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Abstract

In this work the development of an algorithm for visual underwater local-

ization is described. It spans the complete process from the initial idea, the

development of a suitable underwater vehicle for testing to the algorithm’s

experimental validation in real underwater environments. Besides the devel-

opment and validation of the visual SLAM algorithm, the methodology for

its evaluation is a key aspect of this work. The resulting SURE-SLAM algo-

rithm uses a stereo camera system and basic vehicle sensors (AHRS, DPS)

to compute a complete, error-bounded localization solution for underwater

vehicles in real-time with similar quality as state-of-the-art acoustically sta-

bilized dead-reckoning approaches. The robustness of the algorithm as well

as its limitations and failure-cases are established by extensive field testing

with the AUV Dagon, which was developed during this thesis as test and

evaluation vehicle.
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Introduction

1.1 Motivation

The original motivation for this work was the necessity to aquire the ability to conduct

missions of varying complexity with underwater vehicles. With a number of early exper-

iments and trials with the ROV “LBV 150-2” (see figure 1.1) and the AUV “AVALON”

(shown in figure 3.1 in chapter 3) it became apparent, that the ability to localize the

vehicle is a key requirement for execution of virtually all tasks. This fact was at the

time greatly underestimated by the author and the underwater robotics group at the

DFKI-RIC. The intended solution for this problem was the acquisition of an acoustic

USBL tracking system by Tritech (MicroNAV). Both vehicles could be equipped with

the conveniently small transponders, the operational overhead was relatively small.

Unfortunately, the system could provide neither the information necessary for most

tasks, nor the quality required. In the environments in which it was tested (basin,

lake, harbor) it was prone to drop-outs, signal jumps and coarse measurements. Ad-

ditionally it was unable to provide a heading measurement, even with the usage of

three transponders on the vehicle (11). These experiences made it very clear that a

vehicle-centered, globally consistent localization approach was required. After a survey

of the available solutions both on the market and scientifically, two candidates for such

a system could be identified: an LBL-stabilized, DVL-based dead-reckoning system one

the one hand, and a vision-based SLAM system on the other hand. Both systems would

require implementation of localization and navigation software, with different focus on

sensor processing and image processing. Since the visual approach promised even more
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(a) (b)

Figure 1.1: The SeaBotix LBV 150-2 in an outdoor test in Denmark, Summer 2007 (a).

Dry view of the LBV 150-2 (b).

independence from infrastructure (no LBL required) and was deemed cheaper (more

implementation effort but less required sensors), the decision for a visual localization

algorithm was reached.

At this point I was working for two years at the DFKI-RIC’s underwater robotics

department and involved in most of the work described above. I had mainly worked on

the CManipulator project 1, in which visual manipulation with an underwater hydraulic

manipulator utilizing a stereo camera system was researched. Due to my interest in

mobile underwater robots I had created the “AVALON” AUV within a undergradu-

ate student’s project in parallel to this work. When it became apparent that a visual

solution would be required I started writing a proposal for a thesis based on the re-

quirements described above. Unfortunately, two main problems arose: The vehicle

AVALON would not be sufficient for the experiments required for such a thesis. The

second problem was validation. All methods for validation of localization algorithms

for underwater vehicles described in literature (for further details see section 1.2) did

not seem adequate in characterizing an algorithm. Ideally a ground-truth should be

available as gold-standard against which the visual algorithm could be compared and

tested. The question how to acquire such measurements in real underwater environ-

ments lead back to the LBL-stabilized, DVL-based dead-reckoning system. This again

1http://robotik.dfki-bremen.de/de/forschung/projekte/cmanipulator.html
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would mean that I would need to build a vehicle equipped with both sensor systems, the

visual system for my algorithm and the acoustic sensors for the reference localization.

I drafted a proposal including estimated costs for such a system and went to a funding

agency. After some modifications, they approved of the concept and asked the DFKI-

RIC to create a fully-fledged project out of it. This lead to the CUSLAM-project, in

which most of the work described in this thesis was conducted.

1.2 State of the Art

The following section will describe the current state of the art with respect to to this

work in two categories: a brief review of underwater vehicles, and a more in-depth

review of localization and navigation algorithms for underwater vehicles.

1.2.1 Underwater Vehicles

The SeaBED AUV class (see figure 1.2(a)) was developed by the Woods-Hole institution

in the early years of the millennium, and has since then been put to extended use.

Specifically designed as vehicle for close-range tasks such as side-scan bathymetry and

visual bathymetry (51), it was a new approach in the mid-size AUV class. Its extensive

sensor suite as well as excellent roll-stability make it the ideal vehicle for tasks which

require detailed data of small underwater areas, such as underwater archeology (56).

This AUV class is used extensively by a number of laboratories world-wide, including

the National Sun Yat-Sen University in Taiwan and the Australian Center for Field

Robotics at the University of Sydney.

NASA developed the DEPTHX AUV (DEep Phreatic THermal eXplorer, see figure

1.2(b)) as an evaluation platform for navigation during future missions on Jupiter’s

ice-moon Europa (22). On earth it was tested in a number of hydro-thermal vents

and caves. With its 2m diameter and weight of 1.35 t it easily falls into the large

AUV class. Besides a standard sensor suite for acoustic dead-reckoning (see section

1.2.2.2) it incorporates 32 single-beam sonar transducers distributed along its hull for

its unique sonar-based SLAM localization approach. Specifically designed for confined

quarters, it performs very well as long as a large number of the sonar-beams provide

an echo (19). Since 2006 the vehicle was continued under the name ENDURANCE

(Environmentally Non-Disturbing Under-ice Robotic ANtarctiC Explorer) by Stone
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(a) (b)

Figure 1.2: Two AUV classes extensively used in localization research: A seaBED class

AUV by WHOI (a), a DEPTHX/ENDURANCE class AUV by NASA (b).

Aerospace, specifically addressing the vehicle’s open-area navigation capability with

the addition of visual navigation and an USBL beacon system (44).

1.2.2 Underwater Localization/Navigation

Underwater localization can be categorized by the type of sensor it used. Three main

types are common: dead-reckoning, acoustic localization and visual localization.

1.2.2.1 Dead-Reckoning

Dead reckoning is a method for localization that only relies on vehicle-internal sensors.

Classical dead-reckoning uses time measurement, the vehicle’s orientation and an es-

timate of speed to calculate a vehicle’s current position. While time and orientation

can be measured easily enough (compass or AHRS), vehicle speed is more complicated,

and usually estimated using a Pitot-tube, which measures the vehicle’s speed relative

to its surrounding water (32). An alternative to the direct measurement of vehicle

speed is the usage of a navigation grade IMU. Using an IMU the vehicle’s accelera-

tions are accumulated, resulting in an indirect measurement of speed. The drawback

of this method is that only very precise and thus expensive and cumbersome devices
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can provide suitable measurement qualities for this setup. The big advantage of a self-

contained dead-reckoning is its independence of the surroundings. Its main drawback

is that its long-term error is un-bound, and in practical terms strongly dependent on

both AHRS and IMU accuracy (34).

1.2.2.2 Acoustic Localization

Acoustic localization can be considered the current standard in underwater robotics.

In addition to the basic dead-reckoning senors as described above, a DVL sensor is

included. A DVL measures speed over ground by measurement of the doppler-shift

of an acoustic signal which bounces off the sea floor. Properly used this can pro-

vide a very good estimate of speed-over-ground for the dead-reckoning filter, resulting

in an acoustic-dead-reckoning. Drawback of this approach is the necessity to remain

in proximity to the sea floor, since a DVL does not have unlimited range (usually

10m to 500m, depending on the device). While usually more stable than pure dead-

reckoning, the restriction of un-bound long-term error still is relevant. In order to

remedy this, beacon based localization is included in the localization setup. A bea-

con based localization device uses triangulation to measure the position of a mobile

transponder relative to three or more stationary transponders (respectively one station-

ary transponder for USBL). Depending on the distance of the stationary transponders,

these systems are called LBL, SBL or USBL systems (Long Base-Line, Short Base-

Line or Ultra-Short Base-Line). The individual techniques differ mostly in complexity

of set-up and accuracy (48), (6). While requiring prior setup and line-of-sight during

missions, these systems provide drift-free localization information. This information is

usually less accurate than necessary for precision missions, but it is accurate enough

to provide an upper bound for the long-term error when used in conjunction with an

(acoustic) dead-reckoning system.

1.2.2.3 Visual Localization

In visual underwater localization a camera system provides localization data. This data

can be either used as sole source for localization, or in combination with dead-reckoning

or acoustic data.

One of the best documented work in the field of underwater visual navigation is the

work of Eustice. In his PhD thesis (16) he introduced the concept of VAN, visually
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aided navigation. This approach used the camera available on the AUV to improve

its navigation capabilities. Its superiority over acoustic dead-reckoning-only methods

was shown when they surveyed the RMS Titanic (17). Due to the large distance to

the surface, the USBL sensor used to stabilize the dead-reckoning navigation systems

(DVL, IMU, pressure) experienced strong deviations, which could be eliminated by the

incorporation of data from the visual system. As the name of the approach implies,

it is neither meant nor suited as replacement of an acoustic dead-reckoning navigation

system, but only as an enhancement for post-processing.

Brown (9) extended the VAN approach to incorporate a second camera, forming a

stereo camera system. Using the new visual information of distance to the ground, a

vision-only SLAM was possible. In their application they still used the other available

vehicle sensors (DVL, AHRS, pressure) to perform high-accuracy hull inspections. This

work was extended on by Kim (33) in 2013 with the addition of a saliency metric to

improve loop closing fidelity. No reference localization data was recorded.

Mahon et al. (39) describe a VAN-based approach using a stereo-vision system

for loop closure hypothesis formation and matching in a post-processing approach.

Unfortunately, they do not have any reference localization, only a GPS-location of

start/end after diving/surfacing in a 40m deep environment.

In his Ph.D. thesis Richmond (49) describes an online approach for navigation and

mosaicking, but most information for the localization originates from vehicle sensors

like DVL and FOG: “Vision is only used where it is most effective, complementary

sensors whose data require much less processing (such as DVL, altimeter, and orienta-

tion sensors) are used whenever possible”. The vision processing uses the orientation

and distance data from the vehicle sensors to compute the infinite homography for

each image, putting them into a normalized form prior to any vision processing. This

makes the use of a relatively simple SLoG-Filter (46) possible for inter-frame matching

and correlation, explaining the real-time capabilities of this approach. No reference

measurement for his results is presented.

A very impressive example of how the data from such visual surveys can be uti-

lized is given by Johnson-Roberson (31). Here the VAN approach is used as basis for

fully 3D reconstruction of a sea-floor survey. The accuracy and consistency of the re-

sulting bathymetrical data shows the potential of these visual-aided approaches - with
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the drawback that the method is designed as post-processing step with no real-time

capabilities.

In 2008 Salvi and Thomas presented a stereovision-only SLAM approach for under-

water vehicles (53), (60). Using the images from a stereo camera system on an AUV,

stable feature estimators (SURF and SIFT) are extracted from the stereo images to

create highly salient 3d landmarks. These landmarks are matched between stereo pairs

to calculate the images’ fundamental matrix and thus camera motion. When used on

video data, a visual odometry is the result. After they could only verify their results

using simulated data, in subsequent publications its feasibility for real-world environ-

ments could be verified (4) without going into details on the real-time capabilities.

Salvi’s approach was improved by Aulinas (2) with the addition of a pre-processing

step. In this step, the camera images are searched for regions of interest (ROIs) before

the feature extraction. The rationale is that if such a region of interest exists, it will

provide more salient features for further processing than just using the whole image as

feature source. the ROIs are computed by edge-detection and hue-channel filtering.

Corke et al. (13) describe a series of experiments where visual odometry based

navigation on a small Starbug AUV is compared with the results from a LBL tracking

system. While the visual odometry algorithm is fairly basic (described in more detail

in (15)), the idea of using a system yielding dual measurements which they then com-

pare in a later stage is very promising. Their ’ground truth’ measurement (reference

measurement in this work’s nomenclature) is done by a drift-free system (LBL), so the

accuracy of their visual odometry can be quantified quite well. For their experiments it

lay in the order of 5m after 100m travel or 5% of the traveled distance. Their approach

does not incorporate any measure to create an upper bound for this error.

Milella and Siegwart (41) describe a basic framework for stereo camera motion

estimation using iterative closest point (ICP) approaches. Using a feature descriptor

to select salient points in a stereo image pair, tracking them across consecutive image

pairs and using ICP for inter-frame matching they achieve reasonable results for land

based robots. Even though their application scenario was land based robotics, the idea

of combining stereo cameras with ICP approaches strongly influenced this thesis.

Moreno et al. (43) describe a visual odometry framework based on a stereo cam-

era system. Their work does not incorporate any other sensors, yet the basic idea is

similar to the approach of the visual part presented in this thesis: selecting features
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(Lowe’s scale invariant feature transform (SIFT) (38) in this case) in a stereo pair,

re-projecting them into 3D space using epipolar constraints, tracking the features over

a number of frames and using the gathered information in a probabilistic approach

for pose change estimation. They propose their work as input for a SLAM approach,

since no global reference map or loop closing approaches are employed and thus their

algorithm’s performance degrades strongly with respect to driven distance.

1.2.3 Problems of Existing Approaches

One of the main problem of acoustic approaches was already mentioned: The necessity

for an infrastructure system (LBL, USBL) to provide long-term stability of localization.

In the best-case scenarios this results in major overhead during practical application of

such localization systems, in worst cases this makes such approaches non-feasible (e.g.

acoustic-disabled zones, in-structure surveys). A big advantage of these approaches is

their inherent redundancy: When only the dead-reckoning or the global localization

fails for short periods, this is automatically compensated (with the penalty of reduced

accuracy in the meantime).

There are two major problems with existing visual approaches. The first issue

is the lack of a stringent validation of results. This is arguably a tough task in the

demanding underwater environment where a “ground-truth” measurement is impossible

to achieve. Despite this, the practice of omitting it altogether is considered problematic.

