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Abstract. Cloud computing promises a more cost effective enabling technology to outsource storage
and computations. Existing approaches for secure outsourcing of data and arbitrary computations are
either based on a single tamper-proof hardware, or based on recently proposed fully homomorphic
encryption. The hardware based solutions are not scaleable, and fully homomorphic encryption is
currently only of theoretical interest and very inefficient.

In this paper we propose an architecture for secure outsourcing of data and arbitrary computations to
an untrusted commodity cloud. In our approach, the user communicates with a trusted cloud (either
a private cloud or built from multiple secure hardware modules) which encrypts and verifies the data
stored and operations performed in the untrusted commodity cloud. We split the computations such
that the trusted cloud is mostly used for security-critical operations in the less time-critical setup
phase, whereas queries to the outsourced data are processed in parallel by the fast commodity cloud
on encrypted data.

Keywords: Secure Cloud Computing, Cryptographic Protocols, Verifiable Outsourcing, Secure Computa-
tion

1 Introduction

Many enterprises and other organizations need to store and operate on a huge amount of data. Cloud
computing aims at renting such resources on demand. Today’s cloud providers offer both, highly available
storage (e.g., Amazon’s Elastic Block Store (EBS) [AmEa]) and massively parallel computing resources (e.g.,
Amazon’s Elastic Compute Cloud (EC2) with High Performance Computing (HPC) Clusters [AmEb]) at
relatively low costs.

While cloud computing is promised to be cost-effective and provides more flexibility for the clients, it intro-
duces security risks organizations have to deal with in order to isolate their data from other cloud clients
and to fulfil confidentiality and integrity demands of their customers. Moreover, since the IT infrastructure
is under control of the cloud provider, the customer has not only to trust the security mechanisms and con-
figuration of the cloud provider, but also the cloud provider itself. When data and computation is outsourced
to the cloud, prominent security risks are: malicious code that is running on the cloud infrastructure could
manipulate computation and force wrong results or steal data; personnel of the cloud provider could misuse
their capabilities and leak data and vulnerabilities in the shared resources could lead to data leakage or
manipulated computation [(CS10]. In general, important requirements of cloud clients are confidentiality of
their data, that their data and computation was processed in the expected way (verifiability) and has not
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been tampered with (integrity). Example scenarios in which these properties must be guaranteed include
processing sensitive data, e.g. outsourcing of medical data (cf. [NGSN10], Microsoft’s HealthVault3).

Secure outsourcing of arbitrary computation and data storage is particularly difficult to fulfill if a cloud
client does not trust the cloud provider at all. There are proposals for cryptographic methods which allow
to perform specific computations on encrypted data [APRS01,HL05], or to securely and verifiably outsource
storage [KL10a].

Secure computation of arbitrary functions on confidential data can be achieved based on fully homomorphic
encryption [Gen09b] as shown in [GGP10,CKV10]. However, these schemes are not yet usable in practice due
to their low efficiency. Further, in a multi-client scenario, cryptography alone is not sufficient and additional
assumptions have to be made and other measures have to be taken such as tamper-proof hardware [DJ10].
Other approaches are based on secure hardware which provides a shielded execution environment. However,
these approaches do not scale well as secure hardware is expensive and relatively slow (cf. §3 for a detailed
discussion of related works).

Our Approach. The architecture we propose consists of two clouds (twins), a Trusted Cloud and a Com-
modity Cloud.

Our approach allows to separate the underlying computations into their security and performance aspects: the
security-critical operations are performed by the Trusted Cloud in a Setup Phase, whereas the performance-
critical operations are performed on encrypted data by the Commodity Cloud. This allows maximum utiliza-
tion of the expensive resources of the Trusted Cloud, while high loads of queries can be processed on-demand
by the Commodity Cloud. The Trusted Cloud requires only a constant amount of storage and is used con-
stantly in the Setup Phase for pre-computing encryptions. The untrusted Commodity Cloud provides a large
amount of storage and is used in the time-critical Query Phase to process encrypted queries in parallel with
minimal latency.

