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Abstract

Purpose Advances in technology and computing play an

increasingly important role in the evolution of modern

surgical techniques and paradigms. This article reviews

the current role of machine learning (ML) techniques

in the context of surgery with a focus on surgical

robotics (SR). Also, we provide a perspective on the

future possibilities for enhancing the effectiveness of

procedures by integrating ML in the operating room.

Methods The review is focused on ML techniques

directly applied to surgery, surgical robotics, surgical

training and assessment. The widespread use of ML

methods in diagnosis and medical image computing
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is beyond the scope of the review. Searches were

performed on PubMed and IEEE Explore using

combinations of keywords: ML, surgery, robotics,

surgical and medical robotics, skill learning, skill

analysis, learning to perceive.

Results Studies making use of ML methods in the

context of surgery are increasingly being reported. In

particular, there is an increasing interest in using ML

for developing tools to understand and model surgical

skill and competence or to extract surgical workflow.

Many researchers begin to integrate this understanding

into the control of recent surgical robots and devices.

Conclusion ML is an expanding field. It is popular as

it allows efficient processing of vast amounts of data

for interpreting and real-time decision making. Already

widely used in imaging and diagnosis, it is believed

that ML will also play an important role in surgery

and interventional treatments. In particular, ML could

become a game changer into the conception of cognitive

surgical robots. Such robots endowed with cognitive

skills would assist the surgical team also on a cognitive

level, such as possibly lowering the mental load of the

team. For example, ML could help extracting surgical

skill, learned through demonstration by human experts,

and could transfer this to robotic skills. Such intelligent

surgical assistance would significantly surpass the state

of the art in surgical robotics. Current devices possess

no intelligence whatsoever and are merely advanced and

expensive instruments.

Keywords Surgical robotics · Skill learning · Skill

analysis · Learning to perceive
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1 Motivation for Machine Learning in Surgical

Robotics

To justify the cost of robotic surgery, technology

providers and its users are searching for objective

and measurable proof that robotic surgery possesses

clinical advantages over existing manual techniques [1,

2,3]. While such evidence remains sparse [4,5] or even

discouraging at present [6,7,8], future systems that

possess a certain degree of intelligence might show

the clinical advantage people are looking for. Endowed

with cognitive capabilities surgical robots could take

over the simpler parts of a task and allow surgeons

to focus on the more crucial and complex parts of the

procedure. This could translate in increased reliability,

performance or efficiency of robot-assisted interventions

compared to more traditional ones. Indeed, some of

the selling arguments of ML techniques are exactly

that they allow smoother trajectories, more accurate

or faster execution of repetitive and time-consuming

tasks [9]. Through synthesis of technical or cognitive

knowledge coming from a broad group of expert

surgeons, the system could acquire and possibly display

similar expertise during the intervention. Such system

could play the role of a highly-skilled ‘computerized

assistant’ that provides the right technical assistance

at the right instant of time, during routine or

even unusual interventions [2]. This could translate

towards increased reliability or improved outcome of

robot-assisted interventions compared to traditional

interventions.

The aging population, a reduced workforce and an

increasing workload on expert surgeons are further
incentives to introduce computerized assistants or

even automate certain surgical interventions. This

idea is not new. Automation has been investigated

since the early days of SR, for instance, systems

like the Unimation Puma 200 from Kwoh et al. [10],

the ROBODOC [11], MINERVA [12] or Cyberknife

[13] operated largely automatically. All these systems

work in an environment that shows a relatively large

invariance with respect to the actual robotic action.

However, such an assumption severely limits the range

of procedures that can be considered or also the

performance that can be achieved. Indeed the majority

of surgical interventions do interact with an effect on

the environment, especially when interactions with soft,

deformable structures are involved. Such interaction

is the motivation behind the development of visual

servoing techniques, namely to account for deformation

and physiological motion. Typically visual servoing

techniques only focus on a specific detailed part of

the surgical procedure. Visual servoing techniques

aiming for accurate control of forces or interactions

become difficult if based on visual information only.

Substantial efforts have been done to explicitly model

the interactions or tissue deformation. Excellent works

have appeared that model trajectories and interactions

during surgical tasks, e.g., for knot tying [14], suturing

[15], stitching [16], tissue retraction [17,18], puncturing

[19], cochleostomy [20], anesthesia [21] or even diagnosis

[22]. It should be noted that depending on particular

choices of models and parameters the predictive power

or applicability of such models can be rather limited.

Furthermore, the derivation of valid models and the

identification of its parameters can be a time-consuming

and tedious task. Given the large variability between

people, organs and tissues explicit modeling approaches

have practical limitations.

In contrast, ML approaches that learn implicit

models directly from real sensory data are appealing

for the following reasons:

– general applicability to a wide range of problems

and sub-tasks;

– avoidance of complex modeling of the underlying

physics and biomechanics;

– based on real observations and data from case-based

scenarios.

