
Ray – A Secure Micro Kernel Architecture
Stefan Nürnberger, Thomas Feller, Sorin A. Huss

CASED - Center for Advanced Security Research Darmstadt, Darmstadt, Germany
{stefan.nuernberger | thomas.feller | sorin.huss } @ cased.de

Abstract—In this paper we present a secure micro kernel
architecture (called Ray) that was designed from scratch with
security goals in mind. It features some traditional security
aspects like process isolation, advanced non-standard security
aspects like padded non-readable memory boundaries and new
contributions like memory gifts and behaviour deviation detec-
tion. This theoretical design has been implemented as a proof of
concept for x86 based processors including a small set of essential
drivers and user land applications in order to verify and test the
claims made herein.

Index Terms—operating system, secure micro kernel, harvard
architecture, message passing, behaviour analysis

I. INTRODUCTION

As the operating system is the fundamental base and
interface to the hardware, it does not only implicitly and
explicitly define security boundaries, but it is also an important
link in the chain of a secure architecture. If an application
poses a security threat due to a vulnerability, the system may
be vulnerable when this particular application is running. In
contrast to that, the operating system is always running and
should be designed to prevent malicious and accidental action
that might pose a security threat by design.

The micro kernel architecture and implementation described
in this paper was designed from scratch in order to be able
to see the implications, when completely focusing on security
aspects and intentionally neglecting compatibility influences.
Furthermore, a small trusted code base enables inspection of
integral parts separate from each other under almost laboratory
conditions. This enabled us to re-think traditional operating
system design and implementation in order to guarantee mis-
sion critical scenarios the utmost trust in the underlying OS.

The main goals of our approach are
• Common programming mistakes shall be easily discov-

erable – even when using non-managed languages like
C.

• Security vulnerabilities (especially code injection by sev-
eral means) shall be impossible.

• Dependabilities between applications shall be minimized
(as they cannot be completely avoided).

We have implemented a proof of concept version for the
Intel x86 architecture to test the theoretical claims made
herein.

II. RELATED WORK

Most previous work made additions to already existing op-
erating systems or kernels, like IBM’s Integrity Measurement
Architecture – IMA[1], which adds Trusted Boot capabilities

to the Linux kernel. Flume [2], a user mode reference mon-
itor for Linux, allows Distributed Information Flow Control
(DIFC) implemented in user space. Complete kernels have
been implemented too, mostly focusing on one or a few
security aspects, like HiStar [3], which also implements In-
formation Flow Control (IFC) to achieve a small trusted code
base and even an entirely untrusted login process. Only a few
kernels exist that try to combine best practices of secure kernel
design with new technologies to get an overall picture of how
an operating system might look like, when security aspects
have major priority. One of the most interesting projects is
Microsoft Research’s Singularity OS ([4], [5]). Our paper
focuses on a similar complete overview and design of a secure,
trusted and dependable operating system.

III. GENERAL KERNEL DESIGN

The kernel was almost entirely written in C and C++ in
order to benefit from higher level languages and especially
their constructs like C++ exceptions. In order to make C++
–including run time type information (RTTI) and exceptions–
work, the standard C library (using newlib1) and the C++
support library (libsupc++ from GCC) was ported to be
able to run in kernel mode. This emerged to be a tricky
task, as operators like new or delete, exception handling as
well as stack unwinding heavily rely on operating system
functionality, which is a chicken-egg-problem. The current
implementation is partly based on the work presented in [6].

Due to its object oriented nature, C++ is used when the
kernel benefits from it (like abstract data types to manage
hash maps), while plain C is used to write the C++ support
code as well as basic functionality. The hardware abstraction
layer (HAL) of the kernel has minor parts written in Assembly
when necessary. The assembler instructions make up ≈ 1.5%
of the overall instruction count of the kernel image, but only
≈ 0.3% lines of code. Table I shows an overview of the
different parts and their amount of lines of code (LOC) that
compose the kernel. The kernel compiles to ≈ 130 KiB of x86
instructions without optimization (≈ 100 KiB when optimized
for size). Of course, it features traditional security features like
separate processes and threads and isolation of processes using
hardware virtual memory management.