More specifically, the client uses the Trusted Cloud as a proxy to securely outsource his data and computations
to the untrusted Commodity Cloud. The client communicates to the Trusted Cloud over a secure channel
(e.g., SSL/TLS) and a clearly defined interface (e.g., a web service API) which allows the client to manage the
outsourced data, programs, and queries. We optimize the amount of data transferred between the client and
the Trusted Cloud. The Trusted Cloud is used mostly in the Setup Phase to encrypt the outsourced data
and programs using (improved versions of) Yao’s garbled circuits [Yao86] which requires only symmetric
cryptographic operations and only a constant amount of memory. Afterwards, in the Query Phase, the
computations on the encrypted data are performed in parallel by the fast but untrusted Commodity Cloud,
and finally verified by the Trusted Cloud.

We envision the Trusted Cloud to be either a private cloud (e.g., client’s existing IT infrastructure) or
composed from multiple secure hardware tokens (e.g., operated and offered by a service provider).

Outline and Contribution. After summarizing related work in §2 and preliminaries in §3 we present the
following contributions in the respective sections: In §4 we present our model for secure outsourcing of data
and arbitrary computations thereon consisting of two clouds. The Trusted Cloud is mostly involved in the
setup phase while queries are evaluated under encryption and in parallel by the untrusted Commodity Cloud.
In §5 we give an instantiation of our model based on garbled circuits, the currently most efficient method
for secure computation. Our proposed solution has several advantages over previous proposals:

1. Communication Efficiency. We minimize the communication between the client and the Trusted Cloud
as only a compact description of the functionality in form of a program in a Hardware Description
Language (HDL) is transferred and compiled on-the-fly into a circuit.

3 http://www.healthvault.com/
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2. Transparency. The client communicates to the Trusted Cloud over a secure channel and simple interfaces.
All complicated cryptographic operations are hidden from the client.

3. Scalability. Our approach is highly scalable as both clouds can be composed from multiple nodes.

4. Multiple Clients. In contrast to solutions based on fully homomorphic encryption, our solution can be
extended to multiple clients which operate on the same data.

2 Related Work

In the following we summarize related works for secure outsourcing of storage and arbitrary computations
based on Trusted Computing (§2.1), Secure Hardware (§2.2), Secure Computation (§2.3), and Architectures
for Secure Cloud Computing (§2.4).

2.1 Trusted Computing

One approach to achieve trustworthy computations in cloud infrastructures is to adapt existing trusted
computing solutions to the cloud computing paradigm or to use these solutions as building blocks in new cloud
architecture models. The most prominent approach to Trusted Computing technology has been specified by
the Trusted Computing Group4 (TCG). The TCG proposes to extend common computing platforms with
trusted components in software and hardware. In particular the hardware extension, called Trusted Platform
Module (TPM) [Gro07] acts as a hardware trust anchor and enables the integrity measurement of the
platform’s software stack at boot-/load-time (authenticated boot) [SZJVD04] and the secure reporting of
these measurements to a remote party (remote attestation) [Gro07]. Thus, it provides the means to achieve
verifiability and transparency of a trusted platform’s software state.

Trusted Computing, based on the TPM and its remote attestation feature, enables the establishment of
trusted execution environments in commodity cloud infrastructures (as shown in [SMV+10,SGR09]). How-
ever, the reliable and efficient attestation of the execution environment at run-time is a research problem to
which no complete solution exists yet.

Nevertheless, Trusted Computing approaches are in principal orthogonal to our approach presented in this
paper and can be combined with our approach in order to augment the Trusted Cloud (cf. 4) with attestation
capabilities.

2.2 Secure Hardware / HSMs

Secure computation based on dedicated security hardware is already well-established and applied for a wide
range of applications, e.g., banking or governmental applications. For example, cryptographic co-processors
such as the IBM 4765 or 4764 [IBM] provide a high-security, tamper-resistant execution environment for sen-
sible cryptographic operations. Such co-processors are usually certified, e.g., according to FIPS or Common
Criteria. Hardware Security Modules (HSM) or Smartcards additionally provide a generic secure execu-
tion environment to execute customer supplied programs. However, cryptographic co-processors are usually
very expensive and do not scale very well. Thus, they do not qualify as building blocks for a cost-efficient,
performant and scalable cloud computing infrastructure.