These properties explain why ML approaches have

recently received more attention within the research

community. Even for critical applications such as in

surgery they are increasingly being considered.

2 Introduction to Machine Learning

ML is a multidisciplinary field that provides computers

with the ability to learn without being explicitly

programmed to perform specific tasks [23,24]. While

ML techniques have been used extensively in a wide

spectrum of robotic applications, it is only recently that

ML methods have been considered for SR. Currently,

there is no general consensus on the definition of

a robot. A robot in the context of this paper is a

system that can perceive its environment through its

sensors and generates actions using its end effectors

to accomplish a variety of tasks. According to this

definition, a robot is a physical system that has three

components: sensors, actuators (end effectors) and a

control architecture that processes sensory data and

generates actions. Figure 1 shows a schematic of an

ML-enabled intelligent surgical robotic system for the

case of catheter based interventions. The continuous

interaction that takes place between the robot, the

surgeon (domain expert) and the environment (human

body) is an important feature of this scheme. The
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Figure 1 Overview of a learning system in surgical robotics for the case of catheter based interventions. The learning system
is augmented with a process that allows a surgeon to watch the robot and provide advice based on the behavior of the robot. In
the figure a catheter surgical robot and the aorta are depicted as examples of a surgical robot and environment, respectively.

robot perceives the state of the environment through

its sensors and executes an action based on this

information. The environment determines the next

robot state also based on the action that was executed

by the robot. An action taken by the robot has an

associated cost. The purpose is to learn a mapping

function from perception z to action a that minimizes

the total cost incurred. In SR, the mapping function

from perception to action can be considered as the

surgical skill. Such skill can be decomposed into two

main parts. The first part is the state estimation. It

maps the perception z to the estimated environment

state ŝ. The second part maps the estimated state ŝ

to the action a to be taken. The cost quantifies the

skill demonstrated by the robot or by the surgeon. It

depends on the state s and the robot action a.

The process of evaluating the learned skills is

referred to as skill analysis. In this paper, a review

of work in SR on skill learning (Section 3.1 and

Section 4) and skill analysis (Section 3.2) is provided.

The robot can learn surgical skills in multiple ways.

First, it could learn from its own interaction with

the environment, by evaluating the appropriateness of

the own actions to reach particular target states. The

robot could also learn from human demonstration by

observing experiments conducted by expert surgeons.

From such demonstration, both the surgical skill as

well as the associated cost function (Section 3.2.2)

used to asses the quality of the displayed skill can

be learned. Alternatively the cost function could also

be defined explicitly by the domain expert/surgeon

(which is described in Section 3.2.1). The surgeon

could also intervene and guide through observation

of robot actions. The information provided by the

surgeon (domain expert) which could then be used to

further speed up the learning process. Surgical expertise

could also be used to help environment perception.

The surgeon can e.g. teach how to detect natural

landmarks or relevant anatomies. This information can

help the robot to select adequate (optimal) actions

when approaching difficult or risk prone areas. Some

applications of ML in SR are introduced in Section 4.

In the following we provide a brief introduction to

the three important areas of ML: supervised learning

(SL), reinforcement learning (RL), and unsupervised

learning (UL).

Supervised Learning

In SL [24], training data is provided externally and

consists of a set of known input vectors along with a

set of known corresponding target vectors which might

be discrete (classification) or continuous (regression).

SL seeks to build a predictor model that predicts

reasonable target vectors for new input vectors. The

choice of the predictor model is typically up to the

designer and often requires considerable ML expertise.

Learning consists of finding optimal parameter values

for the chosen model. SL could be applied for instance

in state estimation.

Reinforcement Learning

RL deals with learning a policy, i.e., a mapping from

states to actions. The most popular approaches in RL
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are value-function based approaches such as Q-learning

[25]. In these approaches, the agent learns the optimal

value function of a state action pair. Once the optimal

value function is learned, it is possible to generate

the optimal policy (skill) for a given task from the

value function. Intuitively, a value of a state action

pair shows how good it is for the robot (agent) to

execute an action in a given state. The training data

for RL is generated through direct interaction with the

environment and autonomous generation of sequences

of experience tuples. An experience tuple is an entry in

a training dataset at a particular time which consists

of the current state, the current action, the next state

and the reward received after executing the action.

An important issue in RL is the trade-off between

exploration and exploitation: in exploration, the agent

tries actions which may be suboptimal according to its

current knowledge but have the potential of resulting

in better outcomes than expected. In exploitation, the

agent always chooses the action which it considers to

be optimal at the risk of missing other actions which

turn out to be better in reality.

Unsupervised Learning

In UL, the training data consists of a set of input vectors

without a corresponding set of target vectors. The goal

of UL is to discover structure and correlations in the

data. Approaches in UL include [24]:

– clustering for discovering groups of similar examples

in the data;

– density estimation for determining the distribution

of the data;
– dimensionality reduction for data compression,

visualization, or accelerating subsequent learning.

