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Abstract. Aircraft diagnosis is a highly complex topic. Many knowl-
edge sources are required and have to be integrated into a diagnosis
system. This paper describes the instantiation of a multi-agent system
for case-based aircraft diagnosis based on the SEASALT architecture.
This system will extend a existing rule-based diagnosis system, to make
use of the experience of occurred faults and their solutions. We describe
the agents within our diagnosis system, the planned diagnosis workflow
and the current status of the implementation. For the case-based agents,
we give an overview of the initial case structures and similarity measures.
In addition, we describe some challenges we have during the development
of the multi-agent system, especially during the knowledge modeling.

1 Introduction

An aircraft is a complex mechanism, consisting of many subsystems. Occurring
faults cannot be easily tracked to their root cause. A fault can be caused by
one system, by the interaction of several systems or by the communication line
between systems. Finding the root cause can be very time and resource con-
suming. Therefore the use of experience from successfully found and solved root
causes can be very helpful for aircraft diagnosis. This paper describes the in-
stantiation of a multi-agent system (MAS) based on the SEASALT architecture.
The MAS contains several Case-Based Reasoning (CBR) systems to store the
experience and provide this knowledge for diagnosis. In the next section, we
give an overview of the OMAHA project and the SEASALT architecture. Sec-
tion 2 contains related work with comparing our approach to other diagnosis
and multi-agent approaches. In Section 3 we describe the instantiation of the
SEASALT components for our MAS and describe the case-bases agents with the
case structure and similarity measures of the underlying CBR systems in more
detail. Section 4 gives a short summary of the paper and an outlook on future
work.
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1.1 OMAHA project

The multi-agent system for case-based aircraft diagnosis is under development
in the context of the OMAHA research project. This project is supported by the
German Federal Ministry of Economy and Energy and tries to develop an Overall
Management Architecture for Health Analysis of civilian aircraft. Several top-
ics are addressed within the project like diagnosis and prognosis of flight control
systems, innovative maintenance concepts, and effective methods of data process-
ing and transmission. A special challenge of the OMAHA project is to integrate
not only the aircraft and its subsystems, but also systems and processes in the
ground segment like manufacturers, maintenance facilities, and service partners
into the maintenance process. Several enterprises and academic and industrial
research institutes take part in the OMAHA project: the aircraft manufacturer
Airbus, the system manufacturers Diehl Aerospace and Nord-Micro, the aviation
software solutions provider Linova and IT service provider Lufthansa Industrial
Solutions as well as the German Research Center for Artificial Intelligence and
the German Center for Aviation and Space. In addition, several universities are
included as subcontractors. The project started in 2014 and will last until the
end of March, 2017. 1

The OMAHA project has several different sub-projects. Our work focuses on
a sub-project to develop a so-called integrated system health monitoring (ISHM)
for aircraft systems. The main goal is to improve the existing diagnostic approach
to identify faults with root cause in more than a single subsystem (cross-system
faults). Therefore, a multi-agent system (MAS) with several case-based agents
will be implemented to integrate experience into the diagnostic process and
provide more precise diagnoses for given faults.

1.2 SEASALT architecture

The SEASALT (Shared Experience using an Agent-based System Architecture
LayouT) architecture is a domain-independent architecture for extracting, ana-
lyzing, sharing, and providing experiences [4]. The architecture is based on the
Collaborative Multi-Expert-System approach [1],[2] and combines several soft-
ware engineering and artificial intelligence technologies to identify relevant infor-
mation, process the experience and provide them via an interface. The knowledge
modularization allows the compilation of comprehensive solutions and offers the
ability of reusing partial case information in form of snippets.

The SEASALT architecture consists of five components: knowledge sources,
knowledge formalization, knowledge provision, knowledge representation, and
individualized knowledge. The knowledge sources component is responsible for
extracting knowledge from external knowledge sources like databases or web
pages and especially Web 2.0 platforms.

The knowledge formalization component is responsible for formalizing the ex-
tracted knowledge into a modular, structural representation. This formalization
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is done by a knowledge engineer with the help of a so-called Apprentice Agent.
This agent is trained by the knowledge engineer and can reduce the workload
for the knowledge engineer.