More cost effective secure execution environments (on off-the-shelf hardware) are for instance ARM Trust-
Zone [Lim05] for embedded and mobile devices, or IBM’s Cell processor [SHL07]. However, this hardware is
usually not tamper-resistant and thus does not qualify as remotely installed secure execution environment,
e.g., in cloud service providers’ infrastructures.

4 http://www.trustedcomputinggroup.org/
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2.3 Secure Computation

Secure computation allows mutually distrusting parties to securely perform computations on their private
data without involving a trusted third party such as a secure hardware. Existing approaches for secure
computation are either based on computing with encrypted functions (called garbled circuits), or computing
on encrypted data (using homomorphic encryption) as summarized in the following.

Garbled Circuits. Yao’s garbled circuits (GC) [Yao86] allow secure computation with encrypted functions.
On a high level, one party (called constructor) “encrypts” the function to be computed using symmetric
cryptography and later, the other party (called evaluator) decrypts the function using keys that correspond
to the input data (called “garbled values”). We give a detailed description of GCs later in §3.2. Although
GCs are very efficient as they use only symmetric cryptographic primitives, their main disadvantage is that
each GC can be evaluated only once and its size is linear in the size of the evaluated function.

As used in several works (e.g., [NPS99,ACCK01,GKR08,JKSS10b,HS10]), the trusted GC creator can gen-
erate GCs in a setup phase and subsequently GCs are evaluated by one or more untrusted parties. The
GC creator is able to verify that the computations indeed have been performed correctly (verifiability). Our
protocols shown in §5 also make use of these features of GCs and hence can be interpreted as a mapping of
the aforementioned works to the specific requirements of the cloud computing scenario.

Although hardware tokens can be used to speed up the evaluation of GCs (as proposed in Faerieplay [Ili09,IS10]
and [JKSS10b]) we evaluate GCs in software only in order to make use of commodity clouds composed of
off-the-shelf hardware.

Homomorphic Encryption. Homomorphic encryption allows to compute on encrypted data without using
additional helper information such as garbled circuits. Traditional homomorphic encryption schemes were
restricted to specific operations (e.g., multiplications for RSA [RSA78], additions for Paillier [Pai99], or
additions and up to one multiplication for [BGN05]). Such schemes allow to outsource specific computations,
such as encryption and signatures [HL05], to untrusted workers.

Recently, fully homomorphic encryption schemes have been proposed that allow arbitrary computations
on encrypted data [Gen09b,Gen09a,SV10,DGHV10]. When combined with garbled circuits for verifiability
(cf. above), fully homomorphic encryption allows to securely outsource data and arbitrary computations as
described in [GGP10,CKV10]. However, as shown in [SV10,GH10], fully homomorphic encryption is not yet
sufficiently efficient to be used in practical applications. Further, the impossibility result of [DJ10] shows
that using cryptography alone is not sufficient if data is shared among more than one client – in this case,
additional assumptions need to be made.

2.4 Architectures for Secure Cloud Computing

Our model (cf. §4) and approach (§5) combine the advantages of the following two architectures for secure
outsourcing of data and arbitrary combinations.

In [TPPG10] the authors describe an architecture for Signal Processing in the Encrypted Domain (SPED) in
commodity computing clouds. SPED is based on cryptographic concepts such as secure multiparty computa-
tion or homomorphic encryption, which enable the secure and verifiable outsourcing of the signal processing.
The authors propose a middleware architecture on top of a commodity cloud which implements secure signal
processing by using SPED technologies. The client communicates via a special API, provided by a client-side
plugin, with the middleware in order to submit new inputs and retrieve results. However, the authors do not
elaborate on the details of their implementation and do not answer problems regarding the feasibility of their
approach. For instance, if garbled circuits are used, the garbled circuits need to be transferred between the
client-side plugin and the middleware which requires a huge amount of communication. In our approach, we
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parallelize the client plugin within the trusted cloud and provide a clear API to the client which abstracts
from the underlying cryptographic details. On top of a generic architecture we give a concrete instantiation
for our protocols.