3 ML-empowered Instrumentation for Assisted

Surgery

3.1 Surgical Skill Learning from Expert Knowledge

Prior knowledge is of key importance in ML. In surgery

expert knowledge is typically supplied by experienced

surgeons. Implicit imitation learning is a form of

SL, which is usually concerned with accelerating RL

through the observation of an expert mentor [26]. The

agent observes the state transitions of the experts’

actions and uses the information extracted from these

observations to update its own states and actions. The

mentor (surgeon) and the agent may have identical or

different action capabilities, or identical or different

reward structures. Several methods that have been

developed for modeling human movement (see e.g. [27])

could be used to learn the state and actions of the

expert. Human skill has been modeled from sets of

recorded data using hidden Markov models (HMMs)

[28,29], neural networks [30,31] and fuzzy nets [32,33].

The work in implicit imitation learning can be

categorized into three groups. The first group tries to

learn the mentor’s policy; the second group learns the

reward function of the mentor’s behavior and optimizes

its own behavior using the learned reward function.

The third group employs a Bayesian framework for

combining prior (explicit) knowledge and implicit

imitation learning. In a series of works, trajectories

recorded from human subjects are used to generate an

initial policy.

Works on inverse RL [34,35] assume that the

mentor has the same reward function as the observer

and chooses from the same set of actions. The idea is

then to infer the reward function of the mentor so as to

produce the observed behavior. In other words, inverse

RL accomplishes the task of learning both the reward

function and the policy (apprenticeship learning).

Bayesian formulations of imitation learning are

used to elegantly combine prior knowledge, model

observations from the imitator’s own experience

and model observations derived from other agents.

Works in this area developed algorithms for imitation

learning that can handle knowledge transfer between

agents with different reward structures, learning from

multiple mentors, and selecting relevant portions of

examples [26,36].

3.2 Skill Analysis in Robotic Surgery

In optimal control, a skill is the control policy to be

designed. Such a control policy is evaluated using a cost

or reward function [37]. In surgery, skill evaluation is

performed in the context of training and competence

evaluation. Training and competence evaluation are

now widely recognized as critical for acquiring new

clinical techniques or for operating complex devices

that are used for patient monitoring or treatment. It

is generally accepted that the skill level of clinicians

varies and can be enhanced with teaching, training

and naturally through experience. Clinical outcomes

have in the past been linked to clinical skill [38] and,

as a result, effective surgical training and evaluation

could have a significant impact on healthcare. However,

despite advances in simulation, phantom models and

task-based procedural trainers, typical training aimed

at enhancing manual dexterity and instrument handling

still involves significant expert monitoring. This is time

consuming and hence costly to the healthcare system.
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In addition it is also, to a certain extent, subjective

in nature. It could further be inefficient if real-time

feedback of the task performance is missing. Also, for

skill learning in SR, skill analysis plays a crucial role,

as it can be used as a means to asses or evaluate the

quality of the skills that were learned.

Different objective assessment techniques have been

reported in the literature. Metrics can be based on

task completion time, instrument speed, distances or

more complex measures derived from e.g. position

information [39]. Such metrics could be computed

directly from robot sensor and motor recordings or they

could be gathered through virtual reality simulators.

Simulation environments form an appealing way to

enhance understanding and evaluation of skills as they

offer full geometric knowledge of the procedure [39,40].

In the following a distinction is made into explicit

and implicit types of SR skill analysis. As an example,

where possible, illustrations are given for skill analysis

in endovascular procedures.

3.2.1 Explicit Skill Analysis

In explicit skill analysis the form of the cost function

is defined by the domain expert (surgeon). This input

can be acquired under different forms.

Checklists and Rating Scales

Checklists and rating scales form a validated means

of assessment. For example, Tedesco et al. let experts

appraise seven aspects of performance using a five

point Likert scale [41]. The main concern regarding

the use of rating scales is the vast amount of expert

time that is required to analyse and score performance

(e.g. by observing videos of trainee operations). Efforts

to reduce the necessary time by limiting evaluation

to ‘relevant’ parts have been found not to be very

reliable [42]. As a result, the current measure of

competence in endovascular procedures is still based

on a classical view, simply counting the number of

procedures performed and time spent in training a

respective skill.

Structured Assessment

The aim of structured assessment approaches is

to attempt to standardize evaluation through rated

checklists on a phantom bench-top model. Objective

Structured Assessment of Technical Skills (OSATS) is

one of the first methods designed for objective medical

skill assessment, which aims at quantifying medical

skill evaluation without relying on expert evaluators. It

consists of a global rating scale and a procedure-specific

checklist. OSATS is one of the few methods that has

been implemented in clinical practice [43,44].

Nevertheless, even with structured methods,

objective assessment of surgical skills is currently

underdeveloped. Existing structured grading practices

suffer from the need for well-structured tasks and the

need for clinical experts to administer the assessment.

Added cost and time, and also subjectivity, pose

additional problems to the sustainability of structured

approaches. Automated and analytical approaches are

thus required and need to be researched and validated

further.