A. Boot Process

The kernel image complies to the multiboot [7] specifica-
tion. We use a standard, unmodified Grub or Syslinux2 to boot

1http://sourceware.org/newlib
2http://www.gnu.org/software/grub and http://syslinux.zytor.com

TABLE I
SOURCE CODE SIZE

Part Source Code Lines Fraction
Memory Mgmt. 477 5.74%

Scheduler 366 4.40%
Abstract Data Types 315 3.79%

IPC 286 3.44%
Bootstrap 262 3.15%

Synchr. Primitives 219 2.64%
C++ Support 201 2.42%

Syscalls 100 1.20%
HAL 785 9.45%

Headers 2868 34.51%
Miscellaneous 2431 29.25%

Sum 8310 100%

up the kernel from either hard disk, USB flash media, CD-
ROM or over the network via PXE. It is designed to be one
piece of code that does not need to be boot-strapped. This is
addressed by abusing the Global Descriptor Table (GDT) in
order to shift the kernel to 3GB right from the beginning. This
is necessary as the kernel image is statically linked to work
at 3GB, which would apparently be impossible if the user
did not offer this amount of memory. Once virtual memory
is initialized, the GDT offset is removed and the MMU is
responsible for mapping the kernel at 3GB, regardless of the
amount of physical RAM installed. Traditionally this is done
by chain-loading at least two pieces of differently linked kernel
parts. Our approach eases maintainability and makes the kernel
less prone to boot loader errors.

B. Hardware Access

Due to its nature as a micro kernel, the drivers run as
ordinary user mode processes with special privileges to register
deferred procedure calls for interrupt handlers (as we do not
want them to take place in kernel mode) and restricted I/O.
That means, that I/O access has to be granted by the kernel on
a per-port basis. The kernel further ensures that one I/O port is
only accessed by exactly one process. Therefore, claims about
concurrent access can be made, as the access to a common I/O
port (like the PCI bus) has to be tunneled through a separate
PCI bus process. As using a kernel API to access each port
would be comparatively slow, our implementation uses the x86
feature of the IO-Bitmap to restrict access to all ports except
the ones allowed and registered for.

C. Behaviour Deviation Detection

In order to also assure known behaviour, our approach is
to dynamically recompile each process before its gets started.
The kernel disassembles the instructions of a new process and
injects extra monitoring algorithms. They verify return points
from functions, to check that they fall back to exactly the point
they came from (see return to libc attacks in [8] and why
Address Space Layout Randomization – as in use by Linux
or Windows – is not a good choice [9]). They can also be
used to assure that a program executes and behaves according
to its learning phase. The kernel inserts checkpoints (using
the CPU’s debug registers) to every conditional branch and

function call / return pair. When triggered, these checkpoints
assure known behaviour with respect to an earlier learning
phase. The algorithm can abstract from loops, recursion and
asynchronous behaviour like threads. Only the paths and their
coverage is checked. During the linear control flow between
each conditional branch, additionally inserted data monitoring
algorithms take care of detecting buffer overflows (see section
IV). By this means, it is possible detect deviation from
intended behaviour due to erroneous programming or security
vulnerabilities.

D. Performance

The following table gives an overview of cost of basic kernel
operations. The tests are identical to the tests in [10, p. 11]
where the Singularity, Windows and Linux values have been
taken from. ABI call refers to the most simple kernel ABI call
which returns a readily available data structure. 2 thread sync
benchmarks the complexity of a wait/notify synchronization
primitive of two threads in the same process. IPC message is
the time it takes a process from sending a 1-byte-message till
it can be read in another process. Create process is the time
from the call of ProcessLoad() till the first instruction in the
newly created process. All tests have been conducted 1000
times and averaged. The benchmarks were performed on an
AMD Athlon64 3000+ (1.8 GHz) CPU with 1GB of RAM.
Please note, that the worse performance of IPC messages can
be explained by the benefits over traditional IPC (see V).

TABLE II
BASIC OPERATION PERFORMANCE

Operation CPU Cycles
Ray Singularity Linux Windows

ABI call 251 91 437 627
2 thread sync 685 346 906 753
IPC Message 11,683 808 5,797 6,344

Create Process 120,661 352,873 719,447 5,375,735

IV. MEMORY

The Ray memory management deviates from traditional
management as the memory is divided in two independently
managed areas. Despite the fact the implementation was
developed on an x86 platform, which features a Von-Neumann
architecture, this model enforces a Harvard architecture by
combining virtual memory and memory segmentation. Kernel
and user mode code is only allowed to run within a certain
segment. The data segment overlaps the complete code seg-
ment. This enables code that tries to read its own instructions.
It does not pose a security risk, as the code segment is write-
protected. However, instructions synthesized or copied from
the code segment cannot be executed, as execution of them
would have to take place outside of the code segment.

As a means to prevent inadvertent access to variables not
intended to use, the kernels marks its whole data segment as
write-protected. As all the kernel functions – especially system
calls – only modify data structures (create process, allocate
data, allow I/O access, . . .) in a fairly small fraction of their
overall work, it was a viable decision to surround access to

Fig. 1. The standard process memory layout: Sealed data cannot be extended
or changed, writable data cannot be extended and dynamic data can be written
to and extended but its boundaries are protected.

data structures with an unlock/lock pair. These unlocks/locks
only update one entry each in the Translation Look-aside
Buffer (TLB) using directly manipulating CPU instructions3.