The authors of [SSW10] adapt the protocol of [JKSS10a] to the cloud computing scenario. They propose to
use a tamper-proof hardware token which generates garbled circuits in a setup phase which are afterwards
evaluated in parallel by the cloud. The token receives the description of a boolean circuit and generates a
corresponding garbled circuit using a constant amount of memory (using the protocol of [JKSS10a]). The
hardware token is integrated into the infrastructure of the cloud service provider either in form of a smartcard
provided by the client, or as a cryptographic co-processor. We overcome several restrictions of this model
by transferring substantially smaller program descriptions instead of boolean circuits, and virtualizing the
hardware token in the trusted cloud.

3 Preliminaries

Our constructions make use of the following building blocks.

3.1 Encryption and Authentication

Confidentiality and authenticity of data can be guaranteed by means of symmetric cryptography: either with
a combination of symmetric encryption (e.g., AES [NIS01]) and a Message Authentication Code (MAC, e.g.,
HMAC [KBC97]), or by using authenticated encryption, a special mode of operation of a block cipher (e.g.,
EAX [BRW04]). These schemes use a respective symmetric key for encryption/authentication and the same
key for decryption/verification.

Notation. x̂ = AuthEnc(x) denotes the authentication and encryption of data x; x = DecVer(x̂) denotes the
corresponding verification and decryption process.

3.2 Garbled Circuits (GC)

The most efficient method for secure computation of arbitrary functions known today is based on Yao’s
garbled circuits (GC) [Yao86]. Compared to fully homomorphic encryption (cf. §2.3), GCs are highly efficient
as they are based on symmetric cryptographic primitives only but require helper information to evaluate
non-XOR gates as described below.

The main idea of GCsis that the constructor generates an encrypted version of the function f (represented

as boolean circuit), called garbled circuit f̃ . For this, it assigns to each wire Wi of f two randomly chosen
garbled values w̃0

i , w̃1
i that correspond to the respective values 0 and 1. Note that w̃j

i does not reveal any
information about its plain value j as both keys look random. Then, for each gate of f, the constructor
creates helper information in form of a garbled table T̃i that allows to decrypt only the output key from
the gate’s input keys (details below). The garbled circuit f̃ consists of the garbled tables of all gates. Later,
the evaluator obtains the garbled values x̃ corresponding to the inputs x of the function and evaluates the
garbled circuit f̃ by evaluating the garbled gates one-by-one using their garbled tables. Finally, evaluator
obtains the corresponding garbled output values ỹ which allow the constructor to decrypt them into the
corresponding plain output y = f(x).

Security and Verifiability. GCs are secure even against malicious evaluator (cf. [GKR08]) and demonstra-
tion of valid output keys implicitly proves that the computation was performed correctly (cf. [GGP10]). A
fundamental property of GCs is that they can be evaluated only once, i.e., for each evaluation a new GC
must be generated.
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Efficient GC constructions. The efficient GC construction of [KS08] provides “free XOR” gates, i.e., XOR
gates have no garbled table and negligible cost for evaluation. For each 2-input non-XOR gate the garbled
table has size 4t bits, where t is the symmetric security parameter (e.g., t = 128); creation of the garbled
table requires 4 invocations of a cryptographic hash function (e.g., SHA-256 [NIS02]) and evaluation needs
1 invocation. The construction is provably secure in the random-oracle model. As shown in [JKSS10a],
generation of GCs requires only a constant amount of memory (independent of the size of the evaluated
function) and only symmetric cryptographic operations (SHA-256 and AES). The implementation results of
[PSSW09] show that evaluation of GCs can be performed efficiently on today’s hardware: Evaluation of the
GC for the reasonably large AES functionality (22,546 XOR and 11,334 non-XOR gates) took 2s on an Intel
Core 2 Duo with 3.0 GHz and 4 GB RAM.

Notation. We write x̃ for the garbled value corresponding to x and f̃ for the garbled circuit of function f .
Evaluation of f̃ on garbled input x̃ is written as ỹ = f̃(x̃).