Outcome-based Analysis

In outcome-based analyses, metrics such as the number

of complications, morbidity and mortality rates are

measured. One assumes that a strong relationship exists

between the patient outcome and the skill level [45].

However, this approach suffers from the complication

that patient outcomes are also strongly dependent on

the patient characteristics, the diagnostic information,

the surgical team, the condition and difficulty of the

procedure. For example, a less experienced surgeon

could be selective and take low-risk cases than a

more experienced surgeon. Because of this the former

could display better outcome-based skill measures

than the latter. In conclusion, outcome-based metrics

are not comprehensively meaningful and do not lend

themselves to training and assessment during medical

accreditation courses.

Motion Analysis

One of the most promising methodologies for task

and manual dexterity evaluation is motion analysis. In

motion analysis the surgeon’s hand or tool motions are

recorded and analyzed by different instruments such as

Imperial College Surgical Assessment Device (ICSAD),

the Advanced Dundee Psychomotor Tester (ADEPT),

the ProMIS Augmented Reality Simulator, the

Hiroshima University Endoscopic Surgical Assessment

Device (HUESAD) and the TrEndo Tracking System

[46,47,48,49,50,41]. The technique can provide a

good assessment of dexterity and technical skill

level, but it has not been used or investigated thus

far for endovascular procedures [42]. Nevertheless

this methodology has the most abundant literature

references [42], especially with recent technological

developments in robotics and particularly the da Vinci

API [51,52]. Multiple studies have shown that skill

metrics can be derived using statistical analysis (HMM

[53,54,28]) of instrument motion from this data [55].
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Time Action Analysis

Time action analysis is a technique where the surgical

procedure is broken down into several steps and the

time to complete each one is measured (usually by an

expert watching a video recording of the exercise). The

limitation of this approach is apart from being time

consuming, it does not report any measure of how well

the particular surgical action was performed [56]. While

not particularly informative about what the failings

or technical limitations of a particular task are, time

action analysis does offer a simple means of evaluation

and can often be linked or correlated to clinical

competence. The problem lies in identifying when a

performed task is done badly or with considerable

potential risk to the patient (or benchtop environment).

Virtual Reality

An emerging training modality is Virtual Reality

(VR). VR potentially offers a vast amount of valuable

information for assessment and analysis of different

surgical techniques [57]. The validity of VR in

endovascular procedures is still under evaluation. So far

the endovascular surgery simulators that are available

on the market have only to a limited extent been

integrated into the training curriculum or for formal

accreditation, but it is likely that simulators will play

an increasingly important role in surgical training.

Error Analysis

Error analysis, where the number of errors made

during certain part of the procedure are scored, is

an alternative and potentially more thorough skill

evaluation technique. For endovascular surgery, errors

can be defined by for example the number, location

or intensity of the contact with the vascular wall.

Such parameters could be recorded by some simulation

systems [46]. However, to the knowledge of the authors

no in vivo or phantom study, taxonomy of errors or

scores exists at this point including these parameters.

It seems that this metric ought to be investigated since

the vessel wall provides a geometric enclosure for the

tool and therefore errors can be evaluated easily [58].

3.2.2 Implicit Skill Analysis

Implicit skill analysis uses a metric which is learned by

an ML approach from a surgeon or group of surgeons.

The learned metric can then be used to evaluate other

surgeons (trainees) relative to the skills of a surgeon

(surgeons) from which the metric is learned.

Classification of Surgical Skill Levels

Reiley et al. [59] applied Vector Quantization (VQ),

a UL approach, and HMM to evaluate the skill from

continuous velocity data of the da Vinci system. In

Reiley’s paper, HMMs based on skill are developed

for three surgical levels such as novice, intermediate

and expert. In the paper it is shown that HMMs

are important methods to classify skill of unknown

trial based on maximum likelihoods from trained skill

models of novice, intermediate and expert surgeons.

An automatic method of parsing raw motion data

from a surgical task from a labeled sequence of surgical

gestures that would allow for the development of

automatic evaluation of surgical skills is developed by

Lin et al. [60]. The method has feature processing and

classification steps where a Bayes classifier is used for

the classification step. Results show that the method is

able to correctly identify the different gestures for the

case of a suturing task using the da Vinci surgical robot

against benchtop models. It has been shown that based

upon analysis of instrument motions it is possible to

distinguish an expert surgeon from a surgeon having

limited da Vinci experience. The method is further

extended to handle data from live surgeries and for

more number of users [61].

Rafii-Tari et al.[62] proposed a

learning-from-demonstration framework for

robot-assisted cardiac catheterization. The motion

model of the catheterization procedure is trained by

manipulations from experts and intermediate-level

operators. The motion model is represented by a

Gaussian Mixture Model (GMM) and clustered by the

k-means algorithm. Then Gaussian Mixture Regression

(GMR) is used to smooth the motion trajectory. For

validation the same procedure is performed by novices

assisted by a robotic catheter driver. A significant

difference between skills of novices and with skills

from experts and intermediate-skilled operators was

observed.