The second issue is the fact that vision systems are considered sensors of secondary

quality. Most approaches only use vision as complementary or supporting sensor data,

denying its fitness as equal to the established inertial/acoustic sensors. While having a

number of problems, limitations and issues it is the author’s believe that with careful

implementation vision can be considered to be on the same level as other sensors when

it comes to robustness, measurement quality and usability.

1.3 Problem Description

The aim of underwater localization is to find the vehicle pose η = [x, y, z, φ, θ, ψ] in

6 DOFs, consisting of the vehicle position η1 = [x, y, z] and its Euler orientation

η2 = [φ, θ, ψ]. The Earth-centered Earth-fixed (ECEF) frame{e} is used as the ref-

erence frame. Measurement of these quantities is of different complexity: z, φ, θ are
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relatively easy to determine in the underwater domain: z can be absolutely measured

with pressure sensors as the distance between the the surface and the vehicle. φ (roll)

and θ (pitch) can be measured by simple AHRS sensors. AHRS sensors usually employ

accelerometers, gyroscopes and magnetometers to compute a 3d orientation. As long

as the vehicle is not strongly accelerating, earth’s gravity can be used as stabilizing

quantity for roll and pitch to make these two measurements drift-free and readily us-

able. The other quantities, x, y and ψ do not have these benefits. It can be argued that

measurement of ψ can be achieved by AHRS sensors as well, using earth’s magnetic

field as stabilizing quantity to prevent drift. Since the magnetic field is much easier

distorted than gravity (by large metallic objects, vehicle electronics and thrusters, nat-

ural misguiding) and may not be available (e.g. polar regions) it is not regarded as

safe stabilization quantity. Stable measurement of x, y and ψ thus becomes the main

problem to be solved.

The following properties were tried to be reached with the algorithm developed in

this work:

Local Measurements The vehicle pose η is to be measured by a non-infrastructure

localization system. This excludes all acoustic reference measurement systems, since

they require the existence of pre-setup localization beacon(s), which is to be avoided to

increase versatility. Other infrastructure, be it special visual/acoustic markers, surface

buoys or ground structures are not to be used. Ideally, mainly visual sensors should be

used. This aim does not exclude the usage of other sensors, especially an AHRS and

a pressure sensor as described above, since they are usually part of most underwater

vehicles, even simple ones.

Error Estimation The measurement system should estimate its own localization

error. This error should be independent of mission time and traveled distance. It

should be possible to determine an upper bound for the localization error which is not

violated during typical missions.

Independence of Environment The measurement system should be as versatile as

possible. This especially means that only minimal conditions for the environment are

necessary. Since the measurement system is image based, this particularly means that
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the requirements for ground structure are very low. The terrain and ground texture

should not need to be known beforehand, since this would severely limit the algorithm’s

usability. While it will not be possible to formulate an algorithm which can cope with

every environment, the known limitations should be tested and well formulated.

Real-Time Capabilities The last requirement is the algorithm’s real-time capabil-

ity. Since it is to be used as localization system on a live vehicle, it needs to be able to

compute η while the vehicle is conducting its mission.
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Methodology

2.1 Development Process

One of the aspects which stood at the beginning of this thesis was the idea to do

a stepwise development and validation of the algorithm. This is deemed necessary,

since an attempt of development and implementation of a complex algorithm on noisy

real-world data is not recommended. An additional reason was that during the first

development steps the AUV Dagon (for more information on the vehicle see chapter

3) was not yet available for testing. So the first step in development was to create a

plan for the validation steps:

• Synthetic simulation data

For the first steps of implementation it is crucial to have the best quality of

ground-truth data available. Additionally a great number of specific datasets

for testing are required. This makes a simulated environment yielding synthetic

data the ideal candidate. Realistic rendering tools (such as 3DStudioMAX) can

create adequate scenes with high-quality lighting and camera behavior. Ground-

truth is easily available through knowledge of the selected trajectories and image

properties, the complexity of the data freely selectable. The downside of the

data is obviously the abstractions made by the rendering tool and the inability

to create all aspects of real world data.

• Lab experimental data

For the next steps it is important to migrate from simulated data to real camera
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Figure 2.1: Incremental development process.

data. This adds a lot of small differences which are easily omitted in simulation.

This includes camera distortion, mis-calibration, shadows, exposure and camera

triggering to name a few. Another big step is the usage of underwater camera

data, since most of the aspects named have even more impact in this environment.

The advantage of lab data is that it is acquired in semi-controllable environments,

with the ability to reduce (or specifically select) a number of environmental condi-

tions: external lighting, turbidity, structure of environment, distance to objects.

Ground-truth of camera motion is more complicated but still computable, by the

use of guided systems (gantry crane, external tracking system, SpiderCam).

• Real-world data

At some point the algorithm needs to be tested in its designated environment. No

amount of simulation or lab testing can ever replace this step, since only there

unforeseen conditions, un-modeled parameters or unexpected sources of noise
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Figure 2.2: Vehicle’s body-fixed frame coordinate system.

can be identified. Acquisition of this type of data requires major preparation

and resources, as it requires the use of an outdoor underwater robot, and thus

is sensitive to weather, sea-state, selection of test-site and hardware failure. For

this type of data to be usable, a method to record reference localization data is

required, since the vehicle usually is not directly visible to the operator and thus

its trajectory can be very hard to estimate.

2.2 Validation

2.2.1 Terminology of Underwater Localization

A frame as shown in figure 2.2 is attached to the vehicle’s origin and used as body-fixed

frame. The vehicle’s position and its orientation are expressed in ECEF frame and its

linear and angular velocities are expressed in body-fixed frame. Each measurement of

the pose is accompanied with a covariance, giving a measure of uncertainty. Ideally the

transformation of the world coordinate system to the geographic coordinate system is

known. Since this is not an intrinsic necessity for comparison of underwater localization

techniques and since not all approaches will yield this transformation, for the rest of

this thesis the geographic coordinate system is not used.
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Methods for underwater localization can be categorized in multiple ways - this paper

will use the actor-based categorization. It differentiates between infrastructure-centric

localization and vehicle-centric localization. Infrastructure-centric localization uses an

external localization system, which has to be set-up in the mission area prior to any

further work. Examples for infrastructure localization techniques are beacon systems

like USBL, SBL and LBL as described in sectino 1.2.2.2. Vehicle-centric localization

uses only the sensors built into the vehicle to be localized. These sensors can either

interact with the environment (exterioceptic) or only measure internal parameters (in-

terioceptic). An example for a vehicle localization technique combining both types is

dead-reckoning using an IMU (inertial measurement unit) and a DVL (Doppler velocity

log).

2.2.1.1 Reference Localization

In this work the term reference localization is used as term for a second, “Gold-

Standard” localization technique. The term “ground-truth”, which is often used to

describe such a measurement is believed to be misguiding, since it hides the uncer-

tainty every measurement in the real world is afflicted with. For this reason the term

reference localization is used for all real-world measurements, while ground-truth is re-

served for simulated or synthetic data, where the quality of the reference measurement

is unquestionable.

2.2.2 The Necessity of a Validation Process

A lot of research has been contributed to the field of underwater localization in the past

years. One of the driving reasons for this high interest is the necessity for new algorithms

which can support the multitude of new scenarios for which underwater vehicles are

used. The problem of underwater localization has a high order of complexity since a

number of adverse conditions do apply:

• 6 DOF problem domain

The problem of localization underwater has to be inherently handled in all degrees

of freedom, as an underwater vehicle can (and will) be moving in all these degrees

of freedom. Even special cases of bottom vehicles (crawlers) or surface vehicles

(boats) will be subject to rough terrain or waves respectively. For all vehicles
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navigating in the water column, this is further aggravated by the inability to

keep a position without active control.

• No easy access to reference localization measurements

In contrast to terrestrial applications there is no convenient reference localization

information available. The signals of GPS do not penetrate the water far enough

to be usable underwater (only a few centimeters), and long antennae or surface

buoys are impracticable or even unusable due to currents and long distances from

the surface (e.g. in the case of deep-ocean exploration).

• Reduced communication capabilities

Since water is a very good absorber in the EM-Spectrum, communication using

radio is reduced to very short distances. While the modality of choice for com-

munications is acoustics, its bandwidth and reliability is far inferior to terrestrial

techniques (e.g. Iridium, WiFi).

• High effort for testing

The number of available large controlled-condition testing facilities for underwater

vehicles is severely limited. This makes the usage of the ocean or lakes necessary

for testing, which come with a huge logistic overhead and offer very limited control

over the environmental conditions (e.g. salinity, turbidity, currents). The most

interesting applications for underwater localization take place in the ocean, the

largest biosphere on earth.

While many advances in underwater localization were made, it is hard to compare

different methods. One of the reasons for this is the lack of a suiting terminology for

comparison, another the problem of acquiring reference measurements under realistic

conditions, due to the reasons listed above. As a result it is the author’s believe that

good practice for development of new algorithms includes the following points:

• Comparison with reference measurement

The new localization algorithm (NLA) has to be compared with a reference local-

ization (GSRL) in order to be characterized properly. This reference measurement

should be as good as possible. However the capabilities of the test vehicle and

the specifics of the target environment need to be taken into consideration.
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• In-system validation

Ideally the reference measurement is recorded simultaneously with the NLA mea-

surement, in order to avoid bias in the data. This means that both algorithms

run synchronized on the test vehicle.

• Validation datasets including real-world data

The validation datasets should not only consist of simulation data or controlled-

environment (e.g. test-tank) data. Ideally validation data is also recorded in the

environment the NLA is designed for.

• Definition and description of failure cases

Depending on the sensors of the NLA, failure cases have to be considered. This

may include environmental conditions (turbidity, inhomogeneous medium) as well

as system-related conditions (available memory/processing power, power con-

sumption).

The author is aware that not all of these conditions may be satisfiable for any given cir-

cumstance. Especially the availability of a good reference measurement for real-world

environments is often limited. This is aggravated by the inherent recursiveness of the

validation process: any reference measurement needs to be validated by another ref-

erence measurement, which makes it practically impossible to create a complete chain

of validation. The only possible remedy to solve this problem is deviating from the

necessity of real-world data for validation. For underwater localization this may mean

using reference data from a test-tank with specialized short-range very-high accuracy

localization systems (such as the VICON tracking system with underwater modification

1) or limitation to surface tests in open waters while using GPS as reference. A widely

used practice is the validation using spot-measurements, e.g. using GPS localization

at the start and end points of an underwater run while driving a closed path (39). All

of these practices are non-ideal and provide a sparse validation, but suffice for the ref-

erence measurement validation. The reason for this is that the reference measurement

should use an accomplished localization strategy. Accomplished in this context means

a strategy which has been used by other groups with published success. Combining

the knowledge of feasibility of a given GSRM with the sparse validation of a specific

implementation results in sufficient dependability on the reference measurement.

1http://www.vicon.com/products/viconmx.html
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2.2.3 The Gold-Standard Method for Localization

The gold-standard method for localization (GSRL) of an underwater vehicle is a combi-

nation of infrastructure and vehicle localization systems on the basis of dead-reckoning.

It uses the input from a number of sensors: IMU, DVL, DPS (digital pressure sensor)

and LBL (long base-line beacons). All sensor data is fused by a KF (Kalman filter),

yielding a 6 DOF localization measurement η. The different sensors all provide specific

information for this purpose:

• IMU

The IMU provides the vehicle orientation η2 and translational acceleration η̈1.

This data is high frequency (≈10Hz), but the orientation (especially ψ) prone to

drift and the translational accelerations suffer from random walk.

• DVL

The DVL provides vehicle speed over ground η̇1. This data is medium frequency

(≈10Hz) but dependent on external measurements, so prone to noise and drop-

outs.

• DPS

The DPS provides distance to surface, i.e. the depth of the vehicle z. This data

is medium frequency (≈10Hz) and long-term stable.

• LBL

The LBL provides vehicle position η1 data relative to one of the localization

beacons. This data is low frequency (≈1Hz) and low accuracy but does not

suffer from long-term drift.

The quality of the localization is mostly dependent on data quality form the IMU,

the DVL and the DPS, while the LBL sensor is used to assure long-term stability and

cancel drift. Especially IMU sensors are available in highly different qualities, sizes

and price ranges as well as availability. For example the JHUROV vehicle of the Johns

Hopkins University uses an IMU developed by the US Navy, which is not available for

non-military applications, but has very high levels of accuracy (57).

Most implementations of this localization technique are vehicle specific, there is no

readily available open-source version which can be used out-of-the-box. This results
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in repeated implementation of algorithms and greatly reduces the comparability of

individual vehicle’s performance.

Examples for implementation of GSRL-flavours are the implementation on the

DeapthX-Vehicle (19), where DPS, IMU and DVL sensors are used. The particular

implementation with the vehicle’s sensors yields a divergence rate of 0.5% of distance

traveled, although the method for determining this quantity is not given in their pub-

lished work. The non-stabilized long-term error of 0.5% fits with other publications,

where similar accuracies are reported (8). A GSRL implementation including external

references for long-term stability is described in (62). They use a high-quality DVL

with 1.2MHz combined with a 12 kHz LBL system to achieve a standard deviation of

only 9 cm with an update rate of 4Hz. The LBL provides position measurements every

6 seconds. This shows the effectiveness of the combination of a high-speed local sensor

with a low-speed global sensor.

The implementation of the GSRL used for the work described in this paper follows

a modular approach and is publicly available as open-source software using the ROCK-

Toolkit (50) as middleware. The idea behind this it to enable easy adaptation to other

vehicles or sensor configurations. A good example is the HROV-Project1, in which parts

of this implementation are used, even though the instrumentation of the HROV-vehicle

differs considerably.

2.2.4 Validation Process and Performance Metrics

The steps to a successful validation of a new localization algorithm are:

• Selection and implementation of GSRL suitable for vehicle

• Sparse validation of GSRL implementation

• Implementation of NLA

• Recording of validation data

• Computation of resulting characteristics for NLA

In the following sections this process will be described in detail.

1http://robotik.dfki-bremen.de/de/forschung/projekte/hrov-arch.html
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2.2.4.1 Selection and Implementation of GSRL

The GSRL and its implementation used in this thesis are described in detail in chapter

4.