3.3 Circuit Compiler

The functions to be computed securely can be expressed in a compact way in a hardware description lan-
guage and compiled automatically into a boolean circuit. A prominent example is Fairplay’s [MNPS04] Secure
Function Description Language (SFDL) which resembles a simplified version of a hardware description lan-
guage, such as Verilog or VHDL5, and supports types, variables, functions, boolean operators (∧,∨,⊕, . . . ),
arithmetic operators (+,−), comparison (<,≥,=, . . . ) and control structures like if-then-else or for-loops
with constant range. Other candidates for compact description and compilation into boolean circuits are
the languages and tools provided by [PSS09,HKS+10,MK10]. As shown in [HKS+10], the compilation into
a circuit can be implemented with a low memory footprint.

Notation. We write C = Compile(P ) to denote that the boolean circuit C was compiled from program P .

4 Our Model

In this section we present our model for secure outsourcing of data and arbitrary computations to an untrusted
commodity cloud. Our model is depicted in Fig. 1.

Commodity CloudTrusted CloudClient

High Bandwidth

Channel
Untrusted
Storage

Secure 

Channel

Fig. 1. Our Model: The client communicates with the Trusted Cloud over a low bandwidth, secure channel. The two
clouds are connected with an insecure, high bandwidth channel. The Commodity Cloud further provides untrusted
storage.

5 Very high speed integrated circuit Hardware Description Language
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In our model, a client makes use of the services offered by a cloud service provider to outsource its data
and computations thereon into the provider’s Commodity Cloud in a secure way. The outsourced data must
be confidentiality and integrity protected (from a potentially malicious provider) and the correctness of the
outsourced computations must be verifiable by the Client.

While this problem can be easily solved for a restricted class of computations (e.g., private search of a keyword
using searchable encryption [KL10b]), we consider in our model the general case of arbitrary computations.
Due to the assumed large size of the client’s data (e.g., a database) and/or the computational complexity
of the computations thereon, it is not possible to securely outsource the data into the cloud provider’s
infrastructure only and let the client execute its computations locally after retrieving its data from the
provider’s cloud. Instead, the confidentiality and integrity of the outsourced data has to be protected while
at the same time secure computations on it need to be performed in the commodity cloud without interaction
with the client.

In order to achieve these goals and satisfy the above mentioned security requirements of the client, our model
uses a Trusted Cloud as proxy between the client and the Commodity Cloud. The Trusted Cloud provides
a resource-restricted execution environment and infrastructure that is fully trusted by the client. As the
resources of the trusted cloud are restricted, relatively expensive, and potentially slow, the computations
cannot be performed directly within the Trusted Cloud.

Instead, the Trusted Cloud provides an interface for secure storage and computations to the client while
abstracting from the service provider’s cloud infrastructure. The interface offered by the Trusted Cloud to
the client (e.g., a web-frontend or API) allows to securely submit data, programs and queries to be securely
stored and computed. The low-bandwidth connection between client and Trusted Cloud is secured by a
secure channel (e.g., via SSL/TLS).

The Trusted Cloud is used mostly during a pre-computation phase (Setup Phase), but performs only few
computations during the time-critical Query Phase. The Trusted Cloud is assumed to have a small amount of
storage only; if larger amounts of data need to be stored, they can be securely outsourced to the Commodity
Cloud’s untrusted storage using encryption and authentication (cf. §3.1). To allow this secure outsourcing
of storage, the Trusted Cloud is connected to the Commodity Cloud over an unprotected high-bandwidth
channel.

A possible instantiation of the Trusted Cloud can be based on a private cloud operated by the client (e.g.,
his existing IT infrastructure). Alternatively, the Trusted Cloud could be a cluster of virtualized cryp-
tographic co-processors (e.g., the IBM Cryptographic Coprocessor 4764 [SW99,IBM] or other Hardware
Security Modules such as TPMs), which are offered as a service by a third party and which provide the
necessary hardware-based security features to implement a verifiable remote execution environment trusted
by the client.

5 Our Protocols

We give efficient protocols to instantiate the model presented in §4 next.