3.3 Surgical Workflow Analysis and Episode

Segmentation

A surgical procedure is in essence a concatenation

of surgical acts, which when pertaining to the same

specific surgical (sub)goal can be grouped into surgical

(sub)tasks. Workflow Analysis can be conducted to

identify the different surgical (sub)tasks that belong to

a surgical intervention, the order in which (sub)tasks

can follow each other and possible termination

conditions that mark transients between distinct

(sub)tasks. The analysis of the surgical workflow is
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essential to assist surgical navigation and enable the

design of cognitive surgical systems that can adapt

and operate in highly dynamic environments such as

the cardiovascular system. In addition, the analysis

of individual surgical tasks can provide quantitative

evaluation of surgical skills during different procedural

tasks.

Thus far, the analysis of surgical workflow has been

extensively studied for minimally invasive procedures.

Approaches proposed in literature can be classified into

methods for segmentation of high-level surgical tasks

(surgical phases) and methods for the recognition of

low-level tasks (surgical gestures) and into off-line and

on-line approaches.

In [63,64], laparoscopic cholecystectomy procedures

are segmented into 14 different phases based on the

presence of instruments in the surgical scene. AdaBoost

is used in [63] to analyse the use of each surgical

instrument in each phase of the surgery and weight

them according to their discriminative power. For phase

recognition, an average reference surgery is generated

based on Dynamic Time Warping (DTW) and used to

segment newly observed procedures.

A significant number of approaches to surgical

gesture recognition focused on modeling kinematic

data with HMMs using a variety of methods for

modeling the observations such as vector-quantization

of the observations into discrete symbols [65], Gaussian

HMMs combined with Linear Discriminative Analysis

(LDA) [66], Factor Analyzed HMMs (FA-HMMs)

and Switched Linear Dynamical Systems (SLDSs)

[67]. Sparse HMM have been used in [68] where

the observations are modeled as sparse linear

combinations of basic surgical motions. In [69],

tool-tissue interactions of a knot-tying task in MIS have

been modeled using Markov Models (MM) based on the

kinematics (position and orientation) and the dynamics

(force and torque) of the surgical tools.

4 Towards Autonomous Robotic Surgery

4.1 The Role of ML in Autonomous Robotic Surgery

When profound and up-to-date understanding of a

surgical task is available and when a robotic system

has demonstrated repeatedly its ability to correctly

display an acceptable level of performance in executing

the necessary surgical acts under similar surgical

conditions, one might consider to let the robot perform

these surgical gestures in an autonomous fashion.

Different technologies introduced in preceding sections

could serve here as building blocks. These blocks could

for example be plugged into the framework proposed

by Muradore et al.. [19] who follow a model-based

approach. This means that the entire procedure and

its different components are explicitly modeled. An

ML-based variant of this approach could also be

envisaged. In such case models of the procedure,

environment, instrument, etc. could be constructed and

learned directly from the data. Table 1 summarizes the

different aspects that could be covered in such case.

Table 1 Aspects of autonomous robotic surgery (ARS)
where ML could play an enabling role

workflow analysis surgical procedure broken
episode segmentation down into logical subtasks

or episodes
environment modeling rigid and flexible registration,

reconstruction of environment,
recognition of anatomical,
features and landmarks,
mechanical and physiological,
modeling.

localization localization of instrument/robot
w.r.t. environment

robot control low-level modeling
and robot control

skill analysis analysis of surgical skill,
derivation of performance metrics,
cost functions for optimization

critical event detection of adverse
detection events
planning and control high-level trajectory and

interaction planning, error
handling

For an excellent review on works on autonomous

and semi-autonomous robotic surgery we gladly refer

to the work by Moustris et al. [70]. Table 2 shows that

robotic autonomy has been studied in a very broad set

of surgical domains. A number of papers are reported

to be generally applicable across domains or introduce

general frameworks to support ARS. The second part of

the Table shows that substantial efforts have been done

to automate a wide range of surgical gestures. Figure

2 gives a fair idea of the evolution in ARS (despite

being based on a non-exhaustive set of ARS papers).

It can be seen that the number of papers dealing with

ARS is steadily growing over time. Furthermore, when

looking at the share of ARS papers that employ ML

techniques, one can appreciate that also this share

grows accordingly. A detailed discussion of each of these

works falls outside the scope of this work, rather it is

opted to discuss a selection of works in more detail in

Section 4.2.
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Table 2 Classification of publications dealing with ARS

Surgical all soft inter- ML
discipline tissue action
neuro- [10,71] [10,71] [10,71] [72]
surgery [73,12] [73,12] [72]

