Supplementary Material

Flow Fields: Dense Correspondence Fields for Highly Accurate Large Displacement Optical Flow Estimation

1. Introduction

This supplementary material document is only intended for readers that have read the paper "Flow Fields: Dense Correspondence Fields for Highly Accurate Large Displacement Optical Flow Estimation", as we assume the notations terms and experiments introduced/presented in the paper to be known. We first present our results with the SIFT flow data term on MPI-Sintel [2] and Middelbury [1] as well as our results on KITTI [3] with the census transform in Section 2. Then, we describe in Section 3 why we did not incorporate the matching error for outlier filtering. After that, we describe the effects of our parameters in more in detail in Section 4 and provide guidelines for parameter selection. Finally, we present a hypothesis in Section 5 that explains why two backward consistency checks are superior to one forward and one backward check. We also show in Figure 2 what happens if the experiment presented in Figure 5 a) in the paper is only performed with one sample as initialization (see figure caption).

2. The alternative data term

In this section we present our results with the SIFT flow data term on MPI-Sintel [2] and Middelbury [1] as well as our results on KITTI [3] with the census transform data term. Note that we used the training sets and not the test sets as these (where the ground truth is only known by the authors of the datasets) are only meant for the final best results of a publication and not for experiments with alternative data terms or parameters. In all result tables that are presented in this section we marked our Flow Field approach (with data terms mentioned in the tables) blue and the original EpicFlow [5] red. Of course our approach also applies Epic [5] (Edge-preserving interpolation of correspondences) for the final optical flow creation, like in the paper.

As can be seen in Table 1 and 2, we can also clearly outperform the original EpicFlow with our SIFT flow data term on MPI-Sintel and Middlebury, but less than with the census transform. Thus, our Flow Fields + Epic with the SIFT flow

Feature/Method	r	r_{2}	ϵ	Epic	Epic noc.
Census transform	8	6	5	4.03	2.04
SIFT flow	5	4	0.8	4.14	2.22
EpicFlow [5]	-	-	-	4.34	2.48

Table 1. Results on the Sintel training dataset (for simplicity and comparability we use the same subset as in the paper). We use $s=50$ for both features and $S=6$ and $S_{2}=10$ for SIFT flow (S and S_{2} are runtime tradeoffs to obtain a runtime that is similar to the Census transform). Unmentioned parameters are set to their standard value mentioned in the paper.

Feature/Method	r	r_{2}	e	Epic
Census transform	8	6	7	0.214
SIFT flow	6	5	9	0.248
EpicFlow [5]	-	-	-	0.380

Table 2. Results on the Middlebury training dataset. We use $s=50$ for both features. Unmentioned parameters are set to their standard value mentioned in the paper (i.e. $S=3$).
data term outperform the original EpicFlow approach on all three tested datasets i.e. our Flow Fields with SIFT flow are in general superior to Deep Matching descriptors [6] if EpicFlow is applied. Note that SIFT flow in general requires a smaller patch radius r than the census transform (see tables), as SIFT flow pixels consider not only the pixel color itself but also the surrounding of the pixel. Despite the good results, our first/original data term, the census transform, still performs better on MPI-Sintel and Middelbury.

On KITTI (Table 3) the census transform does not perform that well. As mentioned in the paper this is probably because (unmodified) patch based approaches are not suited for datasets like KITTI where image patches of walls and the street can undergo strong scale changes and deformations (See Figure 1). Nevertheless, we can obtain very good results with the census transform considering the challenging circumstances. The problem in Figure 1 also applies to our SIFT flow data term. However, as SIFT (and SIFT flow as well) is to some extend robust to deformation it is possible to obtain state-of-the-art results with it - but only if our novel Flow Field approach is used for matching.