In order to achieve secure outsourcing of data and arbitrary computations with low latency query response
times, we split our protocols into two phases. First, in the Setup Phase encryptions are pre-computed by the
Trusted Cloud which are subsequently evaluated in the Query Phase by the Commodity Cloud.

The Trusted Cloud works as a transparent interface to add the needed security properties to the Commodity
Cloud. Our architecture is then responsible for securely computing the program, while exploiting the advan-
tages of a commodity fast cloud. Our approach aims at being transparent to the Client as it adds additional
security features (integrity, confidentiality, verifiability) while benefiting from the performance of existing
cloud infrastructures without their modification.

7



Simplification. To ease presentation we assume in the following that only a single program P can be computed
on the outsourced data. Further, we concentrate on a scenario where only one client accesses the outsourced
data. However, our protocols actually extend to multiple programs and clients.

Interface. The Client accesses the following interface offered by the Trusted Cloud over a secure channel:
During the Setup Phase, the Client provides the dataD to be outsourced as well as the program P (formulated
in a Hardware Description Language) to be computed. Later, in the Query Phase, the Client issues a query
q which should be processed as fast as possible resulting in the response r = P (q,D) output to the Client.
Additionally, the Client can update the stored data D or the program P .

Protocol Overview. On a high-level, our protocols work as follows: As soon as the Client provides the data
D or the program P , they are stored securely in the Commodity Cloud. Then, the Trusted Cloud starts to
re-encrypt D into its garbled equivalent D̃ and generates garbled circuits C̃ for P that are stored in the
Commodity Cloud. Later, when the Client issues a query q, it is encrypted and sent to the Commodity Cloud
which computes the garbled result r̃ = C̃(q̃, D̃) under encryption (using a pre-computed garbled circuit which
is deleted afterwards). Finally, the Trusted Cloud verifies the correctness of the garbled result and returns
the result r to the Client.

In the following we describe the details of the two phases. Actions invoked by the Client are denoted in Latin
letters; indices denote sub-steps. Greek letters denote actions that are triggered automatically.

5.1 Setup Phase

The setup phase depicted in Fig. 2 consists of the following four use-cases.

D , P ,
D , C

Trusted CloudClient Commodity Cloud

D=AuthEnc Da1  D a2  D

b1  P P=AuthEnc P  b2  P

D=DecVer  D
D=GarbleD  2 D

1 D

P=DecVer  P
C=Compile P
C=CreateGC C

2 C
1  P

Fig. 2. Setup Phase: Client registers the data D and program P that are stored securely in the Commodity Cloud
(a and b). Updates of P require re-generation of the garbled circuits C̃ (β), updates of D additionally require re-

generation of the garbled data D̃ (α).

a) Modify Data. Whenever the Client provides new or modified data D to be outsourced (a1), D is securely

stored as D̂ = AuthEnc(D) (cf. §3.1) in the Commodity Cloud (a2). Whenever data is modified, the garbled

data D̃ is re-generated (cf. β below) and all pre-computed garbled circuits C̃ are deleted from the Commodity
Cloud.
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b) Modify Program. Whenever the Client provides a new or modified program P (b1), P is securely stored

as P̂ = AuthEnc(P ) (cf. §3.1) in the Commodity Cloud (a2). Whenever the program is modified, all pre-

computed garbled circuits C̃ are deleted from the Commodity Cloud.

α) Garble Data. Whenever data is changed, the garbled data D̃ needs to be re-generated. For this, the

Trusted Cloud requests the securely stored data D̂ from the Commodity Cloud (α1), recovers the data

D = DecVer(D̂) (cf. §3.1), generates the corresponding garbled data D̃ = Garble(D) (cf. §3.2) and stores
this back into the Commodity Cloud (α2).

β) Garble Program. Whenever data or the program is changed or all pre-computed garbled circuits have been

consumed by the Query Phase, a new garbled circuit C̃ needs to be generated. For this, the Trusted Cloud
requests the securely stored program P̂ from the Commodity Cloud (β1), recovers the data P = DecVer(P̂ )
(cf. §3.1), compiles the program into a boolean circuit C = Compile(P ) (cf. §3.3), generates a new garbled

circuit C̃ = Garble(C) (cf. §3.2) and stores this back into the Commodity Cloud (β2).