2.2.4.2 Sparse Validation of GSRL Implementation

The sparse validation of the GSRL implementation is described in detail in chapter 5.

2.2.4.3 Implementation of NLA

The implementation of the NLA is the core of the development and validation process.

The implementation must be able to run side-by-side with the GSRL in order for the

validation to work properly. The NLA and its implementation used in this thesis are

described in detail in chapter 4.

2.2.4.4 Recording of Validation Data

The recording of validation data is described in detail in chapter 5.

2.2.4.5 Performance Metrics

The most important aspect is the computation of the characteristics of the NLA. The

following quantities will be used for this purpose throughout the rest of this work:

The vehicle pose

η = [x, y, z, φ, θ, ψ] (2.1)

in 6 DOFs, consisting of the vehicle position

η1 = [x, y, z] (2.2)

and its Euler orientation

η2 = [φ, θ, ψ] (2.3)

as described in section 2.2.1. The position at a given point in time is denoted by the

use of η1(i) where i = 0 is the initial position and i = n is the final position of an

experiment. The position difference between a frame and its predecessor is defined as

η1Δ(i) = η1(i) − η1(i− 1) (2.4)
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The distance traveled as measured by the algorithm can then be defined as

|η| =
n∑

i=0

|η1Δ(i)| (2.5)

The deviation d is defined as

d = |η1(n)GSRL − η1(n)NLA| (2.6)

and denotes the distance between the estimates of the GSRL and the NLA at the end

of a test run.

A similar quantity is the sparse deviation ds which is defined as

ds = |η1(0)− η1(n)| (2.7)

and denotes the distance between the position estimates of the start- and end of a test

run for closed trajectories.

The in-track deviation dt(i) is defined as

dt(i) = |η1(i)GSRL − η1(i)NLA| (2.8)

with the mean μ

μ =
n∑

i=0

dt(i)n
−1 (2.9)

and the standard deviation σ

σ =

√√√√
n∑

i=0

(dt(i)− μ)2n−1 (2.10)

can be used to judge the error characteristics between two estimated trajectories.

The relative deviation dr

dr =
d

|η| (2.11)

and the sparse relative deviation dr,s

dr,s =
ds
|η| (2.12)

are used for distance-normalized comparisons.

It is important to note that all quantities comparing the GSRL and the NLA have to

be corrected for the GSRL uncertainty. This is necessary, since the GSRL measurement
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has an uncertainty as well, which needs to be taken into account. This has the inherent

disadvantage that a NLA cannot be better than the GSRL in this framework. The

correction for the deviation is simply done by adding the GSRL’s deviation, resulting

in the corrected deviation dc:

dc = |η1(n)GSRL − η1(n)NLA|+ d(GSRL) (2.13)

This yields an upper bound for the NLA’s deviation. It is important to note that the

tested algorithm (NLA) might perform significantly better than the reference algorithm

(GSRL) without this being visible using this quantity. Nevertheless using this more

conservative value, overconfidence into a new algorithm can be prevented.

For the graph-SLAM approach used in this work some additional graph-related

quantifications are of relevance. For the graph G = (V,E) with the nodes V and the

edges E the size of the resulting graph defined as number of nodes |V |. The number

of loop closures in the graph is the number of additional edges beyond a simple linear

graph L = |E| − (|V | − 1). The length of a path p(Vi, Vj) between two arbitrary nodes

i, j can be obtained by a breadth-first search on the graph, yielding |p(Vi, Vj)|. This

is especially interesting for the nodes i = 1, j = n, which represents the length of the

path from start node to the final node. The longest path in the graph is calculated by

a complete breadth-first search from the start node.

2.3 Real-Time Constraints

One of the specific problems of underwater localization is the fact that since the vehicle

is moving freely through the water column, it is usually not possible to pause motion

in order to execute time-consuming computations. This inherently means, that if an

algorithm is to be used on a live vehicle, it has to be real-time capable. This means that

is needs to have a high update rate. A number of factors contribute to an algorithm’s

update rate: sensor rates, processing demand, available processing power, paralleliza-

tion, timing constraints. When designing an algorithm, a target update rate is required

in order to select the participating components respectively. For the purpose of this

work “real-time” means an update rate of approx. 10Hz.
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3

Design of a Versatile AUV for

High Precision Visual Mapping

and Algorithm Evaluation

3.1 Introduction

In this chapter the work on the design, integration and field-testing of an underwater

vehicle for visual mapping is described. The vehicle was specifically designed as a

scientific AUV for visual mapping, incorporating high-end instrumentation and sensors

to allow research in this area with the best technology can offer today. The complete

process of development is described, starting with the decision to build a new AUV,

then the design criteria, application for funding, integration, operation and ending with

the evaluation of the vehicle after two years of operation.

Visual mapping is becoming of increasing interest in the underwater society. A

precise and fast means of creating visual maps has a number of important applications,

e.g. visual inspection of underwater structures, resource exploration or underwater

archeology (45), (63), (23), (28). Besides the algorithms and software needed for such

mapping tasks, there are a number of requirements for the vehicle actually performing

such mappings.
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3.1.1 Decision to Build a New AUV

It is a major decision for a research group to begin the lengthy endeavor of building an

AUV. It is usually only considered, when it becomes apparent, that no other vehicle

suiting the needs for the intended research is available on the market. This may have a

number of reasons e.g. instrumentation, software-access to control/sensors, mass, size,

endurance, depth-rating and export-restrictions. There might also be the issue of cost,

but when the manpower necessary to completely build a new AUV from the scratch is

factored-in this usually will become an argument for buying an existing vehicle.

At the beginning of this thesis the AUV “AVALON” (Aquatic Vehicle for Au-

tonomous Learning, Operation and Navigation, shown in figure 3.1) had already been

built by the author and used for preliminary experiments. Envisioned as a low-cost

(student) research vehicle, its design criteria were much simpler. AVALON consists of

two pressure hulls connected by superstructure, with two thrusters (one diving and one

horizontal) in between. The two driving thrusters are mounted besides the vehicle in

the center area. This concept allows the thrusters to apply their force near the center

of gravity (COG), which results in less disturbances in attitude when diving/moving

horizontally. Two more thrusters were mounted at the rear of the vehicle for diving

and horizontal movement. The maneuverability of AVALON was excellent, the concept

of six thrusters for actuation of five degrees of freedom (DOF) confirmed as benevo-

lent. The other DOF, roll was kept stable by a low COG. This was achieved by a very

simple means: the lower half of each pressure hull is filled with the batteries. Since the

batteries weigh a lot more as the electronics mounted on top of them, the COG is kept

low without the need for additional lead or a keel, and roll movement was limited. A

drawback of using two pressure hulls is the need to connect any electronics between

the hulls with underwater connectors which tends to increase the amount of plugs and

cabling significantly.

Since AVALON had seen more than 100 hours of active operation in a number of

environments (starting in swimming pools indoors, over lakes up to the open ocean)

the flaws and problems of its design were well documented. While some of the graver

flaws could be directly addressed on AVALON, others were too intrinsic or would have

resulted in major modifications:
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Figure 3.1: The AUV “AVALON”.

• Mechanical

AVALON’s mechanical design was very simple, which lead to a number of prob-

lems with maintenance and handling on the long run.

• Control

The vehicle’s thrusters were six Seabotix ROV thrusters with only PWM control

and no sensor feedback, which limited precision control and repeatability.

• Instrumentation

The vehicle was only equipped with most basic sensors. An analogue pressure

sensor, altimeter and AHRS limited navigation capabilities.

• Cameras

AVALON had only two cameras, one observing the sea-floor, the other looking

forwards. Due to the vehicle design the maximally possible stereo baseline was

13 cm, which would have limited depth resolution significantly. Additionally the

cameras were placed behind a large curved dome at the front of the vehicle, which

lead to significant image distortion.

• Handling

The battery only lasted about four hours and the vehicle had to be opened for
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recharge. The length of the vehicle (1.8m) limited its maneuverability in confined

areas.

Other aspects of the vehicle had proven sensible and usable:

• Operating Depth

AVALON was designed for depths up to 150m. This enabled the usage of rela-

tively simple and cheap components while at the same time making the vehicle

fit for all applications in local waters. The low depth rating also directly resulted

in a relatively light vehicle (85 kg) which facilitated handling.

• Software Framework

The ROCK framework used on AVALON was still in early development, but had

proven a good basis on which an autonomous vehicle could operate.

• Control Design

The ability of the vehicle to hover and freely select its forward speed, as well as

being able to move sideways were very helpful in data acquisition for algorithm

development.

• PC-Based architecture

The two control computers were PC-based (Mini-ITX Intel Core2Duo). While not

very power efficient (hotel load: 80W) this enabled the usage of non-specialized

software and fast software development.

One of the major problems was that since the available instrumentation was very

limited, no localization was possible using established methods. While a simple visual

algorithm could be implemented using the bottom camera and an optical-flow approach,

a major problem remained the verification of its correctness. Further, this solution was

based on a monocular camera, and thus suffered from scale ambiguity.

When it became clear that AVALON would not be fit for the purpose of this thesis,

a market analysis was conducted to get an overview of possibilities. Unfortunately, no

system was found, which suited the specific needs (see section 3.2), not even partially.

All systems were either too heavy for operative handling, too expensive or too mildly

instrumented. The ability to access all sensors and directly change vehicle behavior

was also something missing on most commercial vehicles. This lead to the decision
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that a completely new vehicle was necessary. This vehicle would be built on the basis

of AVALON and the experiences gained there. The resulting process will be described

in the following sections.

3.1.2 External Help

The vehicle was designed within the scope of this thesis and the publicly funded CUS-

LAM project. While most of the work on the idea, design, specifications, instrumen-

tation and application has been done by the author, he had help in other areas from

colleagues, especially in areas which surpassed the scope of his skills. For the mechan-

ical design Jens Hilljegerdes created all engineering drawings which were sent to the

manufacturers. He also integrated the tiltable camera head. During the integration

of the vehicle Marius Wirtz helped in the many “small” things: soldering, fixtures,

assembly. The vehicle control software was mostly developed by Christopher Gaudig

who wrote the code for the individual behaviors (e.g. hovering, obstacle avoidance).

Sankaranarayanan Natarajan implemented the parameter identification algorithm for

the mathematical vehicle model as well as the trajectory follower. Leif Christensen

did the FPGA implementation for the thruster control. Patrick Paranhos and Javier

Carrio implemented the Kalman filter for sensor fusion (“pose-estimator”, see section

3.3.8).

3.2 Design Criteria

The design criteria for the new AUV can be roughly separated into mechanical criteria,

describing the dimensions, actuation system and overall appearance, and into the sensor

requirements, dictating the available sensory equipment of the vehicle. Both constraints

will be described in the following two sections.

3.2.1 Mechanical Requirements

There are a number of design criteria which were considered high priority primary

parameters. The vehicle should be small, ideally not exceeding 60 kg for ease of de-

ployment and handling. Diving depth should be at least 150m, in order to retain the

possibility of surveying near-shore continental shelfs. The speed over ground is required

to be freely selectable (in reasonable ranges), in order to test algorithms at different
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speeds. In order to operate within narrow constraints of structures, high maneuverabil-

ity and rate of turn are necessary. By attachment of a fiber-optic cable, the experiments

should be supervizable while keeping the diameter of the cable as low as possible to

reduce the induced movement impedance. Parameters usually of high importance (long

battery life, high speed, low hydrodynamic drag) only are of secondary interest, since

they would interfere with the primary parameters in a negative way, or increase the

cost of the vehicle.

3.2.2 Sensor/Instrument Requirements

One basic problem in development of new navigation and mapping algorithms is mea-

surement of their accurateness and robustness. In order to do so, ideally a ground-

truth measurement should be available to which the new estimate can be compared.

This usually is not the case in underwater environments, since highly precise and fre-

quent absolute position measurements are hard to achieve. This approach aims to use

state-of-the-art sensors and technologies to get the best position measurement possible

with “traditional” methods, meaning a combination of external reference measurements

(LBL, USBL), speed measurements (DVL) and inertial measurements (IMU, FOG).

Since such systems have been widely used in the underwater community, their preci-

sion and performance is well known and documented. These measurements will be used

as gold-standard to compare newly developed, visual algorithms against. Of course,

this means that a complete set of classical navigation instrumentation is required on

the vehicle besides the camera system.

Since the camera system will be the main payload sensor on the system, a number

of requirements exist for this sensor. The camera should be a color stereo camera with

at least 20 cm baseline between the lenses. One of the problems with stereo cameras is

the rigidity of the rig against external deformation - in order to avoid such problems

special care has to be taken to connect the cameras as rigidly as possible. The field of

view (FOV) of the cameras should be as large as possible, in order to maximize image

overlap both between stereo pairs and between consecutive images. The cameras should

be ground tracking, their angle to ground be freely selectable between 0◦ and 45◦. The

cameras should have high physical resolution in order to get high quality visual data as

input for the algorithms. Digital cameras are preferable to their analogue counterparts

to minimize image noise. The achievable frame rates should ideally be video frame rates
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(25Hz), with a lower limit of 15Hz. The usage of cameras equipped with highly sensitive

CCDs has the advantage of reducing the illumination requirements. Using lenses with

a large aperture has the same positive effect, and should be used in combination with

the former. Illumination should be as uniform as possible in the entire field of view.

The last parameter for the camera system is the depth of field of the lenses, which

should be as large as possible in order to avoid image blur.

Processing of high-resolution camera data requires a lot of processing power. Be-

sides a control and guidance computer system a second system is required which solely

handles the image processing tasks. Separation between the two systems is important,

since overload caused by image processing tasks could adversely affect vehicle control,

which is unacceptable. The aim is to get as much processing power into the system

while maintaining power consumption low. Since it has been shown that stereo pro-

cessing can be done on graphics cards (GPUs) very well ((65), (58)) an inclusion of

such a device on the AUV would allow interesting possibilities. The cost in power

consumption however is relatively high for such devices.