Feature/Method	>3 pixel nocc.	>3 pixel all	EPE nocc.	EPE all
SIFT flow	5.23%	12.58%	1.27 px	2.94 px
EpicFlow [5]	7.49%	16.75%	1.38 px	3.48 px
Census transform	11.38%	19.70%	2.18 px	4.55 px

Table 3. Results on KITTI training set. nocc. means non-occluded. >3 pixel means an endpoint error above 3 pixel. We use $r=$ $5, r_{2}=4, \epsilon=5, e=8$ and $s=100$ for the census transform. All other parameters are set to their standard value mentioned in the paper. For SIFT flow we use the parameters used on the test set. Both our results are for their respective circumstances very good. See text and Figure 1 for a description of the challenging circumstances we have to deal with on KITTI.

Figure 1. An example of the deformations (blue) an image patch (green) can undergo on a wall (black) in KITTI. Left: the original patch. Middle: With angular deformation only. Right: with angular and scale deformation (a common case on KITTI). A unmodified patch based approach like ours can only match the green patch to the red patch or a moved (but not deformed) version of it. It is clear that this cannot work very well, as the correct patch (blue) that would match the green patch is strongly deformed compared to the red patch. Considering this fact our results on KITTI are very good.

3. Using matching error for outlier filtering

In this section we describe, why we did not use the matching error for outlier filtering. As far as we know there is no study so far that evaluates if it makes sense to combine consistency checks and matching errors. As can be seen in Figure 3, the matching error is a much weaker measure for finding outliers than the consistency check. Nevertheless, there is some tendency that a smaller matching error leads to fewer outliers - at least in some range. However, there is a high variability in this tendency. On the clean set of MPI-Sintel the smaller matching error leads to less outliers from an error of 20 up to around 300. In contrast, on the final set this rule is reliable from around 10 to 100 , while there is much more gain in this range. We tried to bring these different requirements of clean and final together to define a variable consistency check filter threshold $\epsilon_{E_{d}}$ that depends on the matching error. However, except from being extremely effortful the gain is very limited even if the training sequence is used for testing. When splitting into training and test sequence the quality might even be less,
due to overfitting. As a result, we find that it is not worth to consider the matching error if a much more powerful consistency check measure is available.

4. Parameter Selection

Here we describe the effects of our parameters in more detail and provide guidelines for parameter selection. Not all statements in this section are theoretically or experimentally evaluated. Some statements are assumptions of the authors due to their experience and expertise.

A larger r usually leads to more matching robustness, but also more loss of detail. Usually, there is an optimal r for each dataset and data term that is a tradeoff between reasonable robustness and reasonable loss of detail.

A novel property of our approach is that more robustness cannot only be achieved with a larger r, but also with a larger k. Both robustness factors complement each other. r is important for robust patch comparison (which is still the foundation of our approach), while k allows it due to the blur and the hierarchical matching to increase the initial patch radius even much further (to $k \times r$) without loss of most details (in contrast to an enlargement of r). Especially, connected details that are part of a larger body with similar flow are hardly negatively affected by a larger k (e.g. a nose on a head, but also an arm at a body if the arm has not a too strong movement compared to the body). Mainly small fast moving objects ${ }^{1}$ suffer form a larger k, although the negative effect is still quite small up to some k ($k \approx 3$ for small objects in MPI-Sintel, see paper) so that the positive effect of more robustness prevails.

Summarized: basic robustness is provided by r. k provides extra robustness on top with much less loss of detail, but it cannot replace r as matching patches with radius r is still the foundation of our approach. If independent objects with fast moment compared to their size matter then k is also a tradeoff between robustness and loss of detail. Otherwise, k is only limited by the image size, although the robustness gain might already get negligible small beforehand. For very large k a kd-tree initialization is unnecessary - a zero initialization can be used instead.

Smaller l decrease similar to larger k the amount of initial resistant outliers. However, only with hierarchies k the outlier sieves can be used. Furthermore, it seems (we did not evaluate it deeply) that determining samples on less positions leads even without hierarchies to better results. This might or might not be (partly) due to collisions of resistant outliers. Lets assume the following scenarios:

1. $k_{1}=0, l_{1}=1$
2. $k_{2}=3, l_{2}=8$.

[^0]

Figure 2. The figure shows what happens if the example in Figure 5 a) in the paper is only initialized with one seed point instead of two. The correct flow outside of the person cannot be found as it is out of range of the random walk.

