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ABSTRACT
In this paper, we present WristRotate, a personalized motion
gesture delimiter that enables separation of non-relevant mo-
tion from gesture input. In an extensive data collection, we
acquired 435.1 hours of smartwatch acceleration data during
everyday usage. We implemented a gesture recognition sys-
tem based on Dynamic Time Warping to partition a stream
of accelerometer readings to identify possible gestures and
to classify them accordingly. Through our analysis, we were
able to identify a gesture that is (1) uncommon in daily life;
(2) quick and easy to execute and (3) easily and reliably de-
tectable. The gesture is executed by simply rotating the lower
arm and wrist outwards and back inwards (twice).
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INTRODUCTION
With the current rise of smartwatches and fitness tracking
armbands, an increasing number of people are wearing an
always-listening collection of motion sensors on their wrists.
While today’s smartwatches often allow for sophisticated in-
put, these are not always appropriate (e.g. speech input) or
possible (e.g. touch input requires the opposite hand). Fitness
tracking bands such as the Fitbit1, on the other hand, often
do not have such sophisticated input techniques. Still, those
devices can be used for input, as they often have a permanent
connection to the user’s smartphone. We envision a gesture
based interaction design that allows for inconspicuous one-
handed interaction. In comparison to, for example, speech
input, such motion-based gestures are perceived as more so-
cially acceptable [11].

1http://www.fitbit.com/, last accessed 22/10/2015
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Figure 1: WristRotate is a gesture delimiter for wrist-worn devices which
is easy to perform and uncommon in most people’s everyday life.

The crucial factors for high user acceptance of a motion-
gesture based system are high reliability and high recognition
rates with low rates of false positives. Compared to smart-
phones, this is an even bigger problem for wrist-worn devices.
While smartphones stay in our pockets most of the time, these
devices are fastened around our arms, meaning that they will
be in nearly constant motion. Especially as we do complex
motions with our arms, these could easily be misinterpreted
as a gesture (the so-called Midas touch problem). For the in-
terpretation of gestures based on internal sensors, a variety
of techniques exist, such as [6]. But those are not designed
to cope with the frequent movement of our wrists and often
include the need to press a button for activation. To avoid
this, an effective and easy-to-use delimiter to separate non-
relevant motion from gesture input is needed. Afterwards,
the aforementioned gesture interpreter can be easily applied.

In this paper we present WristRotate, a gesture delimiter that
makes it possible to separate non-relevant motion from ges-
ture input done on purpose. We are following the approach of
DoubleFlip presented by Ruiz and Li [12]. Through an exten-
sive data collection we were able to identify a gesture that is
(1) uncommon in most people’s daily life; (2) quick and easy
to execute and (3) easy and reliable to detect. The gesture is
executed by simply rotating the lower arm and wrist outwards
and back inwards (see Figure 1).

RELATED WORK
Various ways to detect gestural interaction with a mobile de-
vice exist, e.g. [6, 7]. As they are designed to detect gestures
when the device is hand-held, the difference from a wrist-
worn device should be rather small. However, they require
a button to be pressed while performing the gesture, which
cannot be done on a wrist-worn device with only one hand.

http://www.fitbit.com/
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Figure 2: The gesture delimiter candidates.

Therefore a delimiter – a gesture that is distinctive enough
not to occur in everyday usage – is needed to initiate the ges-
tural commands. While such a delimiter has been found for
hand-held devices by Ruiz et al. [12], it is not applicable to
wrist-worn devices, as they are in constant motion and there-
fore more error-prone. Williamson et al. mention a simple
gating gesture for wrist-based interaction [13], but do not give
further information about its false-positive rate or suitability
during everyday interactions. To close this gap, we investi-
gate delimiter gestures for wrist-worn devices.

The increasing variety and popularity of smartwatches under-
pins the trend towards a wrist-worn computing device, but
until now, only a limited set of interaction techniques has
existed. Most of the related work focuses on Opposite-Site
Interaction (OSI) techniques, meaning they require the hand
that is not wearing the wearable device to operate it. These
interaction techniques range from eyes-free input through tac-
tile landmarks on the touch-screen [2] to extending the touch-
screen to the entire wristband [9]. Xiao et al. even developed
a multi-degree-of-freedom, mechanical interface for smart-
watches [14] which allowed for continuous 2D panning and
twisting as well as binary tilt and click. But all these inter-
action techniques require both hands for interaction. In this
paper, we are more concerned with leveraging the capabilities
of such a device by only making use of the arm that is wearing
the device, so called Same-Side Interaction (SSI) [5].