5.2 Query Phase

The query phase depicted in Fig. 3 consists of the following use-case.

r=Verify  r

c2  q

c3  r

q=Garble q

r=C  q , D

c1  q

c4  r=Pq , D

Client Trusted Cloud Commodity Cloud

D , P ,
D , CX

Fig. 3. Query Phase: The Client sends a query q to the Trusted Cloud to be computed by the Commodity Cloud
under encryption (c). The used garbled circuit C̃ is deleted afterwards.

Process Query. Whenever the Client sends a query q for secure evaluation (c1), the Trusted Cloud converts
the query into its garbled equivalent q̃ = Garble(q) (cf. §3.2) which is forwarded to the Commodity Cloud

(c2). The Commodity Cloud computes the garbled response r̃ = C̃(q̃, D̃) by evaluating a pre-computed

garbled circuit C̃ (cf. §3.2) in parallel and deleting it afterwards. r̃ is returned to the Trusted Cloud (c3)
which verifies the correctness of the result r = Verify(r̃) (cf. §3.2) and returns r = P (q,D) to the Client.
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NGSN10. S. Narayan, M. Gagné, and R. Safavi-Naini. Privacy preserving EHR system using attribute-based infras-

tructure. In Cloud Computing Security Workshop (CCSW’10), pages 47–52. ACM, 2010.
NIS01. NIST. U.s. national institute of standards and technology. federal information processing standards (FIPS

197). advanced encryption standard (AES), November 2001. http://csrc.nist.gov/publications/

fips/fips197/fips-197.pdf.
NIS02. NIST. U.s. national institute of standards and technology. federal information processing standards (FIPS

180-2). announcing the secure hash standard, August 2002. http://csrc.nist.gov/publications/fips/
fips180-2/fips-180-2.pdf.

NPS99. M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism design. In Electronic
Commerce (EC’99), pages 129–139. ACM, 1999.

Pai99. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Advances in
Cryptology – EUROCRYPT’99, volume 1592 of LNCS, pages 223–238. Springer, 1999.

PSS09. A. Paus, A.-R. Sadeghi, and T. Schneider. Practical secure evaluation of semi-private functions. In
Applied Cryptography and Network Security (ACNS’09), volume 5536 of LNCS, pages 89–106. Springer,
2009. http://www.trust.rub.de/FairplaySPF.

PSSW09. B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure two-party computation is practical. In
Advances in Cryptology – ASIACRYPT’09, volume 5912 of LNCS, pages 250–267. Springer, 2009.

RSA78. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM, 21:120–126, February 1978.

SGR09. N. Santos, K. P. Gummadi, and R. Rodrigues. Towards trusted cloud computing. In Hot Topics in Cloud
Computing (HotCloud’09). USENIX Association, 2009.

SHL07. K. Shimizu, H. P. Hofstee, and J. S. Liberty. Cell broadband engine processor vault security architecture.
IBM Journal of Research and Development, 51:521–528, September 2007.

SMV+10. J. Schiffman, T. Moyer, H. Vijayakumar, T. Jaeger, and P. McDaniel. Seeding clouds with trust anchors.
In Cloud Computing Security Workshop (CCSW’10), pages 43–46. ACM, 2010.

SSW10. A.-R. Sadeghi, T. Schneider, and M. Winandy. Token-based cloud computing – secure outsourcing of
data and arbitrary computations with lower latency. In Trust and Trustworthy Computing (TRUST’10)
- Workshop on Trust in the Cloud, volume 6101 of LNCS, pages 417–429. Springer, 2010.

SV10. N. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key and ciphertext
sizes. In Public Key Cryptography (PKC’10), volume 6056 of LNCS, pages 420–443. Springer, 2010.

SW99. S. W. Smith and S. Weingart. Building a high-performance, programmable secure coprocessor. Computer
Networks, 31(8):831–860, April 1999.

SZJVD04. R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn. Design and implementation of a TCG-based integrity
measurement architecture. In USENIX Security Symposium (Security’04). USENIX Association, 2004.
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