3.2.3 Vehicle Concept

The main purpose for the design of the AUV, is to build a multi functional vehicle

in shape, mobility and integrated sensors. The design has also to combine the option

of a streamlined shape with the option to install a stereo vision system that uses a

defined distance between the cameras. The tube shape is a simple as well as effective

design for AUVs. Unfortunately the integration of a stereo vision system into such a

cigar-shaped vehicle is difficult: either the baseline of the stereo system is very small,

or the tube diameter grows very large. This makes this design ineffective. A frame-

based vehicle seems more appropriate for incorporation of a stereo camera. Open frame

based AUVs often include separate water-proof containers which are connected with

under-water connectors. Because of the effort and space of the containers this design is

difficult to install in a small size system with a large number of equipment. Also a frame

construction in the shape of a tube (often realized with additional covers for reduction

of drag) increases the ratio of system volume to usable space, and thus weight, which

is not desirable for this application.

It was decided that a hovering AUV with five active degrees of freedom is needed.

The remaining DOF (roll) is to be passively stable. To reach this the basic design
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Figure 3.2: Parallel setup without peripheral equipment.

of AVALON was taken, but not with the two hulls aligned to form a cigar-shaped

structure, but besides each other in a more catamaran-type configuration (see figure

3.2). This has a number of advantages: the stereo baseline can be greater than the hull

diameter, because it is now only limited by distance of the hulls. The center of gravity

is inside the vehicle, but since there is open water in between the hulls the diving

thrusters can be mounted between the hulls, achieving high effectiveness. Additionally

to the diving thrusters there is space between the hulls to accommodate additional

sensors (e.g. the DVL). The whole vehicle is kept very compact, which reduces its

tendency to pitch or roll. Especially the latter is of high importance, since it is the

passive degree of freedom. The compactness also improves maneuverability, which will

be helpful in confined spaces. A disadvantage is the higher water resistance and thus

reduced endurance. Since these parameters were of secondary nature, this was deemed

acceptable. The basic idea of the two hulls containing the batteries in the lower half,

and the other electronics in the upper half was kept, in order to keep the COG low.

The two hulls should be connected by dry tubes, reducing the amount of underwater

connectors by wiring any connection between the two hulls through these dry tubes.

Instead of mounting the cameras behind acrylic domes it was decided to put the

cameras onto a tilt unit, which can be tilted 180 degrees around the pitch axis. This
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has two advantages: the view port of the cameras can be flat (which facilitates camera

calibration) and made of standard glass (which improves the pressure rating), and the

camera viewing angle can be selected very easily. The price for this setup is a more

complex head design. Similarly to the main hulls the electronics of the head is connected

dryly to the main hull, making the vehicle one big pressure hull. In order to protect

the system from water in case of a leak, the two heads and the two hulls are sealed

with low-pressure sealants from each other.

These thoughts result in the following basic specifications for the AUV:

• Navigation

– LBL/USLB tracking system transponders integrated

– DVL

– IMU

– FOG

– Pressure sensor

– HD Stereo Camera

• Communication

• Fibreoptic cable link

• Telemetry modem

• Dimensions

• 700x600x300 mm outer dimensions

• 85 kg weight in air

• Instruments

• 2 Embedded PC systems

• 1.6 kWh Lithium-Ion Battery @ 29.6V

• approx. 5000 lm worth of light

• 5 brushless thrusters, 2.5 kg bollard thrust @ 150W
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(a) (b)

(c) (d)

Figure 3.3: The AUV Dagon evolving: pressure hull testing (a); basic indoor testing

(b); outdoor testing (c); current state (2013). (d).

3.3 System Description

Mid 2009 the cost for such a vehicle was estimated and a project proposal was drawn

and sent to a funding agency (BMWI, German Ministry of Economics), which granted

funding for the CUSLAM project under the grant No. 03SX290. The CUSLAM project

provided material as well as personal costs. After the project’s kick-off in 2009 the final

work on the design of the vehicle and its integration could start. The result was the

AUV “Dagon” 1, which will be described in this section. An overview of Dagon’s

instrumentation can be seen in table 3.1. All of the required sensors could be integrated

into the system. Dagon’s evolution over the past years is shown in figure 3.3.

1Dagon is not an acronym, but a reference to an aquatic deity from H.P. Lovecraft’s Cthulhu

mythos
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Table 3.1: List of sensors and instruments of the AUV.

Instrument Property Rate Precision Range

XSens MTi AHRS Attitude (R/P/Y) 120Hz
0.5 ◦ (R/P) 1 ◦

(Y)
360 ◦

KVH DSP-3000

single axis FOG
Yaw rate 100Hz 1-6 ◦/h−1 ±375 ◦s−1

Desert Star SSP-1

pressure sensor
Depth 0.25Hz to 16Hz 0.1% RMS 0m to 344m

Desert Star SAM-1

acoustic modem
Telemetry 23 bit s−1 - 250m to 1000m

Desert Star VLT-3

LBL transponder
XYZ position 0.2Hz to 2Hz ±0.15m 2000m

Teledyne RDI

Explorer DVL
Speed over ground 12Hz

±0.007-

0.03m s−1
0.3m to 80m

Micron DST

scanning sonar
Distance 0.5Hza - 2m to 75m

Micron USBL

transponder
Range/Bearingb 0.1Hz to 2Hz ±0.2m, ±3 ◦ 150m to 500m

2 Bowtech

LED3200
Illumination 22 kHz PWM

255 steps

dimmable
-

2 AVT GE1900C

GigE-cameras
Image 0-30 FPS

Full-HD

(1920x1080)
-

1 AVT GC1380HC

GigE-camera
Image 0-30 FPS

HD

(1380x1024)
-

aFor 360 ◦ scan
bRelative to receiver

3.3.1 Pressure Hull

The AUV design consists of two main tubes with equal supports for the rear and

front cap. This construction enables a various number of combinations using different

caps. The tube itself is a welding construction with bonded rings on the ends for the

cap locking device. The material in use is depended on corrosion (ALMg4,5Mn) and

availability (AlMg3). The coating is a red colored hard-coating which gives a much
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(a) (b)

Figure 3.4: Head mechanics with camera and fixture for power electronics (a); Rear caps

and quick fasteners (b).

better control to the fit tolerances to other techniques like anodization. Attached to

the front of the two main hulls is the stereo head. The main setup for the stereo based

system can be seen in figure 3.3(a). For an easy access and for maintenance reasons

the caps are fixed with quick-release clamps.

For the primary stereo vision setup the front cap is equipped with a 180 degree

turnable tilt unit. The two main tubes are connected with side connectors parallel to

make the two front cameras aligned on a turnable horizontal axis. To realize a fixed

position of the two cameras in the offset angle they are connected with a horizontal

tube construction. This tube is also used to fix two of the four LED lamps, so that the

lamps are always aligned with the cameras. On the left and right side there are two

additional LED headlamps in a fixed down position.

Each of the head tilt units is independently driven by a gear motor with a gear

ratio of 1/1014. Combined with a gear ratio of 1/5 installed on the head main axis the

available torque is limited by the gear shaft up to 10Nm. The motor requires 25 s for

a complete 180 degrees tilt. The head mechanic is shown in figure 3.4(a).

3.3.2 Battery

The battery used for Dagon is a lithium-ion battery system. It consists of two indi-

vidual serialized blocks with 14.7V and 50Ah, resulting in a total capacity of about

1.5 kW and an endurance of about 8 h to 10 h. The battery management system su-

pervising charge and discharge of the battery is capable of showing the current rest
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capacity and can be used to determine how much time can be spent before re-charging.

A quick-charge is possible in two hours, although this is only possible when the vehicle

is not being operated at the same time due to temperature limitations. The battery

system has proven very reliable, especially as compared to the battery system used on

Dagon’s predecessor AVALON, which had to be replaced twice already due to damaged

cells.

3.3.3 Data Processing and Communications

The selection of the main processing components for a mobile robot is a critical design

choice. The range of available components is huge, a number of criteria have to be

evaluated for selection. The first criteria is COTS (commercial off the shelf) vs. custom

design. While custom design will always be superior with regards to the specific needs of

the target vehicle, its drawbacks are numerous: increased development time (and thus

overall cost), limited availability, limited experience with system, limited knowledge

of failure behavior. This has led to the decision to go for a COTS-based solution

for the main processing, and only use custom design where it is necessary (e.g. the

electronic fuse, see section 3.3.5). The next criterion is processing power vs. power

consumption. Microcrontroller based solutions have the lowest power consumption (e.g.

RaspberryPI, 5W including peripherals 1), with the drawback that their processing

power is severely limited and the programming can not be done in higher languages.

FPGA (field programmable gate array) based solutions can be very computationally

powerful while requiring reasonable amounts of power (e.g. Xilinx Virtex5 XC5LX330,

23W (12)), but the drawback is the complexity of implementation (usually VHDL) and

re-usability of pre-existig code. Embedded PCs are the next candidate group, which

ranges from Low-Power (e.g. Intel Atom Z530, 2W 2) to high power (e.g. Intel i7-

4770S, 65W 3) processors. The advantage of embedded PCs is their usage of the x86

instruction set, so programming on them is exactly the same as for a desktop PC. With

the wide range of different CPUs available this solution was determined to be the most

1http://www.raspberrypi.org/faq#powerReqs
2http://ark.intel.com/de/products/35463/Intel-Atom-Processor-Z530-512K-Cache-1 60-GHz-533-

MHz-FSB
3http://ark.intel.com/de/products/75124/Intel-Core-i7-4770S-Processor-8M-Cache-up-to-3 90-

GHz
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Figure 3.5: Data and power connections within the vehicle.

reasonable, while the usage of FPGAs was kept in mind as possible co-processor for

the future.

For Dagon two embedded PCs were selected, one located in each pressure hull.

Both PCs have to deal with data aquisition from the sensors, depending on their loca-

tion in the hull as well as communication with the actuators. The right PC is used for

vehicle control and the computation of the reference localization, while the left PC is

executing the visual SLAM. Initially both PC were equipped with LV67B mainboards

by Commell and Intel Core2-Duo P9600 CPUs with 25W TDP (thermal design power)

1. Later the left PC was replaced by a IEI KINO-HM551 and an Intel Core-i7 620M

CPU with 35W TDP 2. This change was necessary to accommodate a GPU (graphics

processing unit) as co-processor as desribed in section 4.2.4.2. Both PCs are equipped

with solid-state hard-drives as as system drives with an additional mechanical hard-

drive for data logging. The left PC has a RAID-0 disk array for storing camera images

coming in at high data rates (up to 120 MB per second). Both PCs are connected over

a Gigabit-Ethernet link, which is also connected to the surface cable/WiFi.

The available data link options are:

1http://ark.intel.com/de/products/37266/Intel-Core2-Duo-Processor-P9600-6M-Cache-2 66-GHz-

1066-MHz-FSB
2http://ark.intel.com/de/products/43560/Intel-Core-i7-620M-Processor-4M-Cache-2 66-GHz
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• 54 MBps WiFi link (surface)

• 1 GBps copper cable (indoor tests)

• 1 GBps fiber-optic cable

• 15 Bps acoustic modem

The WiFi link is only available on the surface and is used for setup and starting of

autonomous missions as well as vehicle recovery after such a mission. The copper cable

has a length of 50m (can be extended to 80m) and is used for indoor testing. The main

communications link is the fiber-optic cable (see section 3.3.4). The acoustic modem

is used for low bandwidth status updates during the submerged phase of autonomous

missions, and can also be used to send a mission abort signal (which makes the vehicle

come back to the surface).

3.3.4 Fiber-Optic Cable

Dagon has a Seacon fiber-optic cable port. This allows the connection of a single

strand amide-reinforced fiber cable, which can be used to monitor the AUV during

missions. While this violates the idea of an autonomous underwater vehicle, effectively

demoting Dagon to a ROV with its own power supply, this option is invaluable. Since

it is impossible to transfer broad-band data through the water-column, without a hard

link the AUV and its behavior can only be observed in retrospect, by analyzing the

recorded data. Debugging like this can be very tedious, especially during the early

development stages, where many of the basic behaviors still have to be tested and

tuned. A traditional copper data cable suffers from low transmission ranges or low

data rates, and heavily impacts vehicle control, since it either is heavy in water, or

made neutrally buoyant with floaters, increasing its diameter and thus drag. With

a diameter of only 1.6mm, neutral buoyancy in fresh water and a tensile strength of

1200N, the fiber used is very slender. Still it can support data rates of full-duplex

Gigabit Ethernet over a distance of 20 km using CWDM technology1.

The 500m of fiber available have been used excessively during field trials. The typ-

ical mode of use was the following: Even though a data line was available all processes

and computations were run on the vehicle PCs. The only processes allowed on surface

1In CWDM the RX and TX data channels operate on different frequencies of light in a single fiber
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PCs were for monitoring purposes (e.g. camera image viewer, behavior inspector). This

ensures a clean transition to fully autonomous modes without cable. During the final

tests it often occurred that Dagon was executing a mission while the operations team

was simply observing to make sure everything was working well. The ability to quickly

modify software or adapt it to a change in the environment has been invaluable.

The downside of the use of a fiber cable is its fragility and its cost. In contrast to

copper cable great care has to be taken to not over-bend it. The cable used was ex-

hibiting a tendency of forming loops, which according to the manufacturer originated in

the manufacturing process and could not be remedied. If a loop was put under strain,

it could tighten to a degree where the data transmission was interrupted. Luckily the

cable was not harmed in any of these occurrences, but this experience will influence

the choice of future cables. A second issue is the cost. The components necessary for

operation (bulkhead connector, cable connector, cable, reel with rotary joint, convert-

ers) do not come cheaply, and were complicated to procure in Europe (e.g. the cable

had to be sent to the connector manufacturer in the US for cable molding).

3.3.5 Electronic Fuse

During the first year Dagon had to be frequently opened because of blown fuses. For

security reasons all components are individually equipped with a one-way fuse. Espe-

cially the fuses of the thruster control boards tended to blow on a regular basis (due to

over-current or jamming). Since opening of the vehicle is problematic, especially during

field-tests, a solution for this was necessary. The DFKI-RIC’s electronics department

created an electronic fuse board. It has five individual power ports, each allowing up

to 36V with 10A. A micro-controller monitors the output ports and deactivates them

using a solid-state-relay if over-current is detected. The permitted current can be se-

lected via a serial link. While this electronic fuse does not offer the same security as

a mechanical fuse, it has proven a very good middle way, and performed without any

problems.