A. Shared Memory

Ray user mode processes have the restriction that they are
not allowed to share memory between them. On the one
hand this eliminates a common programming pattern – shared
memory – but on the other hand improves static code analysis
as pointers are guaranteed to be only modified by the owner
and they are restricted to point to addresses inside the program
only. The loss of message exchange capabilities is explained
in section V.

B. Memory Protection

The Ray memory management has two more techniques to
confine common programming techniques related to memory
and arrays. When not using a higher level programming
language which lacks a runtime virtual machine (like Java or
.NET CLR), access beyond the boundaries of an array may
occur unnoticed. This may not only lead to corrupt data as
other data may have been overwritten, but it exhibits unwanted
behaviour. To circumvent this in a majority of cases, the Ray
kernel aligns a requested memory block so that its last byte
is at the end of a virtual memory page. Two more adjacently
surrounding pages are introduced at either side of the allocated
memory block. These pages are marked as read- and write-
protected. So any access (either in kernel mode or user mode)
will trigger a page fault and will therefore be noticed – even
if the index in the array is only off by one (see figure 1).

This method cannot cope with arrays that are statically
allocated at compile time and reside in the data or bss segment
of the executable. However, we introduce an algorithm that
copes with this kind of problem. The dynamic recompila-
tion introduced in III also assures that no arrays have been
overwritten by emitting and compiling two different – but
semantically identical – programs, that are being run side-
by-side in lockstep (similar to [11]). One version has no

3Using the Invalidate Page instruction invlpg

Fig. 2. IPC Memory Gift: Donating memory from process A to process B.
The sender loses virtual memory that the receiver gains.

modifications and works as a reference, while the second
version is changed, so that all pointers to the data section
are commulatively moved to introduce a gap of at least one
byte next to each other. Of course, the actual data in the data
sections is splayed accordingly. During executing all values
read from the data section are efficiently accumulated (i.e.
using an XOR operation) in an unused register in both process
versions. Thus, exceeding array boundaries leads to different
values of data bytes following the overwritten value. Thus, on
the next read access different values will be read and therefore
be accumulated. These accumulated values are compared at
each conditional branch and the process can fire an exception
in case they differ.

V. INTER PROCESS COMMUNICATION

In contrast to commercial operating systems, the Ray micro
kernel features a different approach for Inter Process Com-
munication (IPC). While Unix/Linux traditionally use signals
and pipes to signal respectively receive notifications, Windows
uses a method usually referred to as the Message Pump
to receive signals and data in user mode applications. We
think that both methods incorporate drawbacks concerning
security or general correctness. In order to signal a process
the Unix/Linux kernel simply pretends a function call in the
respective process to a previously registered signal-handler.
This involves an issue of general applicability as the signal
handler can interrupt at virtually any point, thus potentially
interrupting non-reentrant code. The Windows operating sys-
tem copes with that fact by using the aforementioned Message
Pump which has to be checked and emptied in an infinite
loop. On the one hand this approach avoids the interruption
of non-reentrant code, but on the other hand urgent events can
apparently not be signaled immediately when an old event is
still being processed.

To circumvent the two above mentioned drawbacks, the Ray
micro kernel features IPC based on signals that are started as
separate threads. So functions incorporating critical sections
can still protect them, even though they get interrupted in
the middle of execution. Additionally due to the nature of
a thread, signals can be prioritized implicitly by the scheduler
because they have an associated priority which may interrupt a
currently running lower priority thread. Nevertheless threads of
equal priority level are guaranteed to arrive in order of sending.
Ray features IPC mechanisms that are derived from message
passing of traditional micro kernels and are in some degree

similar to the concept of channels introduced in Singularity
[12]. IPC messages have exactly one sender and one receiver
and must agree on an exchange format prior to using the IPC
channel (see the principle of Contracts in [12]). The message
format they both agree on includes the actual message type and
a maximum capacity/length the sender is willing to expect. In
case of integer or floating point values, they are copied in
registers. Otherwise the messages are completely donated to
the receiver’s process. Those IPC messages are therefore called
Memory Gifts as the messages leave the sender’s process and
arrive unchanged without the need to copy them (see figure
2). This is done by simply changing the ownership of the
particular memory block from sender to receiver. To enable
this technique, memory that can be donated between processes
is marked for ownership exchange by the kernel. Therefore it
has to be allocated using dedicated functions alongside the
usual malloc/free pair, thus, exchanging usual local variables
(stored in the .data, .bss segment or on the stack) and normal
memory allocated via malloc is prohibited in order to avoid
inadvertent donation of memory. After a message has been
sent, the sender’s process has a dangling pointer as the kernel
immediately flushes the TLB cache so that the just donated
memory cannot be accessed accidentally. A received message
is still marked for exchange and can of course be forwarded
to yet another process.