The knowledge provision component contains the so-called Knowledge Line.
The basic idea is a modularization of knowledge analogous to the modularization
of software in product lines. The modularization is done among the individual
topics that are represented within the knowledge domain. In this component a
Coordination Agent is responsible for dividing a given query into several sub
queries and pass them to the according Topic Agents. The agent combines the
individual solutions to an overall solution, which is presented to the user. The
Topic Agents can be any kind of information system or service. If a Topic Agent
has a CBR system as knowledge source, the SEASALT architecture provides a
Case Factory for the individual case maintenance [4],[3],[9].

The knowledge representation component contains the underlying knowledge
models of the different agents and knowledge sources. The synchronization and
matching of the individualized knowledge models improves the knowledge main-
tenance and the interoperability between the components. The individualized
knowledge component contains the web-based user interfaces to enter a query
and present the solution to the user.

1.3 Application domain: aircraft diagnosis

An aircraft is a highly complex machine consisting of a large number of subsys-
tems that interact with each other, like hydraulic, cabin, ventilation, and landing
gear. Each subsystem has a large number of components. The smallest compo-
nent that can be replaced during maintenance is called Line Replacement Unit
(LRU). The challenge is to find the root cause of a fault, because there could be
more than one LRU causing the fault or a fault chain. In a fault chain, the first
fault causes additional faults, which could also cause additional faults again.
Faults are not limited to have their root cause in the subsystems that stated
the fault, but the root cause can be found in a different subsystem. Therefore,
a cross-system diagnosis is required to improve the precision of the diagnosis
process.

In the next section we give an overview of some related work. In Section 3 we
describe the multi-agent system concept and the instantiation of the SEASALT
architecture. Section 3.3 describes the current status of our implementation.
Finally a summary and outlook on future work is given.

2 Related Work

Decision support for diagnosis (and maintenance) in the aircraft domain means
that a lot of engineering knowledge is available to support this process. In the
past various diagnostic approaches tried to improve diagnosis and maintenance in
this domain: among others case-based reasoning, rule-based reasoning, model-
based reasoning, Bayesian belief networks, Fuzzy inference, neural networks,



fault trees, trend analysis, and a lot of combinations. For OMAHA, that is
OMAHA work package 230, the exploitation of available experiences as supple-
mentation to other already used knowledge sources is of high priority. See also
the work from Reuss et al.[10] for relating our approach with a selection of re-
lated other experience reusing diagnostic approaches: the British research project
DAME [7] dealing with fault diagnosis and prognosis based on grid computing ,
Dynamic Case-Based Reasoning [13] learning also through statistic vectors con-
taining abstract knowledge condensed from groups of similar cases, and the hy-
brid approach of Ferret and Glasgow [6] combining model-based and case-based
reasoning.

For optimizing the relation between cost and benefit we decided to use the
various available textual knowledge sources (cf. also Section 3). A recent overview
of using textual sources for CBR is given in the textbook of Richter and We-
ber [12]. The paper of Reuss et al. [11] also gives an overview of some related
approaches in this direction.

In addition to other specific characteristics of our approach one property dif-
ferentiating it from many other (CBR) approaches is the fact that we develop
a multi-agent system that applies a lot of CBR agents (among other) ones.
The following approaches have in common that they also combine a multi-agent
system approach with CBR. Researchers also dealing with CBR from different
perspectives and trying to combine the specific insights to an improved overall
approach are [16]. Of course, what makes our approach different here is that we
are concerned with the development of concrete framework with existing appli-
cations. Corchado et al.[5] present in their work an architecture for integrating
multi-agent systems, distributed services, and application for constructing Am-
bient Intelligence environments. Besides addressing a different domain and task
this approach appears to be more open concerning the potential tasks agents
can take over, while our approach is more focused in applying software engi-
neering strategies for decomposing problems into sub-problems resulting in a
distributed knowledge-based system. Zouhaire and his colleagues[17] developed
a multi-agent system using dynamic case-based reasoning that learns from traces
and is applied for (intelligent) tutoring. Our approach does not learn from traces
but instead has to deal with a lot of technical knowledge and in addition has
to solve critical problems. Srinivasan, Singh and Kumar[14] share with our ap-
proach that they develop a conceptual framework for decision support systems
based on multi-agent systems and CBR systems. Our approach appears to be
more on the side of integrating software engineering and artificial intelligence
methods implementing concrete application systems, while the authors discuss
how their framework influences decision support system in general. Khelassi[8]
developed the IK-DCBRC system basing on a multi-agent architecture using a
CBR approach with fuzzy-enhanced similarity assessment and being able to ex-
plain the results for different users. Our approach is not explanation-aware with
respect to its current implementation status, however there is a conceptional
extension of the SEASALT architecture (together with Thomas Roth-Berghofer
and his research team) defined that includes explanation awareness. In addition,