3.3.6 Thrusters

Other than originally planned only five thrusters were built into the vehicle. The sec-

ond lateral thruster was omitted. Its placement had been awkward below the main

housing and initial experiments showed that while it provided extra stability when
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moving sideways, it was not absolutely necessary to have this sixth thruster. The five

thrusters used for Dagon have been developed specifically for this AUV. They consist

of a brushless DC-motor, equipped with hall-sensors in a custom housing. The motor

control electronics are built into the pressure housing as well, reducing the external

cabling significantly: only 5 leads are required, two for DC power and three for CAN

communications. The FPGA-based motor control electronics (called BLDC V1.3, de-

veloped at the DFKI-RIC) used the hall sensor information to accurately commute

the brush-less motor. This allows extremely accurate control of the RPM even at low

speeds (starting at 10 RPM), as opposed to sensor-less approaches, where RPM control

is only possible at higher speeds. As a result the AUV is able to very accurately apply

thrust – important for a hovering vehicle.

The downside of having such sophisticated thrusters was the high number of prob-

lems they were experiencing during the last two years. Since they were not thoroughly

tested before integrated into the vehicle (due to time constraints), many initial quirks

were still present. This resulted in a number of experiments being aborted due to

thruster malfunction. During the outdoor tests in mid-2012, not a single thruster

failed. This is regarded as a tentative signal, that now most of the problems have

been identified and fixed. Still a more thorough testing before integrating them into

an operational vehicle would be recommended for the future.

3.3.7 Vision System

As stated above, the stereo camera system is considered the main sensor system. The

selected cameras, two Prosilica GE1900C Gigabit-Ethernet cameras are extremely so-

phisticated sensor systems. Equipped with a Kodak KAI-2093 1”CCD sensor with

Full-HD resolution (1920x1080 pixels) and a quantum efficiency of more than 30%,

they offer crisp, low noise color images. The camera can record as many as 30 frames

per second at full resolution, which is even beyond video frame-rates. Together with

an Lensagon 8mm 1” lens with an f-number of 1.4, the camera becomes a great instru-

ment to visualize underwater scenery. The lens offers a diagonal FOV of 101◦ in air,

which will translate into roughly 67◦ in water (the system uses a straight view-port).

The selected baseline of the stereo camera system is 30 cm, which results in a stereo

overlap of 92% at three meters viewing distance from the sea-floor. At this distance

the cameras have a single image swath of 4m, which translates to a resolution of 2mm
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per pixel - an excellent value for mapping applications. Together with the powerful

LED-based illumination system this camera system can be considered one of the most

sophisticated setups in AUVs today.

Since the two cameras are to be used as stereo camera system, the timing dur-

ing image acquisition is crucial (since Dagon is a moving vehicle, images captured

at different times do not geometrically obey epipolar geometry). In order to avoid

software-triggering, a hardware triggering mechanism was implemented. For this pur-

pose, the left camera works as master camera, having a freely selectable FPS and

exposure. When starting image acquisition, it changes the electric trigger signal to

“high” state on the right camera’s trigger input, which in turn makes the right camera

expose as well. At the end of the light exposition, the trigger is signal is changed back

to “low” again. This means that whenever the left camera is exposing, the right camera

is exposing as well. Signal run-times have been compensated according to the manu-

facturer’s manual. This process results in precisely timed, equally exposed image pairs.

As an additional benefit, it allows the left camera to operate in automatic exposure

mode (for changing lighting conditions) with the right camera automatically adapting

to the same exposure value.

The two cameras are mounted inside independently rotating tilting units. The

sensors attached to each of the units (absolute encoders and incremental encoders)

were supposed to assure knowledge of the current tilt position, and thus a correction

of the calibration parameters (see section 5.2.3 for details). Unfortunately this did not

work as designed, since the tilting mechanics had too much gear play (2-3◦), making a

re-calibration of the cameras necessary after each change in camera tilt.

3.3.8 Reference Localization System

The AUV is equipped with two absolute position measurement systems: a reverse-

LBL and an USBL. The reverse-LBL allows the system to measure its own position

relative to a grid of four pre-installed transponders in an area of about 500x500m. This

position measurement is used together with the DVL and the AHRS/FOG for ground-

truth measurements as described above. Because of weight restrictions the vehicle LBL

transponder was integrated into the main pressure hull of the AUV as opposed to its

external fixture. Only the transducer and the pressure sensor are mounted in the water

directly. The USBL solution is not meant for usage for vehicle navigation, but in order
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to track the vehicle during autonomous surveys from a boat. The USBL transponder

from Tritech is so small as not to impede the vehicle. Further detail on the reference

localization system and its software implementation is given in chapter 4.1.

3.3.9 Basic Controllers

Dagon has a number of simple controllers, which are essential for most work with the

vehicle. Most basic is the thruster controller. It allows the selection of a RPM for each

thruster, which is then maintained by the electronic control board inside each individual

thruster. The input for this thruster controller can come from a number of sources,

depending on the mission profile. The most basic control path is the completely manual

control, where a joystick controls all thruster movements. The joystick axes are linked

with the thrusters by a simple thruster control matrix.

For additional controllers a simple PID-controller was implemented and parameter-

ized for the specific task. It is used for the following controllers:

• depth/altitude controller

Using input from the pressure sensor (depth control) or the DVL (altitude control)

the vehicle’s position in the heave direction is maintained at the selected position.

• pitch controller

Using the two diving thrusters differentially, the pitch can be actively controlled

in the range of ± 45◦, using the AHRS as sensor.

• heading controller

The vehicle yaw is controlled using the orientation-estimator as input and apply-

ing thrust on the rear thruster to turn the vehicle

3.3.10 Station-Keeping

Station keeping is a very useful behavior, especially during field-testing when an exter-

nal current was present. The underlying controller tries to maintain zero velocity on

the x/y axes as well as the current heading. The DVL is used as input. While this does

not necessarily result in absolute position keeping, it performs rather well. One of the

problems observed during the sea-trials in the Baltic Sea was that since Dagon has

only one thruster for lateral movement, it is sometimes not strong enough for station
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keeping when a cross-current is present. This could be easily remedied by monitoring

the direction of the current, and rotating the vehicle so it can use its surge thrusters

to counter the current. This is still under development.

3.3.11 Trajectory-Follower

In order to survey or map pre-defined areas, a typical AUV application is the automatic

and precise execution of trajectories. A trajectory is defined by a set of vertices creating

the support polygon, which are interpolated by a C2-steady curve (10). The AUV

controller then tries to follow that curve as precisely as possible. For this to work

properly, the curve interpolation parameters have to be selected according to the AUV’s

capabilities with regard to turning radius and degrees of freedom. This is relatively

easy for a hovering AUV like Dagon, since due to the fact that it can freely select its

speed and point-turn, its minimum turning radius is zero. However since this would

potentially produce unwanted behavior, the minimum curve radius at different traveling

speeds was experimentally determined, and can now be used for parameterization of

trajectory interpolation.

The vertices for the support polygon can either be in R
2 or R

3. R
2 vertices are

used when the depth of the vehicle is to be determined by a different controller, e.g.

terrain following or constant depth. R
3 vertices can be used to navigate in known

environments.

The implementation of the trajectory follower uses the input of a pose estimator

(see section 3.3.8) to determine the vehicle’s current position on the trajectory, and the

vehicle motion commands and model together with input from the DVL to determine

the vehicle’s current speed and motion flexibility.

3.4 Operation

Dagon has been used in a number of environments, ranging from the test basin at the

lab, in lakes, the open sea and under ice. A detailed description of the testing environ-

ments is given in chapter 5. These diverse environments each pose different operational

circumstances and limitations, which had to be learned by the operations team. Expe-

riences with different launch/recovery strategies, balancing/buoyancy tuning, external

supervision and in-field maintenance will be given in this section.
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3.4.1 Testing Environments

By mid 2012 the AUV Dagon has accumulated over 500 active hours in the water.

Most of that time was spent in the underwater testbed at the DFKI-RIC, followed by

a lake near the University of Bremen. Additionally two open water field-tests were

conducted in the Baltic Sea, one in Kiel and the second near Rostock. Each of these

diverse testing environments has its unique advantages and limitations. More detail on

the testing environments and the experiments conducted there are given in chapter 5.

3.4.2 Field Testing

Due to the relatively small size of Dagon, launch and recovery proved to be both easy

and challenging. A system of four fixtures (two each hull) where a harness was attached

was used to lift the vehicle. This proved to be a safe system for putting the AUV into

the test tank or launching it from the crane built into DFKI-RIC’s own RIB. For the

launch from the research vessel Gadus during the trials in the Baltic, the nylon rope

harness was exchanged with one made of steel. Due to the high stiffness of this harness

catching the AUV with a hook on Gadus’ crane proved to be very feasible up to the sea

states where Dagon can be operated in. For operation in shallow water environments

like the gravel pit in Bremen, the maintenance sledge is used directly together two

people with rubber trousers to deploy/recover the vehicle.

The main operation mode of Dagon is in an hybrid mode, where the fiber is

attached to view the actual state and sensor output of the control software, even during

run an autonomous mission. The ROCK framework allows for a seamless transition

between direct controlled and autonomous operation. The system is started in the

same way, weather it is tethered or operated via a WiFi link when on the surface

before a full autonomous run. Via the underwater modem link basic commands can be

given to the vehicle and receive status information. A TriTech MicroNav USBL system

can be attached to Dagon giving a rough estimation about direction and distance

during full autonomous operation. During the various field tests it was discovered, that

Dagon could be operated safely in most conditions. The only problem encountered

is the unreliability of the WiFi link due to reflections on a during higher sea states.

Currently it is planned to adopt the dual-mode radio link used on the older AUV

AVALON to get rid of these problems.
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The problem with a control software research vehicle is, that the internal electronics

are changing a lot. Even during tests in the field there are sometimes changes, which is

the source for numerous bugs (e.g. wiring problems). The layout of Dagon was done

in such a way, that most internal parts are accessible for in-field maintenance. Both

pressure hulls can be opened without special tools, the transport ledge is constructed

in such a way, that the hulls open easily. The system is sealed by applying negative

pressure. All tools and spare parts fit within several normal sized boxes, and Dagon

can be transported with all necessary equipment within a van.

3.5 Evaluation

During the past three years the AUV Dagon has been developed, integrated, tested

and used. Even though a lot of work could still be done to improve the vehicle, it can

now be regarded as ready for further experimental use. It has proven its utility and

versatility in a number of different environments and situations, hopefully remaining

in service for a long time.

3.5.1 Future Work

There is a large number of ideas for further work. The following items are of high

interest and will be hopefully implemented in the near future.

Dagon currently has a semi-open-frame hull. In order to improve its performance

with regard to endurance and robustness to currents a streamlined outer hull made from

glass fiber reinforced plastic is being planned. It is supposed to be easily detachable

for maintenance and additionally provide some mechanical protection for the pressure

hull and sensors.
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Algorithm

In this chapter the underlying algorithms are described. It is separated into the de-

scription of the reference localization implementation on Dagon, and the details and

implementation of the SURE-SLAM algorithm.

4.1 Reference Localization Implementation

The GSRL implementation on the AUV Dagon is shown in figure 4.1. At its core is

a Kalman filter (called pose estimator) fusing the sensor data from all available sensor

systems. In order to keep this Kalman filter simple, the orientation estimation is com-

puted separately, fusing the information of a single-axis FOG (Fiber Optic Gyroscope)

for yaw with the data from an AHRS (Attitude Heading Reference System). Due to

cost restrictions a navigation-grade IMU was not feasible for the vehicle. Since strong

magnetic disturbances were expected during operation (especially in the metal-walled

test-tank) the magnetometers of the AHRS are only used once during initialization,

resulting in the yaw portion of the orientation being measured only by integration of

the FOG data during operation. This results in the following inputs: orientation η2

from the orientation estimator, depth z from the DPS, vehicle speeds η̇1 from the DVL

and vehicle position η1 from the LBL.

Due to an error in the LBL module no valid data was recorded during the field tests

described in section 5. This was only discovered in post-processing after the trials.

This means, that for the datasets used in this work only un-stabilized results could

be computed. This results in worse results for the GSRL, but since only relatively
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Figure 4.1: Flow-chart of the GSRL implementation on the AUV Dagon.

short trials were conducted (less than 1 h), this was deemed acceptable. After the

LBL-stabilized trials can be repeated in a future field campaign, this work will be

respectively updated.

4.2 SURE-SLAM Algorithm

The AUV Dagon was built with a new localization algorithm in mind. This algo-

rithm is supposed to replace the DVL and LBL sensors of the GSRL in the long run

with computer-vision-based measurements using a stereo camera system observing the

ground beneath the vehicle (ground relative navigation). This is accomplished by uti-

lization of a SLAM (simultaneous localization and mapping) approach. A flow-chart for

this implementation (called SURE-SLAM, Stereo Underwater Realtime Exploration-

SLAM) is shown in figure 4.2. Note that besides the LBL and DVL all other compo-

nents are used from the GSRL in this case, which is not a necessity for the application

of the presented validation scheme. Further the visual system can be operated com-

pletely alone, with the disadvantage of reduced stability (an experiment for this case is

shown in section 5.2.15). With the nomenclature coined in chapter 2 this will be the
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Figure 4.2: Flow-chart of the NLA implementation on the AUV Dagon.

NLA for the rest of this work so the two terms NLA and SURE- SLAM can be used as

synonyms for the most part. The localization algorithm has three major parts: visual

odometry, SLAM and the Kalman-filter (pose estimator). The visual odometry com-

putes the motion between two camera image pairs (from the stereo camera system) by

extracting and matching of SURF-features (5). The resulting information is of similar

quality as the DVL measurements in the GSRL, since only changes in motion are com-

puted. Its basic principle is shown in figure 4.3, it is described in detail in section 4.2.1.

The SLAM component keeps track of a global feature map and the vehicle’s poses in

form of a graph. It recognizes when the vehicle passes over a patch of ground it already

passed before (loop-closing). As soon as such a loop-close occurs it is integrated into the

graph as additional link, reducing the overall uncertainty (graph-based SLAM (21)).