[72] [72]
ortho- [74,75] [74,75]
paedic [76,77] [76,78]
surgery [78]
craniofacial [79,80]
cochleo- [20,81] [20,81]
stomy [82,83] [82,83]
radio- [13,84] [13,84] [85]
surgery [85]
cardiac / [21,86] [86,87] [86] [21,86]
vascular [87,88] [88]
catheter- [89,90] [89,90] [89,90]
procedures [91] [91] [91]
urology [92,93] [93,94] [94]

[94,95] [95]
abdominal [96,97] [97,98] [98,99] [97,100]

[98,101] [101,99] [102] [103]
[99,104] [104,105]
[105,102] [102,106]
[106,107] [107,108]
[108,100] [109]
[109,103]
[110,111]
[112]

colonoscopy [113] [113]
anestesia [22]
surgical all soft inter- ML
technique tissue action
knot tying, [114,14] [114,14] [14,115] [116,115]
suturing [117,116] [117,116] [118,119] [118,119]

[115,118] [115,118] [120,16] [120,9]
[119,16] [119,16] [9,121] [121,122]
[120,123] [120,123] [122,124] [125]
[15,9] [15,9] [126,125]
[121,122] [121,122] [127,128]
[124,126] [124,126]
[125,128] [125,128]
[87] [87]

biopsy, [129,130] [130,129] [130,129]
needle [131,132] [131,132] [133,72] [72]
placement, [134,135] [134,135] [136]
piercing [19,133] [19,133]

[72,136] [72,136]
tissue [17,18] [17,18] [17,18]
retraction
palpation [137,138] [137,138] [137,138] [137,138]

[136] [136] [136]
US tracking [139,140] [139,140] [139,140]

[141]
scanning [142,143] [142,143] [142,143] [142,143]
ablation [144] [144] [144] [144]
debridement [145] [145]
tool exchange [146] [146] [147]
general [148,19] [149,150] [151,152]
framework [152] [152]
general [79,153]
purpose

Figure 2 Evolution of a reference number of publications
regarding ARS over the years. The number and share of
papers employing ML can be seen to rise over time.

4.2 Examples of ML used in SR Research

Intelligent Autonomous Endoscopic Guidance System

Modern laparoscopic surgery or MIS procedures make

use of three or four access ports through which

a plurality of instruments is inserted in the body.

Typically this includes an endoscope that is used to

visualize the patient’s organs alongside instruments

for grasping, cutting, ablating and so on. Casals et

al. a.o. conducted research to automatically steer

laparoscopes in such configuration [96]. In order for

such tracking system to behave in an automatic fashion,

steering must be extremely reliable. This implies

that such system should be capable of tracking all

aspects of the procedure and in a robust fashion. In

contrast to the short-term prediction steps associated
with typical control schemes that focus on the

compensation of physiological motion such as heartbeat

and breathing [99,116,107,154], Weede et al. [100]

advocate the development of long-term prediction

schemes that anticipate upon what the surgeon is

going to do during the next couple of minutes, so

that the endoscope can always be moved to an

appropriate position. To this end Weede et al. proposed

an intelligent endoscopic guidance system (Fig.3).

The system collects information on the movements

of the instruments from former interventions and

predicts based on this knowledge trajectories that are

used to autonomously guide the endoscopic camera.

The knowledge is extracted by trajectory clustering,

maximum likelihood classification and a Markov model

to predict the procedural states. Although encouraging

results were reported, a better understanding of the

ongoing tasks and the surgeon’s intent were mentioned

as possible ways to further improve the system

response.
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Figure 3 Prototype robotic system for MIS, two KUKA
LWR IV robots with attached grasper, Stäubli RX90
with attached endoscope, force dimension omega.7, haptic
interface and pelvis trainer [100], Courtesy of Karlsruhe Inst.
of Technol.

Autonomous Knot-Tying

Surgeons frequently have to tie knots to connect

tissues or close openings. In MIS, where access and

maneuverability is limited and haptic feel is typically

poor if not absent, knot-tying is a tedious job. Whereas

in open surgery a knot can be tightened within a few

seconds, in MIS this can take up to three minutes

per knot [115]. As a consequence many research has

been conducted to automate suturing and knot tying

which is also evident from Table 2. Research was

also conducted to apply ML to solve suturing and

knot-tying. For example Mayer et al. published a series

of works to this end [115,118,119,121].

Knot-Tying with Neural Network

For instance, Mayer et al. [115] used recurrent neural

networks (RNN) to tie knots autonomously. The system

is reported to speed up the knot-tying, reducing the

overall time of the surgical intervention. A sequence is

presented to the network by a surgeon after which the

sequence is learned. A neural network with long-term

storage [155] is used to learn this task. Only after a

few sequences, the network is capable of performing the

basic steps.

Knot-Tying via Trajectory Transferring

Schulman et al. [125] developed recently a trajectory

transfer method, which can tie knots in ropes by

training the robots by human demonstration. During

the procedure, a nonrigid transformation from training

state to the testing state is registered. Based on the

transformation and the training trajectory, the new

trajectory for the testing task can be calculated. Five

different types of knots were automated.

