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1. Introduction

This supplementary material document is only intended
for readers that have read the paper “Flow Fields: Dense
Correspondence Fields for Highly Accurate Large Dis-
placement Optical Flow Estimation”, as we assume the no-
tations terms and experiments introduced/presented in the
paper to be known. We first present our results with the
SIFT flow data term on MPI-Sintel [2] and Middelbury [1]
as well as our results on KITTI [3] with the census trans-
form in Section 2. Then, we describe in Section 3 why we
did not incorporate the matching error for outlier filtering.
After that, we describe the effects of our parameters in more
in detail in Section 4 and provide guidelines for parameter
selection. Finally, we present a hypothesis in Section 5 that
explains why two backward consistency checks are superior
to one forward and one backward check. We also show in
Figure 2 what happens if the experiment presented in Fig-
ure 5 a) in the paper is only performed with one sample as
initialization (see figure caption).

2. The alternative data term

In this section we present our results with the SIFT flow
data term on MPI-Sintel [2] and Middelbury [1] as well as
our results on KITTI [3] with the census transform data
term. Note that we used the training sets and not the test
sets as these (where the ground truth is only known by the
authors of the datasets) are only meant for the final best
results of a publication and not for experiments with al-
ternative data terms or parameters. In all result tables that
are presented in this section we marked our Flow Field ap-
proach (with data terms mentioned in the tables) blue and
the original EpicFlow [5] red. Of course our approach also
applies Epic [5] (Edge-preserving interpolation of corre-
spondences) for the final optical flow creation, like in the
paper.

As can be seen in Table 1 and 2, we can also clearly out-
perform the original EpicFlow with our SIFT flow data term
on MPI-Sintel and Middlebury, but less than with the census
transform. Thus, our Flow Fields + Epic with the SIFT flow

Feature/Method r r2 ε Epic Epic noc.
Census transform 8 6 5 4.03 2.04

SIFT flow 5 4 0.8 4.14 2.22
EpicFlow [5] - - - 4.34 2.48

Table 1. Results on the Sintel training dataset (for simplicity and
comparability we use the same subset as in the paper). We use
s = 50 for both features and S = 6 and S2 = 10 for SIFT flow
(S and S2 are runtime tradeoffs to obtain a runtime that is similar
to the Census transform). Unmentioned parameters are set to their
standard value mentioned in the paper.

Feature/Method r r2 e Epic
Census transform 8 6 7 0.214

SIFT flow 6 5 9 0.248
EpicFlow [5] - - - 0.380

Table 2. Results on the Middlebury training dataset. We use
s = 50 for both features. Unmentioned parameters are set to their
standard value mentioned in the paper (i.e. S = 3).

data term outperform the original EpicFlow approach on all
three tested datasets i.e. our Flow Fields with SIFT flow
are in general superior to Deep Matching descriptors [6] if
EpicFlow is applied. Note that SIFT flow in general re-
quires a smaller patch radius r than the census transform
(see tables), as SIFT flow pixels consider not only the pixel
color itself but also the surrounding of the pixel. Despite the
good results, our first/original data term, the census trans-
form, still performs better on MPI-Sintel and Middelbury.

On KITTI (Table 3) the census transform does not per-
form that well. As mentioned in the paper this is probably
because (unmodified) patch based approaches are not suited
for datasets like KITTI where image patches of walls and
the street can undergo strong scale changes and deforma-
tions (See Figure 1). Nevertheless, we can obtain very good
results with the census transform considering the challeng-
ing circumstances. The problem in Figure 1 also applies to
our SIFT flow data term. However, as SIFT (and SIFT flow
as well) is to some extend robust to deformation it is possi-
ble to obtain state-of-the-art results with it – but only if our
novel Flow Field approach is used for matching.
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Feature/Method >3 pixel
nocc.

>3 pixel
all

EPE
nocc.