In both scenarios the same amount of kd-tree samples is created. In scenario 1 all resistant outliers are keep, while in scenario 2 only one resistant outlier by pixel can be kept if more than one is found at a pixel. This leads in total to less resistant outliers. In our paper we simply use $l=8$ as it performs good and as it was used by [4], which increases comparability.
r_{2} should be set only slightly smaller than r to widely preserve the robustness of r, while it should be set different enough to show a different behavior. In our tests the pair $r=8$ and $r_{2}=6$ performed slightly better than $r=8$ and $r_{2}=7$. For smaller r it is better to use $r_{2}=r-1$. Different behavior can also be archived by choosing $S \neq S_{2}$ for SIFT flow. As r_{2} is smaller it is obvious that we choose S_{2} larger. A larger S_{2} improves robustness, which is desirable as the smaller patch radius r_{2} decreases robustness (we want to have different behavior and not less robustness). Note that we set S and S_{2} to achieve a similar runtime to the census transform. In our tests the SIFT features used for SIFT flow are OpenCV 2.4 SIFT features with a key point size of 0.5 (see OpenCV documentation).

The outlier filtering parameters ϵ, e and s are optimized experimentally. This is possible without much time effort as outlier filtering is by far the fastest part of our approach. Larger e, s and smaller ϵ lead to more strict outlier filtering. We found that $R=1$ is a good choice for our optical flow tests (based on few incoherent tests on single MPI-Sintel and Middlebury images).

5. Forward versus backward consistency check

Our tests show that it is better to use a secondary backward consistency check instead of one forward and one backward consistency check for a two way consistency check. In this section we want to give some intuition for this. First we define that the flows $F_{m}\left(p_{1}\right)$ and $F_{m}^{b}\left(p_{2}\right)$ are based on probability distributions $D\left(p_{1}\right)$ and $D^{b}\left(p_{2}\right)$ for each pixel p_{1} and p_{2}, respectively. Different samples m of the distributions are obtained by determining the Flow Field with different patch radii. $F\left(p_{1}\right)$ is the main Flow, based on the main patch radius r.

We call $E\left(p_{1}\right)$ and $E^{b}\left(p_{2}\right)$ the expectation values and
$V\left(p_{1}\right)$ and $V^{b}\left(p_{2}\right)$ the variances of the distributions. $G\left(p_{1}\right)$ is the ground truth for a point. It is clear that a smaller $V\left(p_{1}\right)$ and a smaller $V^{b}\left(p_{2}\right)$ should lead to a lower outlier probability. A small variance means that the different matches agree with each other. In contrast, a large variance means that they diverge. With a similar argument the outlier probability should decrease if

$$
\begin{equation*}
\left|E\left(p_{1}\right)-E^{b}\left(p_{1}+G\left(p_{1}\right)\right)\right|->0 \tag{1}
\end{equation*}
$$

i.e. forward matching should agree to backward matching. It is clear that on average $\left|F\left(p_{1}\right)-E\left(p_{1}\right)\right|$ raises with a larger $V\left(p_{1}\right)$ as $F\left(p_{1}\right)$ is a sample of $D\left(p_{1}\right)$. The same applies to the backward flows $F_{m}^{b}\left(p_{2}\right)$ and the backward variance $V^{b}\left(p_{2}\right)$. Thus, the following formula should decrease on average ${ }^{2}$ if Formula 1 decreases and/or one of the two variances decreases:

$$
\begin{equation*}
\mid F\left(p_{1}\right)-F_{m}^{b}\left(p_{1}+G\left(p_{1}\right) \mid\right. \tag{2}
\end{equation*}
$$

As a result, the outlier probability should decrease on average when Formula 2 decreases. As there is no ground truth available it is also important that

$$
\begin{equation*}
\mid F_{m}^{b}\left(p_{1}+F\left(p_{1}\right)-F_{m}^{b}\left(p_{1}+G\left(p_{1}\right)\right) \mid\right. \tag{3}
\end{equation*}
$$

is small for a given m so that we can use Equation 5 (which is similar to Equation 5 in the paper). This usually requires $\left|F\left(p_{1}\right)-G\left(p_{1}\right)\right|$ to be small for a small value in Formula 3. In contrast to other error sources the error of Formula 3 strongly relies on the local image structure. Close to motion discontinuities a small $\left|F\left(p_{1}\right)-G\left(p_{1}\right)\right|$ is especially important. Thus, this error is helpful to identify points that do not respect motion boundaries.