This method has several advantages.
1) As a fire-and-forget type message, no implicit expec-

tations exist about the handling of messages and their
protection using mutual exclusion.

2) After the unexpected death of a process, shared memory
would have been left in an undefined state, leaving no
other option than to terminate all the processes involved
in the sharing of memory. If either side of two processes
exchanging messages dies, no other process has to be
terminated.

3) The use of a variable/memory after it has already been
sent can be easily trapped by hardware mechanisms as
they generate a page fault due to dangling pointers.

4) Moving large data structures through several abstraction
layers is rather efficient despite the micro kernel design,
as the memory blocks are simply passed through each
layer (e.g. IDE drive → DMA → disk driver → file
system driver → application).

VI. CONCLUSION

Our approach features means to avoid code injection by
prohibiting the execution of stack or data in general. Its IPC
mechanisms enable stronger claims when using static analysis
due to a lack of potentially harmful shared memory. The
message passing using threads protects non-reentrant code and
critical sections. Driver’s I/O access can be allowed in a fine-
grained manner and the kernel is able to detect array-out-of-
bound programming flaws, at least when using dynamically
allocated data. The proof of concept was written in a high
level programming language (C++) with all its benefits like
object orientation and exception handling, in order to further
reduce programming flaws.

The kernel represents an architecture that ensures secure
execution from tip to toe and provides a solid basis for further
research.

VII. FUTURE WORK

Our current and future work concentrates on completely
eliminating code injection (including return to libc attacks).
As a basis, already existing means like Secure Boot (see
TCG4) will be implemented as described by [13], to ensure the
kernel’s integrity. A second step will be to only allow drivers
or even applications to run that have been digitally signed, so
that their integrity can be proven. These approaches however
do only guarantee that the integrity of a previously known-
good state has not been compromised.

The dynamic recompilation and monitoring according to a
previous learning phase could also be widened in order to
intentionally restrict access to certain features of a program of
which modification of the source code is (no longer) possible
(e.g. commercial applications).

REFERENCES

[1] R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn, “Design and
implementation of a TCG-based integrity measurement architecture,” in
Proceedings of the 13th USENIX Security Symposium, 2004, pp. 223–
238.

[2] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. Kaashoek, E. Kohler,
and R. Morris, “Information flow control for standard OS abstractions,”
ACM SIGOPS Operating Systems Review, vol. 41, no. 6, p. 334, 2007.

[3] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières, “Making
information flow explicit in HiStar,” in Proc. of the 7th OSDI, pp. 263–
278.

[4] G. Hunt and J. Larus, “Singularity Technical Report 1: Singularity
Design Motivation,” Technical report, Redmond, WA, Tech. Rep., 2004.

[5] G. Hunt and J. Larus, “Singularity: rethinking the software stack,”
vol. 41, no. 2. ACM, 2007, p. 49.

[6] H. Isak Gylfason and G. Hjalmtysson, “C++ Exceptions & the Linux
Kernel-C++ kernel-level runtime support for Linux lets you use the
full power of C++ in kernel-space programming,” Dr Dobb’s Journal-
Software Tools for the Professional Programmer, pp. 50–53, 2005.

[7] Y. Okuji, B. Ford, E. Boleyn, and K. Ishiguro, “The multiboot specifi-
cation,” 2002.

[8] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and communications security. ACM,
2007, p. 561.

[9] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in CCS ’04: Pro-
ceedings of the 11th ACM conference on Computer and communications
security. New York, NY, USA: ACM, 2004, pp. 298–307.

[10] G. Hunt, C. Hawblitzel, O. Hodson, J. Larus, B. Steensgaard, and
T. Wobber, Sealing OS Processes to Improve Dependability and Safety.
Proceedings of the European Conference on Computer Systems (Eu-
roSys), Association for Computing Machinery, Inc., Lisbon, Portugal,
2007.

[11] B. Salamat, T. Jackson, A. Gal, and M. Franz, “Orchestra: intrusion
detection using parallel execution and monitoring of program variants
in user-space,” in Proceedings of the fourth ACM european conference
on Computer systems. ACM New York, NY, USA, 2009, pp. 33–46.

[12] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt, J. Larus,
and S. Levi, Language Support for Fast and Reliable Message-based
Communication in Singularity OS. Volume 40, Issue 4 Proceedings of
the 2006 EuroSys conference, 2006.

[13] W. Arbaugh, D. Farber, A. Keromytis, and J. Smith, “Secure and reliable
bootstrap architecture,” Feb. 6 2001, uS Patent 6,185,678.

[14] S. Engle and M. Bishop, A Model for Vulnerability Analysis and Classi-
fication. IEEE Conference on Computational Science and Engineering,
2008.

4Trusted Computing Group – http://www.trustedcomputinggroup.org