EPE all

SIFT flow 5.23 % 12.58 % 1.27 px 2.94 px
EpicFlow [5] 7.49 % 16.75 % 1.38 px 3.48 px

Census transform 11.38 % 19.70 % 2.18 px 4.55 px

Table 3. Results on KITTI training set. nocc. means non-occluded.
>3 pixel means an endpoint error above 3 pixel. We use r =
5, r2 = 4, ε = 5, e = 8 and s = 100 for the census transform.
All other parameters are set to their standard value mentioned in
the paper. For SIFT flow we use the parameters used on the test
set. Both our results are for their respective circumstances very
good. See text and Figure 1 for a description of the challenging
circumstances we have to deal with on KITTI.

Figure 1. An example of the deformations (blue) an image patch
(green) can undergo on a wall (black) in KITTI. Left: the origi-
nal patch. Middle: With angular deformation only. Right: with
angular and scale deformation (a common case on KITTI). A un-
modified patch based approach like ours can only match the green
patch to the red patch or a moved (but not deformed) version of
it. It is clear that this cannot work very well, as the correct patch
(blue) that would match the green patch is strongly deformed com-
pared to the red patch. Considering this fact our results on KITTI
are very good.

3. Using matching error for outlier filtering
In this section we describe, why we did not use the

matching error for outlier filtering. As far as we know there
is no study so far that evaluates if it makes sense to combine
consistency checks and matching errors. As can be seen in
Figure 3, the matching error is a much weaker measure for
finding outliers than the consistency check. Nevertheless,
there is some tendency that a smaller matching error leads
to fewer outliers – at least in some range. However, there
is a high variability in this tendency. On the clean set of
MPI-Sintel the smaller matching error leads to less outliers
from an error of 20 up to around 300. In contrast, on the
final set this rule is reliable from around 10 to 100, while
there is much more gain in this range. We tried to bring
these different requirements of clean and final together to
define a variable consistency check filter threshold εEd

that
depends on the matching error. However, except from be-
ing extremely effortful the gain is very limited even if the
training sequence is used for testing. When splitting into
training and test sequence the quality might even be less,

due to overfitting. As a result, we find that it is not worth to
consider the matching error if a much more powerful con-
sistency check measure is available.

4. Parameter Selection

Here we describe the effects of our parameters in more
detail and provide guidelines for parameter selection. Not
all statements in this section are theoretically or experimen-
tally evaluated. Some statements are assumptions of the au-
thors due to their experience and expertise.

A larger r usually leads to more matching robustness,
but also more loss of detail. Usually, there is an optimal
r for each dataset and data term that is a tradeoff between
reasonable robustness and reasonable loss of detail.

A novel property of our approach is that more robust-
ness cannot only be achieved with a larger r, but also with
a larger k. Both robustness factors complement each other.
r is important for robust patch comparison (which is still
the foundation of our approach), while k allows it due to
the blur and the hierarchical matching to increase the initial
patch radius even much further (to k × r) without loss of
most details (in contrast to an enlargement of r). Especially,
connected details that are part of a larger body with similar
flow are hardly negatively affected by a larger k (e.g. a nose
on a head, but also an arm at a body if the arm has not a too
strong movement compared to the body). Mainly small fast
moving objects1 suffer form a larger k, although the nega-
tive effect is still quite small up to some k (k ≈ 3 for small
objects in MPI-Sintel, see paper) so that the positive effect
of more robustness prevails.

Summarized: basic robustness is provided by r. k pro-
vides extra robustness on top with much less loss of detail,
but it cannot replace r as matching patches with radius r
is still the foundation of our approach. If independent ob-
jects with fast moment compared to their size matter then
k is also a tradeoff between robustness and loss of detail.
Otherwise, k is only limited by the image size, although the
robustness gain might already get negligible small before-
hand. For very large k a kd-tree initialization is unnecessary
– a zero initialization can be used instead.

Smaller l decrease similar to larger k the amount of ini-
tial resistant outliers. However, only with hierarchies k the
outlier sieves can be used. Furthermore, it seems (we did
not evaluate it deeply) that determining samples on less po-
sitions leads even without hierarchies to better results. This
might or might not be (partly) due to collisions of resistant
outliers. Lets assume the following scenarios:

1. k1 = 0, l1 = 1

2. k2 = 3, l2 = 8.