This way it can greatly reduce drift-induced deviation and increase long-term stability,

similar to the effect of an LBL. The basic idea of this approach is shown in figure 4.4,

it is described in detail in section 4.2.2. The pose estimator for SURE-SLAM is using

67



4. ALGORITHM

Figure 4.3: The main steps in the visual odometry algorithm.

the same implementation as its GSRL counterpart, only with different parameters and

input ports.

4.2.1 Visual Odometry

This section describes the visual odometry component in detail.

4.2.1.1 Pre-Processing

Before the camera images can be used, a number of pre-processing operations have to

be executed. The first of these steps is to assure the two images forming the stereo pair

have been recorded simultaneously. While on Dagon the two cameras are hardware-

triggered simultaneously (see section 3.3.7), it needs to be checked that the two frames

currently transported by ROCK belong to each other. This is simply done by time-

stamp comparison. The next steps are image resizing and de-Bayering. Since the

algorithm does not necessarily operate on the full camera resolution, the images have
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Figure 4.4: The basic idea of a graph-based SLAM approach.

to be resized to the desired resolution (while 1/2 or 1/4 of the original Full-HD resolu-

tion can be selected, all experiments described in this work have been conducted with

1/2 HD-Resolution, 960x540 pixels). Additionally the images have to be de-Bayered,

since the color information from the cameras is encoded in a Bayer-pattern. The last

pre-processing step is image rectification using the known calibration parameters. Rec-

tification (37) assures that all epipolar lines are horizontal and parallel, making stereo

matching faster. It also compensates for image distortions.

4.2.1.2 Feature Extraction

A key step in the visual odometry approach is the extraction of spatially and temporally

stable salient features from the stereo images in each frame. For this purpose Bay’s

SURF (speeded-up robust features) feature detector/descriptor is used (5). Based on
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Lowe’s SIFT (scale invariant feature transform) (38) SURF features combine the ro-

bustness of SIFT features with strongly improved runtime characteristics. The OpenCV

implementation used in this algorithm yields the spatial key-points together with a 128

dimensional descriptor for each key-point. The parameters for the SURF feature ex-

traction are adjusted according to the number of found features in the last image using

a simple proportional controller. This assures a relatively constant number of features

even with changing scene structure or light and works very well. The number of desired

features was selected to be in the order of 400 features for this work. This step results

in two lists of SURF features, pli and pri for the left and right images respectively at

frame number i. The actual implementation of the visual odometry allows a number

of different detectors/descriptors to be selected (see section 4.2.4.2). For the purpose

of this work the SURF descriptor was determined to be the best compromise between

speed and resulting quality. Section 4.2.4.2 describes the performance enhancement by

computation of the feature extraction on a GPU.

4.2.1.3 Projection into 3D-Space

Using the information of the stereo camera calibration the extracted features are

matched between the two stereo images. Non-matched features are dropped, typi-

cally resulting in about 250 matched stereo features per image pair in the experiments.

Including the information of the camera calibration in this step increases robustness,

since it adds an additional constraint to the purely feature-based matching: only two

features on the same epipolar line can be valid features. This criteria can be softened

by allowing some neighborhood of the epipolar line, since in a real application minor

mis-calibration should be tolerable. For this work a neighborhood of 10 pixels was

selected as tolerance in this work. This results in the reduced lists plsi and prsi. Using

the camera calibration again the lists can be combined into a 3D-point-cloud pci by

triangulation. Additionally the mean altitude Amean of pci is calculated and stored for

later usage in loop closing.

4.2.1.4 Image Homography/FM Estimation

The image homography describes the geometric relations between two camera images

of a planar scene (26). Its computation requires information about the projection

of a number of points in the scene (at least 6, as stated in (25)) onto both images,
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Figure 4.5: The relations inside two subsequent image pairs. The extracted features are

shown as blue circles. The stereo correspondences are shown as red lines (only for the

lower pair), which are horizontal since the images are rectified. The green lines show the

inter-frame correspondences (only shown for the left image pair), which are vertical since

the cameras moved in a straight line between the two frames.

meaning that the feature correspondences of these point projections have to be known.

This inter-frame feature matching is a key step in the algorithm. Since in real data

noise is to be expected (either wrong correspondences or non-accurate points among

the images), a probabilistic refinement of the results is advisable and has been used

here (RANSAC-algorithm, see (20)). Once the homography is computed the camera

matrices can be directly recovered (details see (25)). For the purpose of the algorithm

described here the number of points used as input for the computation lies in the order

of 100 points. Formally this means that the point lists plsi and plsi−1 are compared to

compute the homography hi describing the transformation from frame i− 1 to i. After

the computation of the homography all correspondences not obeying its transformation
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are removed from the point lists and treated as outliers. The feature correspondences

between two image pairs are shown in figure 4.5. The homography estimation fails if not

all points in plsi and plsi−1 are images of a planar environment. In this application the

images produced by the cameras of the sea-floor can be compared to aerial photography

images. Since the distance between vehicle and ground is large relative to the elevation

of objects (e.g. stones, plants) on the ground, the resulting images can be handled as if

in a planar environment, so the image homography can be used safely. The problem is

that in reality this assumption can be broken (e.g. large objects, cliffs). Since 3d data

is available (from stereo triangulation) the fundamental matrix (26) can be used in this

case. It is the 3d-equivalent of the image homography and only works in non-planar

environments, solving this problem.

4.2.1.5 ICP Optimization

The ICP algorithm introduced by Besl (7) can be used to align two sets of 3D points of

the same object. It is widely used to align laser-scans made from different perspectives,

e.g. in robot navigation or geometric reconstruction (55). It takes two coarsely aligned

3D point clouds and calculates the 4x4 transformation matrix which minimizes the

distance between neighboring points. This is done iteratively, while usually a threshold

for near point detection is lowered during the process. This means that during this

step the two point clouds pci and pci−1 are processed with the ICP algorithm resulting

the the transformation ti−1
i which transforms from frame i−1 to frame i. Additionally,

the ICP computes the back-projection error which is used as covariance matrix for the

transformation.

Typical for laser-scans no further descriptive information is available for the indi-

vidual points in the cloud. This is different in the data available for the algorithm

described here: each 3D point is associated with a feature descriptor which has already

been matched to the previous frame. Additionally utilizing this information the first

iteration of the ICP can use these correspondences as initial guess instead of just rely-

ing on Euclidean distances. This has the strong advantage that a good initial match

of the two point clouds is established in this phase. The downside is that the feature

descriptor is illumination dependent. This means, that in case of re-visiting of a vista

the same key-point may have a different descriptor - resulting in a poor matching score.

To avoid this the information from the descriptor is only used in the first iteration, all

72



4.2 SURE-SLAM Algorithm

further iterations use the euclidean distance as sole minimization criteria. Not only

can the known feature correspondences be used, but the information from the other

vehicle sensors as well. In order to accomplish this the current estimate of the central

Kalman filter is used as initial transformation estimate for the ICP. Since the Kalman

filter uses the data from the orientation estimator, DPS and control commands, it can

give a complete estimate of Δη.

The ICP optimization can be extended to not only consider the last two point clouds

pci and pci−1, but the complete history of point clouds. For this purpose, a global point

cloud gpci is maintained, which is the combination of all prior point clouds without

duplicate points gpci ⊆ pc1 ⊆ pc2 ⊆ ... ⊆ pci . The idea of this modification is that the

global point cloud gpci may contain points which could be matched with the current

point cloud pci but which is not part of pci−1. This is typically the case when a loop-

close happens. This version of the ICP optimization is called “global” optimization,

as opposed to the “local” version described above. During early experiments with

real data the “global” ICP optimization was dropped, since it did not scale well with

increasing ammounts of data.

4.2.2 SLAM-Backend

The SLAM-backend handles the transformations resulting from the visual odometry

calculation in form of a graph. Each vehicle pose ηi is interpreted as node in a graph,

the edges of the graph being the transformations ti−1
i . The G2O-Framework (General

Graph Optimization, (36)) was used for this work as SLAM-back-end. G2O is designed

as general framework for optimization of nonlinear least squares problems, SLAM and

bundle-adjustment are typical use-cases. Mathematically the SLAM problem is solved

by minimizing the function

F(p) =
∑
i,j

eTij(p)Ωijeij(p)

p∗ = argmin F(p)

(4.1)

The error function

eij(p) = e(pi,pj , zij) (4.2)

measures how well the parameters pi and pj satisfy the constraint zij . In the graph-

SLAM case p is a node of the graph (robot pose) and z is an edge (transformation
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(a) (b)

Figure 4.6: Loop Closing. Brute-force approach with n matching candidates (a). Graph-

based approach with only 3 matching candidates (b).

between two robot poses). Ωij is the information matrix (the inverse of the covariance

matrix computed in the ICP step).

4.2.3 Loop-Close Detection

The task of loop-close detection is to determine if the vehicle reached previously mapped

terrain, and thus can attempt to “close the loop” in the localization graph. This

is the reason why the localization structure is not merely a chained list of pair-wise

linked vehicle poses (as is the case with pure visual odometry) but may consist of

additional dependencies between individual vehicle poses. So formally it is the search

for a transformation tmi from the current frame i to the loop-closing candidate m.

The first question is how to determine loop closes. Since for the visual odometry a

powerful feature descriptor was used (as opposed to faster but simpler point detectors

usually utilized), a lot of data is already available for each node in the graph, namely

the extracted features. In the visual odometry they are only used between consecutive

frames, but since SURF features are size and orientation independent, it is possible

to use them to match non-consecutive frames. It could be shown on real data that

the matching quality is good enough to use this approach even in sparsely textured

terrain (see section 5.2.12). The structure of the visual odometry implementation

allows the same code to be used for this type of loop-close checking as for inter-frame
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computation: the input point lists are simply changed to be plsi and plsm. This

approach is computationally very efficient, since it does not require any features to

be extracted - all features have been previously computed during the visual odometry

processing anyways. If the loop closing is successful, the result is the transformation

tmi . The basic principle is displayed in figure 4.6.

The next question is how to determine which of the previous frames is a candidate

m for loop closing. The simplest and safest way is to always check each new frame

against alls previous frames. This would result in the list of candidates M to have i

members, and thus a very map-size dependent run-time. With calculation times for

one loop-close-detection being in the order of 20ms, even small maps of i = 100 nodes

would already require seconds for such a computation. The main advantage of this

approach is its thoroughness: since M contains all frames, no potential frame can be

missed. This approach is called “brute-force” loop closing and shown in figure 4.6(a).

In order to construct M in such a way that its size remains small but at the same

time ideally all possible candidates for matching are included, the spatial information

of the graph can be taken into account. In order to do this for each node in the graph

the imaged area of the sea-floor is computed using the 3D information from the point

cloud pci:

Wi = 2Ameantan(
1

2
FOV)

FOV is the camera field of view. Now the euclidean distance dij of two graph nodes i

and j is calculated and the virtual visible area of Wi and Wj determined as Wmax =

max(WiΩi,max,WjΩj,max) using the maximum single diagonal element Ωi,max = max(Ωi,nn)

of the information matrices of i and j to increase the visible area. The overlap percent-

age between the two graph nodes is defined as

ε = 1− dij
Wmax

Positive values of ε are considered loop closing candidates. For loop close candidate

detection, initially all nodes are tested for overlap in their portion of surveyed sea-floor.

This is a very cheap computation and has been shown to work in previous work (e.g.

(18), (39)). When the resulting listM is now sorted for the largest overlap, a test for the

first n candidates has a high probability to yield a reasonable loop-close information.

A benefit of this approach is that it is only dependent on the length of the loop and

not on the total number of nodes in the map. While this approach potentially reduces
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computation times to real-time speed this can still be broken. When the loops get large

or the uncertainty is high, i can grow quickly (as was observed in experiments). While

the vehicle trajectory can be adapted to keep the loop length low, the uncertainty can

only be estimated beforehand. There are a number of ideas on how to handle large

candidate lists (see section 6.5.1), but no further implementation on this end was done

in this thesis.

Another problem of graph-based loop-closing is that it does not account for so called

kidnapping. In kidnapping the robot has to re-localize in a partially known map after

being moved to an unknown position in the scene. Mathematically this state can be

described by increasing the uncertainty to infinite, effectively returning to brute-force

loop closing. A remedy for this problem is the maintenance of a global feature list.

This is incrementally built by adding all successfully inter-frame matched features to

a global feature list plg. This list can then be matched against any frame to return a

candidate list of possible frame matches, similar to M . While this process is not as

precise as the graph-based loop closing, it solves the kidnapping problem and works

significantly faster than brute-force loop closing.

4.2.4 Performance and Optimizations

Since the algorithm is supposed to run in real-time on the AUV Dagon, its computa-

tional performance is a key metric for its success. The time required for the individual

steps in the algorithm were computed with most of the data described in chapter 5

during different times of the algorithm’s development. Most of the components were

run-time optimized at some point during the process to improve overall performance.

This process will be described in the following sections.

4.2.4.1 Runtime Analysis

The first version of the visual odometry algorithm was not optimized for real-time

performance. It was a simple single-threaded C++ application. The main focus in

the first implementation was on data quality, not on run-time optimization This route

was taken to avoid optimization of later un-used portions of code. Nevertheless all

algorithms were chosen with the future aim of real time-capability in mind. The test

data for the first runtime analysis was the synthetic data presented in section 5.1.1.

Images were of 640x480 pixel size and loaded from hard-drive instead of captured by
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Table 4.1: Average computation times for the major steps of the un-optimized visual

odometry algorithm, 640x480 input image.

Pre-processing
Feature

extraction

Feature

matching
ICP Loop-closing Overall

10ms 224ms 5ms 37ms 20ms 296ms

camera. They were also already rectified. Table 4.1 shows the computation times on

a 2.67GHz Intel i7 desktop processor. In order to achieve a performance of at least

10 images per second, the maximum overall duration per calculation is allowed to be

100ms, so an optimization of at least a factor 3 was necessary. The most work had

obviously to be done for the feature extraction step.