there are two PhD research projects ongoing focusing on explanation aware-
ness. What also makes us different from Khelassis work is that our approach is
embedded in an overall methodology resulting in a systematic process of how
to develop an instance of our architecture with applications in travel medicine,
technical diagnosis, and architectural design.

3 Multi-agent case-based diagnosis in the aircraft domain

In this section we describe the current version of our multi-agent system for
case-based diagnosis. Based on the SEASALT architecture we describe the in-
stantiation of the single components in context of our multi-agent system and
the diagnosis workflow. In addition, we give an overview over the case structures
and similarity measures of our case-based agents.

3.1 Multi-agent system for aircraft diagnosis

First we will describe the instantiation of our multi-agent system. The multi-
agent system is an additional component of the diagnosis mechanism. It will not
replace the existing rule-based diagnosis, but will extend the current diagnosis
mechanism. The main component for our multi-agent aircraft diagnosis is the
knowledge provision component. This component contains the Knowledge Line,
which is responsible for providing a diagnosis for a given fault situation. The
Knowledge Line consists of several topic agents with underlying CBR systems.
The topic agents use the knowledge of their CBR systems to provide a part of
the diagnosis. If only the knowledge of one topic agent is required, the topic
agents delivers the complete diagnosis. There are several homogeneous teams of
topic agents in the Knowledge Line, each responsible for diagnoses of an aircraft
type (e.g., A320, A350, or A380). Each team has an additional agent, called
solution agent to coordinate the topic agents and rank the individual solutions.
Because each individual solution represents a possible diagnosis, a combination
of solutions is not appropriate. The approach of separated agent teams for each
aircraft type is based on the idea to split the knowledge into several smaller CBR
systems. This way the number of cases for a retrieval and the maintenance effort
for each system can be reduced. Nevertheless, for a diagnosis more than one
agent team may be necessary. Therefore, a query can be distributed to several
agent teams, either by default or if a diagnosis from the primary agent team for
a query cannot provide a sufficient diagnosis. A coordination agent is responsi-
ble for coordinating the agent teams, distributing a query, and combining the
team’s solutions. The complete diagnosis process requires some more software
agents that do not belong to the Knowledge Line itself: an interface agent, a
composition agent, a knowledge map agent, and an output agent. The interface
agent receives the query either from a web interface and/or a data warehouse.
The main data source is a Post Flight Report (PFR) containing all the faults
having occurred during the last flight of an aircraft. This PFR is based on the
rule-based diagnosis in the aircraft. Each fault is represented as a so-called PFR



item. Additional data like aircraft configuration, operational parameters (e.g.,
weather conditions, temperature, etc.), and logbook entries can be received, too.
The PFR data and the additional data have to be correlated to assign the addi-
tional data to the corresponding PFR item. This task is done by the correlation
agent. The extended PFR items are sent to the coordination agent. For each
PFR item, a request to one or more agent teams is performed. To determine
which topic agents of a team should be requested, a so-called Knowledge Map is
used. This Knowledge Map contains information about existing agents and their
dependencies and underlying CBR systems. The task to determine a so-called
retrieval path (the topic agents to be requested and the sequence of retrievals) is
done by a knowledge map agent. This agent has access to the general Knowledge
Map and a CBR system, which stores past successful retrieval paths for given
fault situations. The knowledge map agent uses the CBR system to retrieve the
most similar retrieval paths and adapt the path to the new situation if necessary.
Based on the determined retrieval path, the topic agents are requested and a
ranked list of diagnoses is generated. The list of diagnoses is sent to the output
agent. The output agent forwards the list to the web interface and the data
warehouse. One more agent is located in the knowledge provision component.
The so-called query analyzer takes each extended PFR item and checks for new
concepts, which are not yet part of the vocabulary of the CBR systems. If any
new concepts are found, a maintenance request is sent to the so-called Case Fac-
tory [9]. The Case Factory checks the maintenance request, derives appropriate
maintenance actions, and executes the actions after confirmation from a knowl-
edge engineer. The query analyzer is not part of the diagnosis process itself, but
provides some learning capabilities to the multi-agent system.