1 Fast moving compared to their size



Figure 2. The figure shows what happens if the example in Figure 5 a) in the paper is only initialized with one seed point instead of two.
The correct flow outside of the person cannot be found as it is out of range of the random walk.

In both scenarios the same amount of kd-tree samples is
created. In scenario 1 all resistant outliers are keep, while
in scenario 2 only one resistant outlier by pixel can be kept
if more than one is found at a pixel. This leads in total to
less resistant outliers. In our paper we simply use l = 8 as
it performs good and as it was used by [4], which increases
comparability.
r2 should be set only slightly smaller than r to widely

preserve the robustness of r, while it should be set different
enough to show a different behavior. In our tests the pair
r = 8 and r2 = 6 performed slightly better than r = 8 and
r2 = 7. For smaller r it is better to use r2 = r−1. Different
behavior can also be archived by choosing S 6= S2 for SIFT
flow. As r2 is smaller it is obvious that we choose S2 larger.
A larger S2 improves robustness, which is desirable as the
smaller patch radius r2 decreases robustness (we want to
have different behavior and not less robustness). Note that
we set S and S2 to achieve a similar runtime to the census
transform. In our tests the SIFT features used for SIFT flow
are OpenCV 2.4 SIFT features with a key point size of 0.5
(see OpenCV documentation).

The outlier filtering parameters ε, e and s are optimized
experimentally. This is possible without much time effort
as outlier filtering is by far the fastest part of our approach.
Larger e, s and smaller ε lead to more strict outlier filtering.
We found that R = 1 is a good choice for our optical flow
tests (based on few incoherent tests on single MPI-Sintel
and Middlebury images).

5. Forward versus backward consistency check

Our tests show that it is better to use a secondary back-
ward consistency check instead of one forward and one
backward consistency check for a two way consistency
check. In this section we want to give some intuition for
this. First we define that the flows Fm(p1) and F b

m(p2)
are based on probability distributionsD(p1) andDb(p2) for
each pixel p1 and p2, respectively. Different samples m of
the distributions are obtained by determining the Flow Field
with different patch radii. F (p1) is the main Flow, based on
the main patch radius r.

We call E(p1) and Eb(p2) the expectation values and

V (p1) and V b(p2) the variances of the distributions. G(p1)
is the ground truth for a point. It is clear that a smaller
V (p1) and a smaller V b(p2) should lead to a lower out-
lier probability. A small variance means that the different
matches agree with each other. In contrast, a large variance
means that they diverge. With a similar argument the outlier
probability should decrease if

|E(p1)− Eb(p1 +G(p1))|− > 0 (1)

i.e. forward matching should agree to backward matching.
It is clear that on average |F (p1) − E(p1)| raises with a
larger V (p1) as F (p1) is a sample of D(p1). The same ap-
plies to the backward flows F b

m(p2) and the backward vari-
ance V b(p2). Thus, the following formula should decrease
on average2 if Formula 1 decreases and/or one of the two
variances decreases:

|F (p1)− F b
m(p1 +G(p1)| (2)

As a result, the outlier probability should decrease on aver-
age when Formula 2 decreases. As there is no ground truth
available it is also important that

|F b
m(p1 + F (p1)− F b

m(p1 +G(p1))| (3)

is small for a given m so that we can use Equation 5 (which
is similar to Equation 5 in the paper). This usually requires
|F (p1)−G(p1)| to be small for a small value in Formula 3.
In contrast to other error sources the error of Formula 3
strongly relies on the local image structure. Close to mo-
tion discontinuities a small |F (p1) − G(p1)| is especially
important. Thus, this error is helpful to identify points that
do not respect motion boundaries.