With GestureWrist [10], Rekimoto et al. used capacitive sen-
sors and an accelerometer to sense wrist-shape changes and
measured forearm movements. This allows the user to input
commands using only one arm, but requires additional sen-
sors which are typically not available in today’s wrist-worn
devices. Kerber et al. employed electromyography (EMG)
using a Myo wristband, allowing use of one-handed ges-
tures [5]. While their preliminary study (comparing it against
touch input) did not find any significant difference in terms
of task completion time, keeping in mind the early state of
commercial EMG devices, their results demonstrated the fea-
sibility of SSI. To the best of our knowledge, the first direct
comparison of OSI and SSI was presented by Kerber et al. [4].
They found the direct-touch interaction of the static peephole
(OSI) to be on average 12% faster. But this is only marginal
compared to the advantage of only using one arm to interact
(SSI) when using a dynamic peephole.

We strongly believe that in many everyday situations, gestu-
ral interaction can be a convincing alternative to direct touch
or speech input. Therefore, we aim to enable gestural SSI by
finding a gesture delimiter providing the possibility to distin-
guish between non-relevant motion and intended gestures.

DESIGN OF WRISTROTATE
As already outlined, we aim to support not only wrist-worn
devices with sophisticated input possibilities, such as smart-
watches, but also those that only provide an accelerometer.
As we also want to support interactions on the go, same-side
interactions (SSI) are preferable. This opens up the possibil-
ity to carry something in one hand while interacting with the
wrist-worn device worn on the other hand. Thus, we aim to
detect a special gesture we can use as delimiter to distinguish
between non-relevant and intended interactions.

Similar to [12], we defined a set of requirements that should
be met by our delimiter gesture: (1) it should not be involun-
tarily invoked during everyday life; (2) it should not require
complicated movements of the arm or wrist; (3) it should be
easy to remember and quick to perform and (4) it should be
reliably detectable when done on purpose.

Compared to the set of possible gestures that can be executed
with a smartphone in the user’s hand, the set of possible ges-
tures for a wrist-worn device is already limited. Furthermore,
we have to dismiss gestures that are complex (with respect to
either length or required movements) as well as those that are
typically used in existing applications (e.g. turning one’s wrist
inwards to activate a smartwatch). We also have to exclude
interactions that often happen involuntarily during everyday
life to avoid a high number of false positives.

In the end, we identified five gestures for further examination
(see Figure 2):

(a) a pull gesture, for which the arm is hanging parallel to
the body and is then pulled towards the shoulder (pull).

(b) a push gesture, where the arm is held parallel to the
ground and pushed forward like a punch (push)

(c) a gesture where the arm is first stretched out (palm fac-
ing upwards) and then the lower arm is bent towards the
shoulder similar to a bicep curl (curl)

(d) an outward rotation of the lower arm and wrist, quickly
followed by a rotation back inward (rotate)

(e) an outward rotation of the lower arm and wrist, quickly
followed by a rotation back inward, executed twice in a
row (doubleRotate)

None of these gestures requires long or complex interactions,
which also makes them easy to remember and quick to per-
form. To check for requirements (1) and (4), we conducted
an extensive data acquisition and analysis.



DATA ACQUISITION
To ensure that our proposed delimiter gestures are not in-
voluntarily invoked, we collected a corpus of smartwatch
motion data during everyday activities. We recruited six
volunteers (two female, all office workers), aged 23 to 33
(M=27.8, SD=3.6) and equipped them with an off-the-shelf
Pebble Smartwatch as well as an LG Nexus 5 smartphone
with our own data acquisition software on both devices. We
selected the smartwatch because of its battery runtime and its
three-axis accelerometer, which was sampled at a rate of only
50 Hz to save battery life. The recorded data was sent to the
smartphone, as the Pebble only provided limited storage.

The participants were asked to wear and use the smartwatch
as a replacement for their personal watch. Four participants
wore the smartwatch on the side of their non-dominant hand
whereas the other two used the dominant side. During the
recording, the smartwatch displayed the current time as well
as the actual recording status, thereby closely mimicking a
regular watch. In case of a connection loss between the two
devices, the recording was paused until the Bluetooth connec-
tion could be reestablished.

In total, we collected a set of 435.1 hours of sensor recordings
from our participants. Most of the data was collected during
normal working hours from 7am to 6pm, but recordings out-
side these periods (e.g. from weekends) were also collected.