The effective speed of the image preprocessing operation (undistort, resize) can be

increased significantly by the utilization of a pipelining-architecture, where the images

are automatically pre-processed in a separate process (i.e. a different cpu core) while

the main process is still finishing computation of the last frame. The run-time of the

feature detection and matching is described in detail in the next section 4.2.4.2.

If a successful loop-closure is detected the SLAM-backend needs to optimize the

graph. The run time of the SLAM-backend is dependent on the graph size, the number

of loop-closures present and the algorithm used for the optimization. For all graphs

used in this work n < 5000, small number of loop-closures L < 20 and both used algo-

rithms (Gauss-Newton, Levenberg) the optimization times were below 100ms, making

it unproblematic for real-time operation.

4.2.4.2 GPU Optimizations

The initial implementation used the OpenCV 2.0 SURF implementation (30) for detec-

tion, extraction and matching, which can be improved by utilizing a graphics processing

unit (GPU) for this calculation. Cornelis and Van Gool have created a version of the

SURF descriptor on a GPU which can exceed frame rates of 10 frames per second

(FPS) for images of 640x480 pixels (14). This has the potential of reducing the time

required for computation below the 100ms mark and at the same time offload the

CPU. This lead to a GPU based implementation of first the feature detection and
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Figure 4.7: Performance of SURF extraction on different generation of CPUs and GPUs

applied to differently sized images.

extraction, later the feature matching as well. In order to keep the algorithm ver-

satile, the type of computation is configurable. This allows the algorithm to employ

the existing hardware on a given robot. In order to assure this, the complete feature

detection/extraction/matching was moved into a separate module which is based on

OpenCV 2.3’s image feature framework. Besides the method of computation, it allows

the selection of the used detection method, implementing not only the SURF detector,

but others as well (FAST (52), SIFT (38), MSER (40), STAR (1), Harris (24)). To keep

the interface with the rest of the visual-odometry simple, the used feature extractor

is always SURF, regardless of the selected detector. The GPU implementation of the

feature detector/extractor was tested on a number of different GPUs (see figure 4.7).

The smaller of the two GPUs were integrated into Dagon (initially the GT430 was

installed, which was later replaced by te Quadro2000), while the GTX260 and GTX580

were used for desktop tests. As expected the performance is only dependent on image
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Figure 4.8: Processing pipeline for visual odometry.

area, making this a very sensitive choice. The benefit of using the GPU implementation

can be easily see when comparing the extraction time to the CPU time: on a represen-

tative sample image of the Rostock dataset (see section 5.1.8 for details on the dataset)

with an image area of 0.52 MP (960x540) the CPU required 371ms, while the GPU

only required 150ms (GT430) or 100ms (Quadro2000). See table 4.2 for all values on

the sample dataset.

4.2.4.3 Multi-Core Optimizations

Some portions of the algorithm can be executed in parallel. Since today’s CPU ar-

chitectures usually offer multi-core hardware this is a good source for performance

improvements. In a stereo camera system it is very intuitive to compute the pre-

processing and feature extraction steps in parallel, since up until feature matching they

are completely independent. Figure 4.8 shows the simple parallelization pipeline created

for this purpose. The reason that the frame-sync step (obviously a non-parallelizable

step) happens before the feature extraction but after image preprocessing is simply

that it should happen as soon as possible in the pipeline (to avoid computations on

non-synchronized images), but could no be placed before the image preprocessing due

to data transport reasons of the ROCK framework. The parallelization was done by

creating two separate threads for the individual images, which were then executed in

parallel, utilizing both CPU cores available on the vehicle Dagon. The parallelization

effort can be continued by separating each individual image into sub-images and creat-

ing individual threads for these images as well. For this case the sub-images need some

image overlap to avoid feature-free zones at the boundaries. While Dagon did not

have the CPU cores to test this properly, the respective test was executed on a desktop

PC with 8 cores. Each individual image was divided into four sub-images, resulting in
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Figure 4.9: The location of all detected and stereo-matched features on all left images of

the Rostock test sequence (approx 4.500 images) plotted as greyscale image. Dashed red

line shows the cropping limit (130 pixels).

8 threads in total. The results of of the parallelization efforts are shown in figure 4.7

and in table 4.2.

The last optimization implemented resulted from an analysis of experimental data

from the Rostock-trials (see section 5.1.8 for details). The location of all detected and

stereo-matched features on all left images of one of the test sequences (approx 4.500

images) was plotted as grey-scale image (see figure 4.9). The resulting distribution

shows two distinct artifacts: the first is an empty area on the left border, the second is a

circular area to the left bottom. The first artifact is a result of the limited stereo overlap,

which decreases at low distances to ground. This effect can be used for optimization,

since no feature extraction needs to be done in this area. This “cropping” reduces

the image by 130 pixel columns, reducing the image area by 14%, and thus directly

improving processing time. The second artifact actually was the result of a grease

smear on the viewport of the right camera. This grease resulted in a blurring of the

affected image area, which reduced the number of detected features.
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Table 4.2: Processing speed for feature extraction on a 960x540 stereo image pair on

different hardware with different optimizations.

optimization processing time (ms) speed-up

CPU, none 371

GPU, GT430 150 −60%

GPU, Quadro2000 100 −73%

GPU, GTX580 29 −92%

CPU, cropping 130 334 −10%

CPU, 2 threads 195 −47%

CPU, 8 threads 84 −77%

CPU, 2 threads + cropping 178 −52%

CPU, 8 threads + cropping 79 −79%

4.2.4.4 Memory requirement

In a graph-based SLAM approach all data is contained in the nodes. In this implemen-

tation each node consists of the following data structures:

• Pointer to stereo image pair (recorded onto HDD)

• Two lists of extracted 2d features (≈135 kB)

• List of stereo correspondence indices (≈1 kB)

• 3d point cloud (≈4 kB)

• List of inter-frame correspondence indices (≈1 kB)

• Pointer to previous node

• Transformation from previous node

• Covariance matrix for transformation

The resulting overall node size is ≈150 kB. With Dagon’s current 8GB of memory on

its visual processing PC, this results in up to 3 hours of operation at 5Hz processing
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speed. After this time has elapsed some mechanism for partial storage of the node

information has to be devised.
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Experiments

One of the major tasks during this thesis was the design, preparation and execution

of experiments designed to test the feasibility of the algorithm in diverse environments

and conditions. Over three years, more than 500 hours were spent in the water with

the vehicle, roughly half of it conducting experiments. A total of 3 TB of data was

recorded and evaluated.

5.1 Testing Environments

In this section the different testing environments and their specifics are described. The

individual experiments in these environments are described in section 5.2.

5.1.1 Synthetic Data

The synthetic datasets were created using a state of the art modeling, animation and

rendering program (3dsMAX) providing realistic data and ground-truth position infor-

mation. The scene used as basis for all input data is shown in figure 5.2. In a first step

Figure 5.1: A sequence of images from the test dataset showing one of the u-turns. It

shows 20 frames from the left camera, using every 10th frame.
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Figure 5.2: The scene used to create the synthetic dataset. Note that an additional omni

directional light was added to create this view of the scene.

the impact of different lighting conditions was evaluated and a configuration with four

discrete lights illuminating the scene homogeneously (especially at the border areas)

was chosen. Two datasets were produced: one dataset with no visual noise (from now

on referred to as “plain” dataset) in the images and a second dataset with artificial ma-

rine snow (referred to as “snow” dataset). The marine snow is simulated by five layers

of randomly moving particles of varying size and speed, each layer consisting of 100.000

particles of which approximately 1200 are visible in each image. This closely resembles

real marine snow effects under calm sea conditions. The rendering of the datasets took

about a month on a 2.67 GHz Intel i7 PC. Each dataset consists of 2x3000 images

in the resolution 640x480 pixels taken from two virtual cameras with a field of view

of 60◦ (a short sequence of these images is shown in figure 5.1). The baseline of this

virtual stereo camera set is 32 cm, yielding an approximately 90% image overlap at
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(a) (b)

Figure 5.3: Computer rendering of the space exploration hall at the DFKI RIC (a). View

of the crater with Spider-Cam and Kuka-satellite-simulator (b).

working distances. The virtual cameras and lights were traveling in a survey pattern,

meandering in five consecutive s-shapes over an area of 400x250m, covering a distance

of approximately 4.5 km. The mean distance from the floor was 4m. The resulting

inter-frame overlap was about 96%. On a real vehicle this would reflect image process-

ing rates in comparison to vehicle speed, and thus represents an important practical

factor.

5.1.2 Space Exploration Hall

The space exploration hall is a special laboratory at the DFKI-RIC which was designed

as testing environment for space exploration robots. With a length of 24m, a width of

12m, and a height of 10m is is a large test area for robotic vehicles. All surfaces of

its interior are kept black in order to simulate the emptiness of space. It is equipped

with a number of environments, testing equipment and measurements systems. Its

most prominent feature is the large crater structure occupying most of the central

area. With an area of 105m2 and an inclination of between 25◦ and 45◦ it offers a

tough testing environment for legged-robots. The two systems permanently installed

in the hall are the Spider-Cam, a cable-guided motion platform, and the Kuka-satellite-

simulator (shown in figures 5.3(a) and 5.3(b)). The hall is equipped with a sophisticated

lighting system, able to simulate varying degrees of strong, directional sunlight (as is to

be expected on thin and no atmosphere planets). A Vicon 3D-Tracking system enables

referenced robot experiments.
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Figure 5.4: A view of the DFKI-RIC’s underwater testbed with the glass basin in the

foreground and the black basin at the back.

5.1.3 Black Basin

The black tank is one of the two test basins in the underwater testbed. It is the smaller

of the two (3.4x2.8x2.5 m, 20m3) and has only two small windows. Its purpose is to

allow visibility control by preventing any external light from entering and the ability to

select the turbidity of the water. This was very useful to determine if the illumination

of the vehicle was potent enough and to find the limit of turbidity the visual mapping

algorithm can still cope with.

5.1.4 Glass Tank

The second test basin in the DFKI-RIC’s underwater testbed is the 40m3 glass wall

tank, which is a 5x4x2.5m glass/steel basin. Due to its three large glass sides it is ideal

for basic testing and low-level controller tuning since the vehicle can be observed very

well. Its moderate size allowed even some scientific experiments under very controlled

conditions. The ground is covered with 16mm to 32mm sized gravel, which presents
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(a) (b)

Figure 5.5: Dagon in the University Pool 2010 (a). Camera view of the floor of the

university pool. The camera’s distortion is well visible in the tile pattern (b).

a very good substrate for both the reference localization (especially the DVL) and the

cameras.

5.1.5 University Pool

The university pool is a swimming pool at the University of Bremen. It was kindly

allowed by the University to conduct experiments in this pool in a fixed time-frame.

The pool has a size of 30x17x2.5m, tiled walls/floor, fresh (chlorinated) water and

an underwater illumination system. It was ideally suited for controlled larger-area

experiments with the vehicle, as well as experiments in repetitive environments. Since

the available time-frames were only short, more complex experiments could not be

conducted in this environment. Figure 5.5 shows Dagon in the pool during an early

experiment as well as a sample camera frame of the tiled ground.

5.1.6 Unisee

Near the University of Bremen a quarry pond called “Unisee” (German for university

lake) is conveniently located only 5 minutes of driving distance from the DFKI-RIC.

This lake was an important testing environment for both the vehicle and the algorithms

developed on it. Easy to access all-year and with a number of natural features it was

a major testing ground for preparation for the experiments in the more complex and

demanding environments. A life-saving station at the southern edge allowed the DFKI-

RIC’s boat to be watered and thus supervision of the experiments from above water.
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(a) (b)

Figure 5.6: The lake near the university, called “Unisee”. Satellite view of the lake with

depth profile (a). Dagon surfacing at the end of an experiment in the evening (b).

(a) (b)

Figure 5.7: Deployment of Dagon in the harbor in Kiel, Winter 2011/2012 (a). Night-

time experiment with Dagon visible as bright area at the right border of the photo (b).

The lake is a former gravel pit, which makes its shores very steep. Unfortunately, this

also means that its ground is muddy, reducing visibility to one meter and below most of

the year. Nevertheless the lake was a versatile test environment for gaining operational

handling experience in an outdoor environment, as well as for large-scale experiments

such as the trajectory follower. A satellite image of the lake together with a depth

profile is shown in figure 5.6.

5.1.7 Kiel

As preparation for the tests in the Baltic Sea, which were planned for mid-2012, a

series of tests were conducted in November 2011 in a harbor near Kiel. Originally it
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(a) (b)

Figure 5.8: Team photo of the sea-trials summer 2012 in Rostock, taken on the R/V

Gadus on the last day of the trials (a). The testing environment at the artificial reef

Nienhagen (54◦10.5′N 11◦56, 6′E). To the left the observation tower can be seen, to the

right the research vessel Gadus, which was used as base (b).

was planned to only use the harbor as access to the Baltic Sea, but due to bad weather

and strong wind the experiments were forced to stay inside the harbor. Still a lot of

preparation could be done, as the visibility was better than in the lake, and Dagon

and its operators had to cope with waves, obstacles and bad weather.

5.1.8 Rostock

The final tests were conducted mid-2012 in the Baltic Sea. The artificial reef off the

coast of Nienhagen1 near Rostock was the test environment. The artificial reef is a test

site for biological long-term observation, where 1400 artificial concrete elements were

placed in a 50 000m2 area. For this campaign the RV Gadus was chartered from the

University of Rostock as base vessel, and additionally brought the DFKI-RIC’s own

small RV, the 6m RIB “Polarsternchen” (see figure 5.8(b)).

This test site was the first time Dagon was used in the open sea. In mixed weather

conditions (from sunny to strong rain, calm to 5 Bft), current and waves, the vehicle

performed very well. Water conditions and visibility were optimal, a huge amount of

data was recorded. On the last test day of this two-week campaign, Dagon performed

two fully-autonomous missions, without any cable attached.

1http://www.riff-nienhagen.de
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(a) (b)

Figure 5.9: Experiments at the artificial reef in Rostock, Germany Summer 2012: De-

ployment of the LBL system from a small RBI (a). The vehicle in the water (b).