As can be seen, the error of a forward consistency check

|F (p1) + F2(p1)| < ε (4)

only depends on the variance V (p1), while the error of a
backward consistency check

|F (p1) + F b
m(p1 + F (p1))| < ε (5)

2 On average over all possible points. For single points this is some-
times not the case.



depends on the errors of Formula 3, on Formula 1, V (p1)
and V b(p1 + F (p1)) (the latter 3 are contained in For-
mula 2). Thus, the backward flow depends on 4 different
error sources while the forward flow depends on only one
error source. It is clear that a smaller ε is required for a
forward consistency check than for a backward consistency
check, as it depends on less errors. This makes parameter
tuning more difficult if both a forward and a backward con-
sistency check are applied. So, already from this point of
view it makes sense to favor one consistency check direc-
tion – which should be the backward direction, as it incor-
porates the reliable errors of Formula 2 and 3 that are not
available in the forward check.

Nevertheless, we also experimented with two ε, namely
ε1 and ε2 for a 1x forward + 1x backward consistency check.
However, in our tests this could not keep up with a 2x back-
ward consistency check using one fixed ε. We think that
this is because more errors are incorporated in the backward
flow, which makes the determination more robust. Note
that two of the four errors (V (p1) and Formula 1 ) are con-
stant for different backward flows as they do not depend on
the value of the backward flow, but only on the main flow
F (p1). Still V b(p1 + F (p1)) and Formula 3 depend on the
value of the backward flow and as we have argued above
Formula 3 seems to be interesting at motion discontinuities.
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0.0 – 0.2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 35.2%
0.2 – 0.4 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 26.4%
0.4 – 0.6 2% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 1% 2% 1% 1% 1% 1% 1% 1% 13.5%
0.6 – 0.8 4% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 3% 3% 3% 3% 3% 3% 3% 2% 3% 2% 2% 2% 2% 2% 2% 2% 2% 7.6%