The user interface can be found in the individualized knowledge component.
The user interface is a web interface, which provides the options to send a query
to the multi-agent system and present the returned diagnoses. In addition, the
user can enter new cases, edit existing cases, and browse a entire selected case
base. In addition to the web interface, a connection to a data warehouse is part
of this component. The data warehouse contains PFRs and the additional data
and will be the main query source for the multi-agent systems. If additional
information is required that is not provided by the data warehouse, it can be
added via the web interface.

The knowledge formalization component transforms structured, semi struc-
tured, and unstructured data into a modular, structural knowledge representa-
tion used by all CBR systems. This way the knowledge is represented in the
same way all over the multi-agent system. Because a structural approach for
the CBR systems in the Knowledge Line was chosen, semi-structured and un-
structured data have to be transformed into attribute value pairs. This trans-
formation workflow is performed by a so-called case base input analyzer. The
workflow consists of several steps: At first, information extraction methods are
used to extract keywords and collocations and to find synonyms and hypernyms
for the extracted keywords. Then the input data is analyzed to find associations
within the allowed values of an attribute as well as across different attributes.



This way want to generate completion rules for query expansion. The keywords,
synonyms, hypernyms, and collocations are added to the vocabulary and initial
similarity values for keywords and their synonyms are set. The keywords and
their hypernyms can be used to generate taxonomies for similarity measures.
After the vocabulary extension, cases are generated from the input data and
stored in the case bases. The last step is to perform a sensitivity analysis on the
stored cases to determine the weighting for the problem description attributes.
The workflow is presented in more detail in [11].

In the knowledge sources component a collector agent is responsible for find-
ing new data in the data warehouse, via web services or in existing knowledge
sources of Airbus. New data could be new configurations or operational param-
eters, new synonyms or hypernyms, or complete new cases.

The knowledge representation component contains the generated vocabulary,
similarity measures and taxonomies, completion rules, and constraints provided
for all agents and CBR systems.

3.2 Case-based agents

This section focuses on the case-based agents within our multi-agent diagnosis
system. We will describe the agents’ tasks and the underlying CBR systems with
their case structure and similarity modeling. In addition to the PFR, we have to
consider several different data structures like Service Information Letters (SIL),
In-Service Reports (ISR), elogbooks and aircraft configuration documents. While
a PFR contains only information about the problem description, SIL, ISR and
eLogbooks contain problem descriptions and solutions. Configuration documents
contain data about the latest system configuration of an aircraft with hard- and
software versions. We performed an analysis on these data to identify relevant
information for cases, relationships between these information and data anoma-
lies. Based on the result of this analysis we derived two case structures with
attribute-value pairs and their value ranges. One case structure is based on PFR
and SIL (CSIL) and the other case structure is based on PFR and ISR (CISR).
The case structures overlap to some degree, because attributes derived from the
PFRs are part of both structures, like ATA chapter, aircraft type, and fault
description. The CSIL structure contains 32 attributes, while the CISR structure
consists of 28 attributes. The attributes are distributed among problem descrip-
tion, diagnosis, quality information, and pointer to other cases. The problem
description contains attributes like ATA chapter, aircraft type (e.g., A380), air-
craft model (e.g., 380-641), fault code, displayed message, fault description and
affected Line Replacement Units (LRU). Attributes like recommendation, com-
ments, maintenance reference, corrective LRUs and root cause are part of the
solution. For quality assessments the number of positive (a retrieved diagnosis
was helpful) and negative (a retrieved diagnosis was not helpful) retrievals are
stored.

The configuration of an aircraft has great impact on the probability of fault
occurrence. If a certain system is not built in, corresponding faults will not
occur. The occurrence of faults depends also on the soft- and hardware version



of built in systems. Therefore, the configuration of an aircraft can exclude faults
and root causes and have an impact on the similarity of cases. Because of the
complexity of the configuration data for an entire aircraft, we decided to consider
the configuration separate for each aircraft component. For each subsystem of
a component the so-called modification status (mod-status) is stored. With the
help of this mod-stati, cases could be excluded and similar configuration could
be compared.

