computing Security
Workshop (CCSW’09), pages 91–96. ACM, 2009.

[49] Dan Wendlandt, David G. Andersen, and Adrian
Perrig. Perspectives: Improving SSH-style host
authentication with multi-path probing. In USENIX
2008 Annual Technical Conference, pages 321–334,
Berkeley, CA, USA, 2008. USENIX Association.

[50] J. Yan, A. Blackwell, R. Anderson, and A. Grant.
Password memorability and security: empirical
results. IEEE Security and Privacy, 2(5):25 –31, 2004.

[51] T. Ylonen and C. Lonvick. The Secure Shell (SSH)
Protocol Architecture. RFC 4251 (Proposed
Standard), January 2006.

[52] W. Zhou, P. Ning, X. Zhang, G. Ammons, R. Wang,
and V. Bala. Always up-to-date: scalable offline
patching of vm images in a compute cloud. In Annual
Computer Security Applications Conference
(ACSAC’10), pages 377–386. ACM, 2010.

APPENDIX
A. VALUE OF CAPTURED AWS API KEYS

We roughly estimate the potential financial damage that
can be caused with a captured AWS API key. As the pricing
is highly dynamic and depends on various factors we give a
general overview only which may change over time.

It is not possible to set an upper limit on the money AWS
will charge for service usage. There exist only limitations on

the amount of resources a user can request at a time. These
limits can be increased by contacting Amazon. A standard
account is allowed to start 20 on-demand EC2 instances and
to request 100 instances on the spot market. On the spot
market, unused resources of EC2 are sold for a varying price,
depending on the current demand. Given these limitations,
an attacker can request 20 on-demand instances of the most
expensive “Quadruple Extra Large” type ($2.10/h) and 100
“Quadruple Extra Large” type instances on the spot mar-
ket (we assume $0.84/h). This leads to costs of $126/h or
$3024/day. Note that this calculation is pessimistic as it
does not include additional costs for network bandwidth,
storage or I/O access. All in all, capturing an AWS API key
allows an attacker to misuse simultaneously around 8000 GB
memory and 3000 EC2 Compute Units (ECU), where one
ECU is equivalent to the CPU capacity of a 1.0-1.2 GHz
2007 Opteron or 2007 Xeon processor.

B. SSH AUTHENTICATION
As described in §3.2, SSH [30] is the primary method for

remote administration in EC2. The SSH protocol supports
user authentication based on passwords or asymmetric key
pairs and has built in protection against man-in-the-middle
attacks as described next.

In the cloud environment mainly the asymmetric key based
method is used. It is supported by the EC2 infrastructure
as well as most public AMIs, and is considered to be more
secure than password based authentication. As mentioned
in §3.2, the AMI user’s public key pku is imported by a
newly created instance (called host in SSH context) from
EC2 and the user then authenticates herself by proving pos-
session of the associated secret key sku. In addition to that,
SSH also supports a check of the host’s identity to prevent
an attacker from impersonating a remote host or launching
a man-in-the-middle attack. This is realized with an unique
and unforgeable asymmetric key pair (skh, pkh), called host
key which is stored on the remote host. When a user con-
nects to a host he has to verify that the fingerprint, i.e.,
a hash, f(pkh) of the host key belongs to the machine he
wants to connect to (cf. Fig. 7). As no Certificate Author-
ity is involved, it is the responsibility of the user to ensure
the authenticity of the fingerprint when connecting to a new
or unknown host, e.g., over an outbound channel. After the
key has been accepted, the SSH client application caches
the mapping between the key and the host’s IP address or
hostname.

john :˜ $ ssh ec2−user@47 . 1 2 7 . 0 . 2 3 3
The au then t i c i t y o f host ’ 4 7 . 127 . 0 . 233 (4 7 . 1 2 7 . 0 . 2 3 3) ’

can ’ t be e s t ab l i s h ed .
RSA key f i n g e r p r i n t i s

f3 : 5 a : f4 : a2 : f3 : d1 : e5 : 5 2 : 2 c : e3 : 8 7 : f f : 0 7 : 1 3 : 0 1 : 1 1 .
Are you sure you want to cont inue connect ing (yes /no) ?

Figure 7: SSH First Connection

http://aws.amazon.com/simpledb
http://shlomoswidler.com/2009/08/how-to-keep-your-aws-credentials-on-ec2.html
http://shlomoswidler.com/2009/08/how-to-keep-your-aws-credentials-on-ec2.html
http://fuse.sourceforge.net/sshfs.html
http://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pdf
http://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pdf

	Introduction
	Related Work
	Background on AWS
	Amazon's Elastic Compute Cloud (EC2)
	Authentication in AWS

	AMI Privacy Analysis
	Our Findings
	AWS API keys
	Private Keys and Credentials
	Private Data
	Source Code

	Tool for AMI Privacy Analysis
	AMI Access
	Extraction of Private AMI Content

	Costs for AMI Privacy Analysis
	Discussion

	Cloud Specific SSH Threats
	AMIs with SSH Backdoor
	Approach
	Discussion

	AMI Identification via SSH
	Threats
	Findings
	Approach
	Discussion

	Countermeasures
	References
	Value of Captured AWS API Keys
	SSH Authentication