0.8 – 1.0 7% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 3% 3% 3% 3% 3% 3% 3% 3% 4% 4% 4% 4% 4% 4% 4% 4% 4% 3% 3% 3% 3% 3% 3% 3% 3% 3% 4.7%
1.0 – 1.2 7% 3% 2% 2% 2% 2% 2% 2% 3% 3% 3% 3% 3% 3% 3% 4% 4% 4% 4% 4% 4% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 4% 4% 4% 4% 4% 4% 3.1%
1.2 – 1.4 17% 4% 3% 3% 3% 3% 3% 4% 4% 4% 4% 4% 4% 5% 5% 5% 5% 5% 6% 6% 6% 6% 6% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7% 6% 6% 6% 6% 5% 1.9%
1.4 – 1.6 12% 4% 4% 4% 4% 4% 4% 4% 5% 5% 5% 5% 5% 6% 6% 6% 6% 7% 7% 7% 8% 8% 8% 8% 9% 9% 9% 9% 9% 9% 9% 9% 9% 8% 8% 8% 8% 8% 7% 7% 1.4%
1.6 – 1.8 15% 5% 5% 5% 5% 5% 5% 6% 6% 6% 7% 7% 7% 7% 8% 8% 8% 8% 9% 9% 9% 10% 10% 10% 11% 11% 11% 11% 11% 11% 11% 11% 11% 11% 11% 11% 10% 10% 10% 10% 1.0%
1.8 – 2.0 16% 6% 6% 6% 6% 6% 7% 7% 7% 7% 8% 8% 8% 9% 9% 9% 10% 10% 11% 11% 12% 12% 12% 12% 13% 13% 13% 13% 13% 14% 14% 14% 13% 13% 13% 13% 12% 13% 12% 11% 0.8%
2.0 – 2.2 41% 8% 7% 7% 7% 8% 8% 8% 8% 9% 9% 9% 10% 10% 11% 11% 12% 12% 12% 13% 13% 14% 14% 15% 15% 15% 15% 16% 15% 15% 16% 16% 15% 15% 15% 15% 14% 14% 13% 14% 0.6%
2.2 – 2.4 48% 10% 8% 8% 9% 9% 9% 9% 10% 10% 11% 11% 11% 12% 12% 13% 13% 14% 14% 15% 16% 16% 16% 17% 17% 18% 18% 18% 18% 18% 18% 18% 18% 18% 19% 18% 16% 16% 15% 13% 0.5%
2.4 – 2.6 38% 11% 10% 10% 10% 11% 11% 11% 12% 12% 13% 13% 13% 14% 14% 15% 15% 16% 16% 17% 17% 18% 19% 19% 19% 19% 20% 20% 20% 21% 21% 21% 20% 20% 19% 20% 19% 17% 19% 15% 0.4%
2.6 – 2.8 24% 14% 12% 11% 12% 12% 12% 13% 13% 14% 14% 15% 15% 15% 16% 16% 17% 18% 18% 19% 20% 20% 20% 21% 22% 22% 22% 23% 23% 23% 23% 23% 23% 22% 21% 22% 20% 20% 19% 17% 0.3%
2.8 – 3.0 26% 17% 14% 14% 14% 14% 14% 14% 15% 15% 16% 16% 16% 17% 17% 18% 18% 19% 20% 20% 21% 21% 22% 23% 23% 24% 24% 25% 24% 25% 25% 25% 25% 24% 24% 23% 23% 21% 20% 20% 0.3%
3.0 – 3.2 24% 16% 16% 15% 14% 15% 16% 16% 16% 17% 18% 18% 18% 19% 19% 20% 20% 21% 21% 22% 22% 24% 24% 25% 25% 25% 26% 26% 26% 27% 26% 26% 26% 26% 25% 25% 24% 23% 20% 21% 0.3%
3.2 – 3.4 53% 21% 17% 17% 18% 17% 18% 18% 18% 19% 20% 20% 21% 21% 21% 22% 22% 23% 24% 24% 25% 25% 25% 26% 27% 27% 28% 28% 28% 28% 28% 28% 28% 28% 27% 27% 25% 24% 23% 21% 0.2%
3.4 – 3.6 38% 18% 18% 17% 18% 19% 20% 20% 20% 21% 21% 22% 22% 23% 23% 24% 24% 25% 25% 26% 26% 27% 28% 28% 29% 29% 30% 30% 30% 30% 30% 30% 30% 30% 29% 28% 26% 26% 24% 21% 0.2%