THE GESTURE RECOGNITION SYSTEM
We use a three-stage approach to detect and classify a gesture.
First, the recorded acceleration data is filtered to reduce noise
and eliminate the gravity portion. Afterwards, the data needs
to be segmented to isolate single samples which can then be
sent to the classifier, which labels them based on its available
training data.

Pre-Processing
The Pebble’s three-axis accelerometer provides an estimate
of the acceleration along each of the axes x, y and z sepa-
rately measuring the acceleration calibrated to a maximum
of ±4 G. To transfer the raw accelerometer data (including
noise and gravity) into linear acceleration values reflecting
the pure motion of the wrist, we applied a combination of
a low-pass and a high-pass filter. A simple low-pass filter
is equivalent to a smoothing function and results in a noise-
reduced signal which is less dependent on quick changes. As
a consequence, the low-pass filtered data corresponds to the
actual gravity. To filter out the acceleration caused by grav-
ity, we applied a high-pass filter based on the results of the
low-pass filter.

Segmentation
To identify potential gestures in the continuous sensor data
stream, we developed an algorithm which detects the start and
stop points of gestures in a continuous time series and thereby
partitions the stream into segments. Only those segments that
are considered as containing a gesture have to be examined by
our classifier. We use an algorithm similar to the one utilized
in [3], which is based on the assumption that the movement
energy of the smartwatch increases over a certain threshold

when a gesture starts and decreases below a specific threshold
when the gesture ends. To compute the start and end points
of a potential gesture, we use a sliding window approach with
two overlapping windows of size N = 5.

Classification
For our classification, we utilize Dynamic Time Warping
(DTW) – a technique well known from the field of speech
recognition but also widely used in other areas for recogniz-
ing patterns in continuous data streams [1]. DTW measures
the similarity between two time sequences of different time
series which may vary in time or speed by warping them non-
linearly in the time dimension and figuring out the costs to
match them. We do not directly compare the raw accelerom-
eter readings, but work with a derived value – the slope of
the acceleration. We use an approximate DTW implementa-
tion provided by the FastDTW project2 which is characterized
by an improved computation time and memory complexity
(O(N)) in contrast to the original DTW algorithm (O(N2)).

For the comparison based on the DTW algorithm, a set of la-
beled gestures has to be provided as training data. A gesture
that should be classified is then compared to all training ges-
tures and the computed matching cost value is stored in an
increasingly sorted score table, i.e. the training gesture with
the highest similarity is saved at the top position. However,
this gesture might still be very different from the gesture to
classify. We therefore consider the computed matching cost
– if it is above a pre-defined threshold, we do not consider
the gesture as recognized. Furthermore, we make use of an
adapted k-Nearest-Neighbor approach, i.e. we check the first
k entries from the score table and label the gesture to classify
as the one that is most often present in these k entries. We
empirically chose a threshold value of 2 and set k to 3.

RESULTS
Overall, 7501 segments or potential gestures were detected in
the 435.1 hours of collected data. We classified the potential
gestures to be able to make a statement regarding the false-
positive (FP) rate, i.e. the number of erroneously detected
gestures in relation to the total number of examined gestures.
The results for all participants can be seen in Table 1.

Table 1: Results of the user-specific classification of possible gestures in
the 435.1 hours of recordings of normal smartwatch usage.

pull push curl rotate dblRotate
Detections 40 79 126 608 10
FP rate [in %] 0.53 1.05 1.68 8.11 0.13
Avg. per hour 0.09 0.18 0.29 1.40 0.02

As can be seen from the results, the doubleRotate gesture per-
forms best, as only ten occurrences were detected. Although
it is not obvious from the combined results, the curl gesture
also performed quite well for all but two participants, as 124
of the detected matches originate from only two participants.
A one-way ANOVA revealed a significant difference in the FP
rate between the gestures (F4,25 = 4.91, p < 0.01). Post-hoc
2https://code.google.com/p/fastdtw/, last accessed
22/10/2015
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comparions using the Tukey HSD test indicated a significant
difference (p < 0.01) between pull (M=0.01, SD=0.01) and
rotate (M=0.1, SD=0.05) as well as between rotate and dou-
bleRotate (M=0.003, SD=0.003). There were no significant
differences between the other pairs of gestures.

Although a low false-positive rate is unquestionably impor-
tant, a high true-positive (TP) rate, i.e. the number of cor-
rectly detected gestures in relation to the actual number of
executions, is also required to ensure that a gesture is cor-
rectly recognized when done on purpose. To test this aspect,
we collected a separate gesture set, in which all participants
did the specific gestures ten times each, and tested those with
the user-specifically trained classifier. The results can be seen
in Table 2.