Superhuman Performance of Surgical Tasks

Van den Berg et al. [9] developed an algorithm that

learns a task from multiple human demonstrations. The

algorithm learns to execute the tasks with superhuman

performance. The important parameters maximized

during the learning process are smoothness and speed

of task execution. The approach is implemented on the

Berkeley Surgical Robot and applied to two tasks: first

drawing figures on a magnetic wire-boards and second

knot-tying.

Skill Transfer from Surgeon Teleoperator to Flexible

Robot

Recently, Calinon et al. [156] developed a method based

on inverse RL [34,35] for transferring skills from a

surgeon teleoperator to a flexible robot. The flexible

robot is a bio-inspired robot that mimics the way

octopuses elegantly move through small openings and

difficult environments. The method can handle the case

where robots used for transfering skills have different

morphological structures.

GMM/GMR based Learning from Demonstration

In recent papers [86,142,143], GMM algorithms are

used to learn from demonstration by representing

datasets stochastically using joint probability densities.

Kassahun et al. [86] developed a method to learn the

model of the interaction between catheter and aorta.

GMM is used to model the joint probability densities

of the multiple variables which are used to represent the

catheter shape, touching states, entrance and tip points

of the catheter. It has been shown that it is possible

to predict the shape of the catheter only by knowing

catheter entrance and tip points.

4.3 Potential Applications of ML in SR

In addition to abovementioned works, ML can be used

broader for different purposes in SR. In this section,

future envisioned applications of ML in SR are given.
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Automation of the Surgical Operation

The operating room (OR) is densely populated with

different surgical equipments and the surgery team can

be quite large. Therefore, the amount of information

that is generated can be quite impressive. A surgeon’s

ability to process all the available information and at

the same time establish and sustain an appropriate

level of situation awareness is limited and also

surgeon-dependent [157,158]. The cognitive load could

potentially be reduced by employing ML techniques.

Based on knowledge of the procedure workflow such

techniques could provide information and guidance,

signaling critical events. Ultimately such techniques

could take over repetitive and time consuming tasks.

ML-techniques could steer surgical robots to safely,

accurately and possibly at faster speed execute some

specific surgical tasks. It has already been shown

that the time taken by a surgical procedure can

be reduced using a robotic scrub nurse [159]. Apart

from reduced operation time, enhanced performance,

reduced mis-communication could be achieved.

Training Surgeons

In current surgical practice, trainees are mainly

under the supervision of senior surgeons and surgical

skills are also evaluated based on the experiences of

the supervisors. Therefore, the experience of senior

surgeons is used as evaluation criteria. Such evaluation

criteria are, however, not always as accurate and have

not been adequately quantified (see Section 3.2). ML

approaches have the potential to learn a statistical

model of surgical skills of experienced surgeons from

data collected in the OR [122]. The learned surgical

skills could be used for quantitatively evaluating

surgical skills of trainees. Moreover, ML techniques

could be used to improve existing trainers by accurately

modeling the interaction amongst surgeons, patients

and surgical instruments (robots).

Classification and Standardization of Medical Practice

At present, it is difficult to compare and evaluate

different medical therapies that are performed by

different surgeons and in different hospitals. For

reducing the costs and improving quality of healthcare,

a standardization system identifying best medical

practice is desired. The main challenge exists in

classifying the variety of the skills of different surgeons.

ML techniques are able to develop a statistical model,

splitting the surgical technique into different steps,

learning per step the best medical practice from all

of the surgeons for a given situation. Such knowledge

could be continuously and automatically updated as

more data becomes available.

Saving the Best Strategies of an Experienced Surgeon

ML can be used to learn the skills of an experienced

surgeon and save it for later use in the OR or to

train young surgeons. It can be used to initialise

newly introduced robotic systems, that can start from

such basic knowledge after which they can continue

translating and refining this information towards the

own actions. Moreover, ML techniques such as decision

trees and forests, artificial neural networks, Bayesian

networks, Support Vector Machines and Gaussian

processes [160] could discover and evaluate operating

techniques that do not yet belong to, but could

potentially outperform current surgical practice.

Safe Interaction between Environment and Surgical

Robots

ML could be further used to model the environment

(patients) in greater detail or to identify some specific

features such as anatomic landmarks, mechanical,

or physiological properties of the environment. In

robotically-assisted surgery, accurate perception of the

surgical environment is essential to the control and

decision making process to find out how to interact

safely within a fragile dynamic environment or how to

explore such an environment in the presence of high

uncertainty about its properties.

Safe Interaction between Surgeons and Surgical Robots

In a similar way ML could help guaranteeing the

safety of surgeon. For an example, by defining

dynamic active constraints [161], it is possible to

design impedance controllers that guarantee safe

human-robot-interaction, while at the same time

allowing the definition of a safe workspace for the robot.

Safty can also come from the design of soft and highly

compliant robots or by remotely control of surgical

robots. ML can help to design both low- and high- level

controllers for these elements.