3.6 – 3.8 38% 21% 22% 21% 22% 22% 22% 22% 23% 23% 23% 24% 24% 25% 25% 25% 26% 27% 27% 28% 29% 29% 30% 30% 30% 31% 31% 32% 31% 32% 32% 31% 31% 31% 31% 29% 29% 27% 25% 24% 0.2%
3.8 – 4.0 33% 24% 22% 22% 22% 24% 23% 24% 24% 25% 26% 27% 26% 27% 27% 28% 28% 29% 29% 29% 31% 31% 32% 33% 33% 33% 34% 34% 34% 34% 34% 33% 33% 33% 33% 31% 30% 28% 27% 27% 0.2%
4.0 – 4.2 43% 28% 25% 26% 25% 27% 25% 27% 27% 28% 28% 29% 29% 29% 30% 30% 31% 31% 32% 32% 33% 34% 34% 35% 35% 35% 36% 36% 36% 37% 36% 35% 36% 36% 34% 33% 33% 31% 27% 27% 0.2%
4.2 – 4.4 46% 28% 27% 27% 26% 30% 29% 29% 30% 31% 32% 32% 32% 33% 33% 33% 34% 34% 35% 35% 36% 36% 37% 37% 38% 38% 38% 38% 39% 39% 38% 38% 38% 38% 36% 34% 32% 34% 32% 29% 0.1%
4.4 – 4.6 30% 31% 29% 29% 31% 33% 33% 34% 34% 34% 35% 35% 36% 36% 36% 37% 37% 38% 38% 39% 40% 40% 40% 40% 41% 41% 42% 42% 42% 42% 42% 42% 41% 41% 39% 39% 36% 35% 34% 33% 0.1%
4.6 – 4.8 52% 35% 37% 36% 37% 38% 37% 38% 38% 40% 41% 40% 40% 41% 41% 41% 41% 42% 43% 43% 43% 44% 45% 45% 45% 45% 47% 47% 46% 47% 46% 46% 46% 47% 44% 45% 43% 42% 40% 40% 0.1%
4.8 – 5.0 69% 43% 39% 41% 42% 43% 41% 43% 43% 43% 44% 45% 46% 46% 47% 47% 47% 47% 48% 49% 50% 50% 51% 51% 52% 52% 52% 52% 52% 53% 53% 53% 53% 54% 54% 52% 54% 52% 53% 52% 0.1%
5.0 – 5.2 60% 48% 46% 46% 48% 49% 50% 50% 50% 51% 51% 51% 52% 52% 52% 52% 53% 54% 54% 55% 55% 56% 57% 57% 57% 58% 58% 60% 60% 60% 60% 62% 62% 61% 62% 63% 63% 64% 64% 64% 0.1%
5.2 – 5.4 49% 47% 48% 49% 52% 53% 52% 53% 54% 54% 55% 56% 57% 56% 57% 57% 58% 58% 59% 60% 59% 60% 61% 61% 62% 62% 62% 64% 64% 64% 66% 65% 66% 67% 69% 69% 70% 70% 73% 74% 0.1%
5.4 – 5.6 75% 55% 52% 55% 55% 56% 58% 57% 57% 58% 60% 58% 59% 59% 60% 60% 60% 60% 62% 62% 63% 62% 63% 64% 65% 66% 66% 66% 67% 68% 68% 68% 69% 71% 72% 72% 73% 75% 77% 76% 0.1%
5.6 – 5.8 54% 56% 54% 56% 58% 58% 57% 59% 59% 60% 60% 61% 61% 63% 62% 62% 63% 63% 64% 64% 65% 65% 65% 66% 66% 67% 67% 69% 69% 69% 70% 71% 72% 73% 73% 76% 75% 76% 79% 81% 0.1%
5.8 – 6.0 61% 54% 57% 60% 60% 62% 62% 62% 62% 63% 63% 64% 63% 64% 65% 64% 65% 65% 66% 66% 66% 66% 66% 68% 69% 69% 70% 70% 70% 70% 72% 72% 72% 73% 75% 76% 77% 78% 81% 79% 0.1%