Most of the attributes have a symbolic data type and a taxonomy as similar-
ity measure. The attributes ATA chapter, fault code and affected LRUs have a
natural hierarchical structure, that can be mapped to a taxonomy. A great chal-
lenge is the similarity measure for the fault description attribute. The symbolic
values of this attribute are extracted via a workflow in the knowledge formaliza-
tion component as described in [11]. During the automatic vocabulary expansion,
the values are added to a similarity table. Similarities between the automatically
added values are only set between values and their synonyms. The other values
have to be set manually. To reduce the effort, an automatic taxonomy generation
from the extracted values and their synonyms and hypernyms is planned.

The multi-agent system will contain several topic agents with the same case
structure to reduce the number of cases in one case base. Most faults can be
assigned to a specific ATA chapter. Therefore, for each ATA chapter an own topic
agent is generated. An agent team within our multi-agent system will consist of
agents discriminated by ATA chapter and data source (SIL, ISR, etc.).

Another case-based agent is the so-called knowledge map agent. This agent
is responsible for determining which topic agents have to be requested to find a
solution for a given request. For each request, a retrieval on the underlying CBR
system is performed. The cases will contain the characteristics of a request as the
problem description and a successfully used retrieval path. This way we try to
address the cross-system faults. Cross-system faults may have their root causes
in LRUs of different ATA chapters. Requesting only the topic agent of a single
ATA chapter may not give the correct root cause identification and diagnosis.
Based on experience from solved faults, the cases for the knowledge map agent
could contain information when the request of additional topic agents may be
useful to find the correct diagnosis.

There are several challenges to be met while modeling the case structures
and the similarity measures. One major challenge is based on the fact, that the
ATA chapter differs for the same subsystem in different aircraft types. The cabin
entertainment system is linked to two different ATA chapters in the A320 and the
A380. Therefore, a mapping between the different ATA chapters is required to
compare fault cases from different aircraft types. Another challenge is modeling
the fault description in the case structure. The description of a fault is mainly
given in free text provided by pilots or cabin personal. Unfortunately, there is no
standard description language for faults. Therefore, every person describes a fault
with slightly different words and technical terms. Extracting the key symptoms
from this fault descriptions and comparing two fault descriptions requires the
integration of natural language processing techniques in the modeling process



and the diagnosis process of the multi-agent system. In addition, the amount of
knowledge that can be found in the fault descriptions is very high. Analyzing
3000 example fault descriptions, we found more than 21000 different keywords
and phrases describing the occurred faults. Modeling all these keywords and
phrases in one attribute is not practicable. While it is possible to add all keywords
automatically, setting the similarity between these keywords within a similarity
matrix or a taxonomy is not practicable. In addition, the maintenance effort for
such an attribute would be very high and in no relation the gained benefit.

The main challenge for the knowledge map agent is to identify the charac-
teristics of a request and the according knowledge sources to solve the request.

3.3 Status of implementation

We implemented a prototype to test some functionalities of the desired multi-
agent system. This application serves as a testing system for knowledge modeling
and diagnosis process. The prototype consists of two CBR systems and a user in-
terface to interact with the systems. We modeled the case structure, vocabulary
and similarity using the open source tool myCBR [15]. One CBR system con-
tains cases based on SIL documents, the other one on ISR documents. The SIL
case base contains 670 cases and the ISR case base 220 cases. The user interface
provides the functionalities to perform a retrieval, enter new cases, edit existing
cases, and browse the case base based on filter criteria. In addition, the workflow
of the knowledge extraction is partially implemented. The keyword extraction,
collocation extraction, synonym and hypernym identification, and automatic vo-
cabulary extension are implemented. For more detail on the implementation of
the knowledge extraction workflow see [11].

4 Summary and Outlook

In this paper we describe the instantiation of our multi-agent system for case-
based diagnosis. We give an overview of the individual components and describe
the case structure and similarity of our case-based agents. As Section 3.3 shows,
the multi-agent system is not fully implemented, yet. The next steps are the
implementation of the additional agents (interface, coordination, output, knowl-
edge map) and the refinement of the case structures and similarity measures. In
addition, the learning mechanism based on the knowledge extraction workflow
will be realized.
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