4.4 ML for SR - Challenges and Directions for Further

Work

While ML is receiving more attention in surgery and

robotic surgery in particular, its use in current surgical

practice is still very limited. In the following a number

of challenges that need to be faced by the research

community are listed concisely.
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High-quality Medical/Surgical Data

There is a need for large quantitaties of high-quality

medical and surgical data to train ML techniques.

Data is to be obtained following well-described

protocols and stored in standardized formats to ensure

interoperability and correct use. In case non-traditional

imaging or data-capturing modalities are being used,

i.e. requiring actions or sensing that deviates from

current standard clinical practice, approval by an

Ethical Commission might be required. Furthermore,

measures should be installed to ensure protection of

patient’s privacy.

Modeling Challenges

The major challenge in modeling the surgical

environment is the dynamic and deforming nature

of the living body which restricts the use of

pre-operatively estimated 3D maps and requires the

analysis of intra-operative data. For that purpose,

geometric, mechanical and physiological behaviour of

the environment should be considered However, fusion

of multiple sensors is not trivial as it involves theoretical

and technical challenges such as sensor co-registration,

synchronization and information fusion. On top of that,

the modeling of the deformation of the environment due

to physiological phenomena such as respiratory motion

and heart beat is to be incorporated.

Learning and Defining Skill Analysis Metric

An important problem in learning skill analysis is to

come up with metrics that adequately capture the

characteristics of best practice. Because of variations

in procedure and practice, the learned skills could only

be applicable to a certain group of cases and surgeons.

A major challenge is thus to learn a sufficiently general

skill metric that can be applied across different groups

of surgeons. Moreover, the definition of a metric that

guides the execution of a surgical act is difficult.

Depending on the structure of the solution space,

a given cost function may not lead to the optimal

performance.

Adaptation to Unknown or Yet Unobserved Situations

Any system deployed in the OR and given decision

making power should be able to cope with uncertainty

and unpredictable events and guarantee the safety of

the patient just as expert surgeons have to adapt

to such situations. The development of algorithms

that are able to adapt the learned skill to novel

(unexpected) situations is an important challenge. In

this line, transfer learning aims at reducing the need of

recollecting the training data, and improving learning

in the new task by transferring the knowledge between

different task domains.

Pipeline for Training and Deploying Autonomous

Surgical Action

Given the large complexity and multidisciplinary

nature of the surgical intervention and its automated

counter-part, there is a need for a structured approach

to efficiently transfer surgical skill towards automated

execution. The envisioned framework would guide the

skill transfer over all aspects of the surgical procedure,

providing tools and guidance to:

– analyse the surgical workflow, query surgeons to

identify procedures or parts of procedures for which

automation would be of interest;

– set up the surgical scene for gathering data,

providing documentation and directions to apply for

approval at respective ethical regulatory bodies;

– gather, represent and store data in exchangeable

and standardized formats;

– segment, filter and pre-process data for delivery to

ML algorithms;

– extract surgical skills and associated reward

functions from surgical data;

– train models and controllers to replicate or

improve upon surgical skills. This can take place

autonomously or through human demonstration

and interaction with surgeons;

– evaluate robustness and transferability of learned

skills;

– program robotic actions that display a targeted

surgical skill;

– analyse the scene and interaction to detect

transitions or inconsistencies, triggering appropriate

robotic actions, event or error handling methods;

– evaluate overall performance in an autonomous

manner or by clinical experts.

5 Conclusion

This paper reviewed the different building blocks

and research activities in adopting ML methods for

SR. The paper demonstrated that ML can play

a role in many aspects of SR. Synthesizing and

exploiting the knowledge and experience of surgeons

requires a thorough understanding and analysis of

skill, training and evaluation. By detailed study of

the surgical process it may be possible to extract the
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needed mappings from perception to action (imitation

learning) for various surgical tasks and meanwhile

quantitatively analyze learned skills. By subdividing

surgical procedures into individual surgical tasks

through episode segmentation, the process can become

manageable. A detailed pipeline for deploying ARS

is proposed. This starts from a workflow analysis

that decomposes the procedure into episodes. For

each episode, the desired behavior can be learned as

skill. This information is to be embedded within the

surgical robot’s control loop equipped with appropriate

decision making mechanisms that help deploying

the appropriate skill at the appropriate time. As

such surgical robots could gain autonomy over time,

resulting into semi-autonomously or fully autonomously

operating systems in the future.

Whether autonomous surgical robots will really

break through depends on many factors as the

challenges to overcome are substantial. There should be

access to large amounts of high-quality medical/surgical

data. Progress is needed w.r.t. modeling and real-time

evaluation of deformable anatomies. There is still much

to be learned on what is exactly a surgical skill and how

to quantitatively analyse it. Better understanding is

needed on how to adapt systems reliably and safely to

unknown or previously unobserved situations. Beside

those challenges getting the acceptance and trust of

the physicians and patients is considered a not to be

underestimated challenge as well.
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