  Frequency 2.9% 3.5% 5.0% 5.8% 6.0% 6.1% 5.9% 5.7% 5.5% 5.2% 4.9% 4.6% 4.3% 4.0% 3.7% 3.4% 3.1% 2.8% 2.5% 2.3% 2.0% 1.8% 1.6% 1.4% 1.2% 1.0% 0.9% 0.7% 0.6% 0.5% 0.4% 0.3% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0%

(a) The outlier probabilities for clean
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0.0 – 0.2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 29.7%
0.2 – 0.4 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 21.5%
0.4 – 0.6 2% 2% 2% 1% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 2% 12.7%
0.6 – 0.8 3% 3% 3% 2% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 3% 2% 2% 2% 2% 2% 2% 2% 8.2%
0.8 – 1.0 4% 4% 3% 3% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4% 3% 4% 3% 3% 3% 3% 3% 3% 3% 5.7%
1.0 – 1.2 5% 5% 5% 4% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 6% 5% 5% 5% 5% 5% 5% 5% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4.3%
1.2 – 1.4 5% 6% 6% 6% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7% 7% 6% 6% 6% 6% 5% 6% 5% 6% 5% 2.9%
1.4 – 1.6 8% 7% 7% 7% 8% 8% 8% 8% 8% 9% 9% 9% 8% 8% 8% 8% 8% 8% 9% 9% 9% 9% 9% 9% 9% 9% 9% 9% 8% 8% 8% 8% 7% 7% 7% 7% 7% 7% 6% 6% 2.2%
1.6 – 1.8 8% 8% 9% 9% 10% 10% 10% 10% 11% 10% 10% 11% 10% 10% 10% 10% 10% 10% 10% 10% 11% 11% 11% 11% 10% 10% 10% 10% 10% 10% 10% 9% 9% 9% 9% 9% 9% 7% 9% 8% 1.7%
1.8 – 2.0 7% 10% 10% 11% 11% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 11% 11% 11% 11% 10% 10% 10% 10% 9% 9% 1.4%
2.0 – 2.2 8% 10% 12% 12% 13% 13% 14% 14% 14% 14% 14% 14% 13% 13% 13% 13% 13% 13% 13% 13% 14% 13% 14% 14% 14% 14% 14% 14% 14% 14% 13% 13% 12% 12% 12% 11% 11% 11% 10% 9% 1.2%
2.2 – 2.4 9% 12% 13% 14% 15% 15% 15% 16% 16% 16% 16% 15% 15% 15% 15% 15% 15% 15% 15% 15% 15% 15% 16% 16% 16% 16% 16% 16% 16% 15% 15% 14% 14% 14% 14% 13% 13% 13% 11% 11% 1.0%
2.4 – 2.6 9% 13% 14% 14% 17% 17% 17% 18% 18% 18% 18% 18% 17% 17% 17% 17% 17% 17% 17% 17% 17% 18% 18% 18% 18% 18% 18% 18% 17% 18% 17% 17% 17% 15% 16% 15% 15% 15% 13% 13% 0.8%
2.6 – 2.8 11% 13% 15% 16% 18% 18% 19% 19% 19% 19% 19% 19% 19% 19% 19% 19% 19% 19% 19% 19% 19% 19% 20% 20% 20% 20% 20% 20% 20% 20% 19% 19% 18% 18% 17% 17% 16% 17% 15% 16% 0.7%
2.8 – 3.0 12% 15% 16% 18% 20% 20% 20% 21% 21% 21% 21% 21% 21% 21% 21% 21% 20% 20% 21% 21% 21% 21% 22% 22% 22% 22% 22% 22% 22% 21% 21% 21% 20% 20% 19% 19% 18% 18% 16% 16% 0.7%
3.0 – 3.2 14% 16% 17% 19% 21% 21% 22% 23% 23% 22% 22% 22% 22% 22% 22% 22% 22% 22% 22% 22% 23% 23% 23% 23% 23% 24% 24% 24% 23% 23% 23% 22% 21% 21% 20% 20% 18% 20% 17% 17% 0.6%
3.2 – 3.4 14% 17% 19% 21% 22% 23% 24% 24% 25% 25% 25% 25% 25% 25% 24% 24% 24% 24% 24% 25% 25% 25% 25% 25% 26% 26% 26% 26% 26% 25% 24% 24% 24% 23% 23% 22% 22% 19% 20% 18% 0.5%
3.4 – 3.6 16% 18% 21% 22% 24% 25% 26% 26% 26% 26% 26% 27% 27% 27% 26% 26% 26% 26% 26% 27% 27% 27% 28% 27% 28% 28% 27% 28% 27% 27% 27% 27% 26% 25% 25% 24% 23% 22% 21% 20% 0.5%