Table 2: Results of the user-specific classification of the 300 purposely
recorded gesture executions.

pull push curl rotate dblRot
Detected segments 33 51 54 58 59
Correct detections 30 50 54 57 48
TP rate [in %] 90.9 98.0 100 98.3 81.4
Combined TP rate
[in %]

50.0 83.3 90.0 95.0 80.0

The results provide two insights: First, as every participant
executed each gesture ten times, it was expected that 60 seg-
ments per gesture would be detected, but actually, only a part
of the segments could be found – especially for the pull ges-
ture. An analysis of the data that was not correctly segmented
showed that the gestures were executed too slowly, result-
ing in not reaching the required energy level to start a seg-
ment. Second, regarding the TP rate, a one-way ANOVA re-
vealed a significant difference between the gestures (F4,25 =
3.25, p < 0.05). Post-hoc comparions using the Tukey HSD
test indicated a significant difference (p < 0.05) between pull
(M=5.5, SD=4.81) and rotate (M=9.67, SD=0.82) as well as
between pull and doubleRotate (M=9.83, SD=1.33). There
were no statistically significant differences between the other
pairs of gestures.

We distinguish between the TP rate of the classification alone
(third row of Table 2) and the one of the overall gesture
recognition system (counting the non-identified segments as
missed gestures as well: fourth row of Table 2). From a user’s
perspective, the latter is more relevant, as it characterizes the
effort the user has to make to successfully trigger the ges-
ture. A one-way ANOVA revealed a significant difference
between the gestures (F4,25 = 2.78, p < 0.05). Post-hoc
comparions using the Tukey HSD test indicated a significant
difference (p < 0.05) between pull (M=5.0, SD=4.52) and
rotate (M=8.0, SD=3.03). There were no statistically signifi-
cant differences between the other pairs of gestures.

DISCUSSION
Our analysis of the 435.1 hours of recorded daily motion
data shows that three of our proposed delimiter gestures are
only rarely detected during daily motion, resulting in a low
false-positive rate, i.e. it is in general not to be expected that

the chosen delimiter gesture would often be activated erro-
neously. Although the rotate gesture provides a significantly
higher false positive rate, it is still only activated about once
an hour. For the best-performing gesture (doubleRotate), a
single false positive is expected only every 43.5 hours.

The results for the segmentation process show that it works
with good performance for four out of our five proposed ges-
ture candidates, but they also reveal that the detection rate of
segments containing the pull gesture is significantly worse.
As a consequence, also regarding the true-positive rate of our
proposed gestures, a significant difference between pull and
(double)Rotate could be observed. Therefore, the pull gesture
cannot be considered a good candidate for a delimiter gesture
as it does not fulfill our fourth requirement of being reliably
detectable when done on purpose.

When it comes to personal preference, we observe a clear
trend towards the rotate and the doubleRotate gesture – espe-
cially as they can be executed in an unobtrusive way.

Taking all the above-mentioned points into account, we con-
sider both the rotate and the doubleRotate gestures suitable as
motion gesture delimiters. Depending on a user’s preference,
either the one with the particularly low FP rate (doubleRotate)
or the one with slightly better TP rate (rotate) can be chosen.

As shown by Ng et al. in [8], wrist rotations are in general
also feasible when walking or carrying something. In con-
trast to their examined use case, we do not require high accu-
racy when executing the gesture. The significantly different
movement time is not considered problematic, as it is one of
the core features of our Dynamic Time Warping-based clas-
sifier to match samples that vary in speed.

CONCLUSION AND OUTLOOK
In this paper, we presented WristRotate, a personalized mo-
tion gesture delimiter to separate non-relevant motion from
gestures done on purpose. We implemented a gesture recog-
nition system that is capable of detecting segments that could
potentially contain gestures from a continuous stream of ac-
celeration data as well as classifying these found segments
based on a Dynamic Time Warping approach. Our exami-
nations of five gesture delimiter candidates revealed that the
rotate and the doubleRotate gesture, i.e. quickly rotating the
lower arm and wrist outwards and back inwards (twice), are
best suited in terms of true- and false-positive rates.

For future work, we will target a user-independent classifica-
tion with the goal to eliminate the currently necessary user-
specific training phase. With a user-independent implementa-
tion, the classifier can be trained beforehand and is therefore
immediately operational for the user. In the end, we envi-
sion an in-the-wild study targeting aspects like executing the
gesture while walking or while carrying something.
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