As can be seen, the error of a forward consistency check

$$
\begin{equation*}
\left|F\left(p_{1}\right)+F_{2}\left(p_{1}\right)\right|<\epsilon \tag{4}
\end{equation*}
$$

only depends on the variance $V\left(p_{1}\right)$, while the error of a backward consistency check

$$
\begin{equation*}
\left|F\left(p_{1}\right)+F_{m}^{b}\left(p_{1}+F\left(p_{1}\right)\right)\right|<\epsilon \tag{5}
\end{equation*}
$$

[^1]depends on the errors of Formula 3, on Formula 1, $V\left(p_{1}\right)$ and $V^{b}\left(p_{1}+F\left(p_{1}\right)\right)$ (the latter 3 are contained in Formula 2). Thus, the backward flow depends on 4 different error sources while the forward flow depends on only one error source. It is clear that a smaller ϵ is required for a forward consistency check than for a backward consistency check, as it depends on less errors. This makes parameter tuning more difficult if both a forward and a backward consistency check are applied. So, already from this point of view it makes sense to favor one consistency check direction - which should be the backward direction, as it incorporates the reliable errors of Formula 2 and 3 that are not available in the forward check.

Nevertheless, we also experimented with two ϵ, namely ϵ_{1} and ϵ_{2} for a 1x forward +1 x backward consistency check. However, in our tests this could not keep up with a $2 x$ backward consistency check using one fixed ϵ. We think that this is because more errors are incorporated in the backward flow, which makes the determination more robust. Note that two of the four errors $\left(V\left(p_{1}\right)\right.$ and Formula 1$)$ are constant for different backward flows as they do not depend on the value of the backward flow, but only on the main flow $F\left(p_{1}\right)$. Still $V^{b}\left(p_{1}+F\left(p_{1}\right)\right)$ and Formula 3 depend on the value of the backward flow and as we have argued above Formula 3 seems to be interesting at motion discontinuities.

References

[1] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and R. Szeliski. A database and evaluation methodology for optical flow. International Journal of Computer Vision, 92(1):131, 2011. 1
[2] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for optical flow evaluation. In Computer Vision-ECCV 2012, pages 611-625. Springer, 2012. 1
[3] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The kitti dataset. The International Journal of Robotics Research, page 0278364913491297, 2013. 1
[4] K. He and J. Sun. Computing nearest-neighbor fields via propagation-assisted kd-trees. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 111-118. IEEE, 2012. 3
[5] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow. 2015. 1, 2
[6] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: Large displacement optical flow with deep matching. In IEEE Intenational Conference on Computer Vision (ICCV), Sydney, Australia, Dec. 2013. 1

(a) The outlier probabilities for clean

Abstract

0- $10-20-30-40-50-60-70-80-90-100-110-120-130-140-150-160-170-180-190-200-210-220-230-240-250-260-270-280-290-300-310-320-330-340-350-360-370-380-390-$

(b) The outlier probabilities for final

Figure 3. The Figure shows the probability that a point on our Flow Maps is an outlier for different matching errors (column) and different filter thresholds ϵ (row) on the clean and final datasets of MPI-Sintel. We use the standard parameters presented in the paper. This includes a 2 x consitency check. The outlier threshold is set to 5 pixels i.e. a point is an outlier if it varies by more than 5 pixels from the ground truth. the maximum possible matching error is $3(2 r+1) *(2 r+1)=867$ (3 color channels). However, values greater 400 are negligible.

[^0]: ${ }^{1}$ Fast moving compared to their size

[^1]: ${ }^{2}$ On average over all possible points. For single points this is sometimes not the case.