3.6 – 3.8 19% 21% 22% 24% 25% 26% 27% 28% 28% 28% 28% 29% 29% 29% 28% 28% 28% 28% 29% 29% 29% 29% 29% 30% 30% 30% 30% 30% 30% 30% 30% 29% 27% 27% 27% 25% 24% 23% 23% 20% 0.4%
3.8 – 4.0 22% 22% 24% 27% 29% 29% 30% 30% 30% 30% 30% 31% 30% 31% 31% 30% 31% 31% 31% 31% 31% 32% 32% 32% 32% 32% 32% 32% 32% 32% 31% 31% 30% 29% 29% 28% 28% 26% 26% 23% 0.4%
4.0 – 4.2 22% 23% 25% 27% 30% 32% 31% 32% 32% 33% 32% 33% 32% 32% 32% 32% 32% 32% 33% 33% 33% 34% 34% 35% 35% 35% 35% 35% 34% 34% 33% 32% 31% 31% 31% 29% 28% 28% 25% 24% 0.4%
4.2 – 4.4 21% 26% 28% 30% 32% 34% 34% 34% 35% 35% 36% 35% 35% 36% 35% 35% 35% 35% 35% 36% 36% 36% 37% 37% 37% 38% 37% 37% 37% 36% 36% 35% 35% 34% 33% 34% 30% 28% 29% 30% 0.3%
4.4 – 4.6 27% 29% 30% 33% 35% 35% 36% 36% 37% 38% 37% 38% 38% 38% 37% 38% 38% 38% 38% 39% 39% 39% 40% 40% 40% 40% 40% 40% 41% 40% 38% 39% 39% 37% 37% 36% 34% 34% 33% 30% 0.3%
4.6 – 4.8 28% 29% 32% 36% 38% 39% 40% 39% 39% 40% 41% 41% 41% 41% 41% 41% 41% 41% 41% 41% 42% 42% 42% 43% 43% 44% 44% 44% 44% 43% 43% 43% 42% 41% 40% 40% 38% 38% 37% 37% 0.3%
4.8 – 5.0 36% 32% 35% 39% 41% 42% 42% 43% 44% 44% 44% 44% 44% 44% 43% 44% 44% 44% 45% 45% 46% 46% 47% 47% 47% 48% 48% 48% 48% 47% 47% 47% 47% 47% 48% 47% 45% 46% 42% 43% 0.3%
5.0 – 5.2 31% 36% 39% 42% 46% 47% 47% 47% 47% 47% 47% 47% 47% 47% 48% 47% 48% 48% 48% 49% 49% 50% 50% 51% 51% 52% 52% 53% 52% 53% 52% 53% 53% 53% 52% 54% 53% 56% 54% 54% 0.3%
5.2 – 5.4 44% 40% 41% 45% 49% 50% 50% 51% 51% 51% 51% 50% 51% 51% 51% 50% 50% 51% 51% 51% 52% 53% 53% 55% 55% 55% 55% 56% 56% 55% 56% 57% 57% 58% 58% 59% 59% 59% 61% 60% 0.2%
5.4 – 5.6 44% 41% 44% 49% 52% 53% 53% 53% 52% 52% 53% 53% 53% 52% 53% 53% 53% 54% 54% 55% 54% 55% 56% 57% 58% 58% 58% 59% 59% 59% 60% 61% 60% 61% 62% 62% 64% 64% 65% 65% 0.2%
5.6 – 5.8 49% 45% 48% 50% 54% 53% 55% 55% 55% 55% 55% 55% 55% 55% 55% 55% 55% 56% 57% 57% 57% 58% 59% 59% 60% 61% 61% 61% 61% 62% 62% 62% 62% 64% 65% 66% 65% 68% 69% 69% 0.2%
5.8 – 6.0 53% 50% 49% 52% 55% 56% 56% 57% 57% 56% 57% 57% 57% 57% 57% 57% 57% 58% 58% 59% 59% 60% 61% 61% 62% 62% 62% 63% 63% 64% 64% 64% 65% 67% 66% 69% 68% 68% 71% 73% 0.2%

  Frequency 5.3% 5.3% 6.6% 6.6% 6.2% 5.7% 5.3% 5.0% 4.7% 4.4% 4.2% 4.0% 3.8% 3.6% 3.5% 3.2% 3.0% 2.8% 2.5% 2.3% 2.0% 1.8% 1.5% 1.3% 1.1% 0.9% 0.8% 0.6% 0.5% 0.4% 0.3% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0%

(b) The outlier probabilities for final

Figure 3. The Figure shows the probability that a point on our Flow Maps is an outlier for different matching errors (column) and different
filter thresholds ε (row) on the clean and final datasets of MPI-Sintel. We use the standard parameters presented in the paper. This includes
a 2x consitency check. The outlier threshold is set to 5 pixels i.e. a point is an outlier if it varies by more than 5 pixels from the ground
truth. the maximum possible matching error is 3(2r+1) ∗ (2r+1) = 867 (3 color channels). However, values greater 400 are negligible.