5.1.8.1 LBL-failure

During the trials in Rostock the LBL system was deployed and its data recorded to-

gether with the other sensors as part of the GSRL system. During data analysis after

the trials it became apparent that due to a defect of the vehicle transponder, most of

the data recorded after day one was faulty. The effect was that in the central GSRL

Kalman-filter the LBL readings were rejected - since they did not contain any useful

data a correct reaction. This was not noted during the trials since the impact of a non-

functional LBL on the GSRL was minor for the relatively short individual experiments.

Further the focus was put on the SURE-SLAM algorithm – after initial LBL-survey

and testing the LBL sensor did not get the attention required. The impact on this

work is a reduction of the GSRL quality. Because the LBL is responsible for long-term

drift compensation, the maximum error of GSRL measurements used here is unbound,

being only dependent on relative measurements by gyroscopes and DVL.

5.2 Description of Individual Experiments

In this section the individual experiments will be described. Each section is named

and has the environment in which the experiment took place in parentheses behind the

name.
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(a) (b)

Figure 5.10: Experiments at the artificial reef in Rostock, Germany Summer 2012: de-

ployment of the vehicle from the support ship (a). Preparation of the vehicle and LBL

system on deck in the left figure (b).

5.2.1 Meander without Crossings (Synthetic)

The overall results on the synthetic datasets were very promising. The absolute error

after traveling 4.5 km lies in the order of 5m (see figure 5.11(b) for a graphical repre-

sentation). Most of this error originates from poor orientation estimation, especially at

the turning points of the trajectory. One reason for this behavior can be found in the

generation of the synthetic dataset: While the translational speed of the vehicle is kept

constant, the rotational speed is not limited. This results in very high rates of turn at

the turning points, and as final consequence in poor estimation. Future datasets will

take care of this effect by limiting rate of turn. This fact will also impact the control of

the real AUV. Unfortunately, the fact that all rotation is captured only by 20 images

(at each turning point) made a variation in image density impossible - the intended

usage of only every 10th image would have resulted in only 3 images used for a 180◦
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(a) (b)

Figure 5.11: Distance error between visual odometry and ground truth for local and

global algorithm variants (a). Comparison between the performance of visual odometry

with and without a global map (b).

rotation - which is not feasible.

Typical for a visual odometry approach is the unbound cumulative error (see figure

5.11(a)). The sparse relative deviation of ds,r = 0.1% still is very low, about 50 times

lower as in (13), (41) and (47). Since they were operating in a real environment, higher

error rates are to be expected, but an improvement of this magnitude is still a good

starting point.

One of the key properties of the algorithm became apparent when comparing the

results of the ’plain’ dataset with the results from the ’snow’ dataset. The noise has

virtually no effect, the accuracy stays coherent in all measured quantities. This behavior

is explained first by the feature detector/descriptor, which rejects small features. The

second explanation is the ICP’s ability to iteratively reject points which do not fit the

overall transformation estimate by decreasing the threshold value for the local search.

The deviation of the start to end position was interpreted as deviation over the

driven distance. The results were a deviation of ds = 4.51m after a traveled distance

of |η| = 4500.0m, resulting in a relative deviation of dr,s = 0.1%. Since a ground-

truth measurement was available, a standard deviation could be computed for the

error between the ground-truth measurement and the visual odometry measurement.

This standard deviation was as low as σ = 3.317m. All measurements were taken for

the “Plain” dataset.
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(a) (b)

Figure 5.12: Geometric relations of two consecutive stereo pairs with features recorded

during the spider-cam trials (a). Reconstructed trajectory of the spider-cam trial with

evaluation of low-quality regions (b).

5.2.2 Spider-Cam (Space Exploration Hall)

One of the early real-world datasets came from a recording of stereo data from the

spider-cam system in the space exploration lab at the DFKI-RIC. The spider-cam

system is a cable-guided platform which can traverse the complete space exploration

lab in all three dimensions while carrying up to 150 kg of payload. For these trials it

was equipped with a stereo camera system facing downwards and guided with a survey

trajectory over the artificial moon crater in the exploration lab. The benefit of this

trial was to receive real-world data before the completion of the AUV Dagon, in a

manner which allowed high-quality reference localization information to be recorded

simultaneously (the spider-cam system has a localization accuracy of 1mm) and with

sparsely structured image data. The results were very promising and showed that the

approach was feasible for real-world data (see figures 5.12(a) and 5.12(b)). The resulting

deviation between the spider-cam measurement and the visual odometry was d = 0.6m,

after a traveled distance of |η| = 50.0m. A relative deviation of dr = 1.2% was

calculated. The standard deviation of the error between the two estimated trajectories

was σ = 0.32m. This first result with real image data, although not yet in underwater

conditions, showed the feasibility of the approach. At the time of the experiment the

SLAM component was not yet available.

One very important problem of the setup became apparent with this experiment:

93



5. EXPERIMENTS

Figure 5.13: Results of camera calibration in the underwater testbed.

Since the crater was very heterogeneously illuminated, the camera (operating with a

fixed exposure value) had regions of under- and over-exposure. The necessity to run the

stereo camera system in auto-exposure mode became clear, which required the scheme

described in section 3.3.7 to be implemented.

5.2.3 Camera Calibration (Glass Tank)

One of the first tasks which needed to be done when moving to real cameras was

camera calibration. For the underwater datasets the stereo camera of Dagon had to

be calibrated. The quality of calibration is of key importance for good results with

the visual system, so it had to be done with care. For the calibration, a chessboard

calibration pattern was glued onto a polyethylene sheet, which was anchored to the

ground of the glass tank. Then Dagon was moved over the calibration pattern until 11

views of the pattern were recorded by both cameras: centered at maximum distance,

centered at working distance, centered at minimum distance, pattern in all four corners

at working distance, centered and tilted by 30◦ in both main image axes at working

distance. This set of 22 images was the input dataset for a calibration according to

Zhang (67), using the OpenCV implementation for stereo calibration. This resulted in

both intrinsic as well as extrinsic calibration parameters for Dagon’s cameras. Due to

a construction error (see section 3.3.7 for details) the calibration had to be repeated

before each major experiment. Theoretically it also had to be repeated when migrating

from fresh to sea water. The changes in salinity affect the refractive index of water and

thus affect the projection of the objects onto the camera chip. The resulting changes

have been experimentally determined to be negligible, allowing the calibration to be
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(a) (b)

Figure 5.14: Measurements with increasing image turbidity (a). Effect of turbidity in a

real environment. The floor in this image is slanted, the approximate image distance in

the lower-right corner is 1.5m while in the upper-left corner it is 3m (b).

conducted in the safe environment of the glass tank instead of the open-water of further

tests. A sample frame from the calibration procedure showing the chessboard in both

images after rectification can be found in figure 5.13.

5.2.4 Turbidity (Black Basin)

Since turbidity is a problem for all vision-based sensor systems, its effect on the algo-

rithm needed to be evaluated. Ideally, a complete set of trials would be conducted in

different turbidity conditions with the vehicle conducting controlled trajectory follow-

ing and evaluation of accuracy as described in section 2.2.4.4. Unfortunately, no test

area where this could have been realized was available for testing. While experiments

were conducted during different degrees of turbidity (see for example figure 5.14), these

tests can only be seen as sparse evaluation of this property. To remedy this, a static

turbidity series was conducted and only the performance of the feature extractor eval-

uated. Since feature extraction is the key step in environment interaction, this should

give an estimate of the impact of turbidity.

At the small test basin in the DFKI-RIC, turbidity measurements can be conducted.

A Seapoint brand turbidity meter measures turbidity in the range of 0-10 FTU (for-

mazin turbidity units (61)). Using the filter pump in closed-circuit mode, clay dust

is added into the basin and distributed by the pump. The amount of clay determines

the level of turbidity. For this experiment, the AUV Dagon was fixed into the basin

with a number of ropes. The tank’s bottom consists of gravel. Three parameters were

95



5. EXPERIMENTS

Table 5.1: Effect of turbidity to feature stability.

Turbidity Distance Light Stable Features Stable Stereo Features

0 2m off 227 183

0 2m on 231 181

0 1m off 215 168

0 1m on 241 204

2.6 2m off 232 192

2.6 2m on 194 177

2.6 1m off 228 165

2.6 1m on 239 186

5.3 2m off 160 112

5.3 2m on 138 99

5.3 1m off 205 160

5.3 1m on 187 156

7.9 2m off 48 39

7.9 2m on 0 0

7.9 1m off 169 135

7.9 1m on 144 110

modulated: distance to ground (2m, 1m), vehicle illumination (on/off) and turbidity

(0-8 FTU, 4 measurements). For all 16 individual measurement points two properties

were measured: the number of stable detected features from a single camera as well as

the stable detected and matched stereo features. A feature was considered stable when

within ten frames there was at most one frame where it was not detected. The cam-

era images with the different levels of turbidity are shown in figure 5.14, the resulting

measurements are summarized in table 5.1.

5.2.5 Repetitive Environment (University Pool, Norway)

One of the challenges for the feature-based localization algorithm is repetitive structure

since distinctive correspondences between features cannot necessarily be established.

The repetitively tiled floor of the university pool was an ideal environment to test the
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Figure 5.15: Camera view of the fish net in Norway.

performance of the algorithm under these conditions (see figure 5.5). A second exper-

iment was conducted on data recorded in a fish-farm in Norway, where Dagon was

surveying a fish net (see figure 5.15). In both experiments the visual-odometry com-

ponent was working as long as the internal navigation hardware was used to stabilize

the measurements (see section 5.2.15 for details). The number of matched features was

lower than in most other experiments, since due to self-similarity a high number of

wrong feature matchings were present in the data. These were removed by the homog-

raphy/fundamental matrix computation. Loop-closing however was impossible under

these conditions. Only the inclusion of additional landmarks in the scene (numbers on

the pool floor for the pool dataset and anchor-lines for the Norway-dataset) resulted in

successful loop-closing.

5.2.6 Sparse Validation of Reference Measurement (Glass Tank)

This section describes the sparse indoor validation of the GSRL. As stated in section

2.2.2 since the GSRL is used as reference localization measurement, it could only be

sparsely validated. To accomplish this, two experiments were conducted: First the

trajectory-follower module was used to drive a rectangular trajectory in the 5x4m test-
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Figure 5.16: Position estimation by the GSRL for the sparse indoors validation dataset.

Ten consecutive squares (2.5x2.5m) with manually enforced start- and end positions. Due

to the confined space of the test-tank, an obstacle-avoidance behavior was active at the

same time, accounting for the offset of squares.

tank, starting at a defined position at the surface. The defined position was assured

by manually holding the vehicle in a corner against the walls. The vehicle speed was

selected to be 0.1m s−1. After ten trajectories were completed, the vehicle was manually

returned to the defined starting position. The deviation of the start to end position

was interpreted as deviation over the driven distance. The results were a deviation of

ds = 0.7554m after a traveled distance of |η| = 106.2m, resulting in a relative deviation

of dr,s = 0.71%. The resulting x/y position as well as the x/y/z position are shown in

figure 5.17.

It needs to be noted that the trajectory follower used in this experiment was comple-

mented by an obstacle-avoidance module, which used the scanning sonar to prevent the
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Figure 5.17: X, Y, and Z components of the position estimation of the GSRL during the

sparse indoors validation dataset.

vehicle from colliding with obstacles. This resulted in a slight offset of the trajectories

as seen in figure 5.16.

5.2.7 Sparse Validation of Reference Measurement (Unisee)

The second experiment was conducted in the Unisee environment with a similar setup,

but with longer trajectories under more realistic circumstances. Again the vehicle’s

start and end position were fixed (holding it against the pier), but this time it performed

one single large rectangle of 100x100m. The vehicle speed was selected to be 0.3m s−1.

The result was a deviation of ds = 2.2049m after a traveled distance of |η| = 542.2m,

resulting in a relative deviation of dr,s = 0.41%. The resulting trajectory and its

manual fixing positions are shown in figure 5.18.

The fact that the second experiment resulted in a better deviation, despite being
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Figure 5.18: Position estimation by the GSRL for the sparse outdoors validation dataset.

One large square (100x100m) with manually enforced start- and end positions.

executed under more realistic conditions is explained by the smaller number of corners

in the driven trajectory. Since the vehicle stops at each corner before it executes the

turn, it experiences more pitch and roll. This increased the accumulated error of the

DVL and thus resulting in worse results.

5.2.8 Indoors Validation (Glass Tank)

The indoors dataset was be used to show the correctness of the validation approach

used in this thesis since two measurements could be used here: the normal comparison

measurement using the GSRL, as well as the manual reference measurement similar to

section 5.2.6. The indoors dataset was recorded in clear water conditions, without any

special lighting conditions, with a distance to the ground of 1.5m and an average speed
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Figure 5.19: Trajectories as estimated by the SURE-SLAM for the indoors validation

dataset.

of 0.1m s−1. Again ten square trajectories were driven with a 2.5x2.5m size. Start- and

stop position were manually defined as before. The resulting trajectory as estimated

by the NLA is shown in figure 5.19. The sparse measurement resulted in a deviation

of ds = 0.7855m, after a traveled distance of |η| = 103.9m. A relative deviation of

dr,s = 0.76% was calculated. These values are very close to their GSRL counterparts

and thus showing that SURE-SLAM is working as designed.

Comparing the estimated trajectories of SURE-SLAM and the GSRL, the position

difference at the end of the trajectory was d = 0.236m, resulting in a relative deviation

of dr = 0.22%. The standard deviation of the error between the two estimated tra-

jectories was σ = 0.081 224 m. The fact that these values are significantly lower than

in the sparse case underlines the necessity of considering the deviation of the reference
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Figure 5.20: X-component of the first loop of the trajectory with standard deviation of

GSRL and NLA of the indoors validation dataset.

localization when computing such quantities.

Since this experiment was conducted in a semi-controlled environment (the glass

basin) it was partially repeatable. While the environment was untouched (water quality,

ground) the exact vehicle trajectory could not be reproduced. Nevertheless, the exper-

iment was repeated twice, Dagon following the same pre-set trajectory. The results

were very close to each other, the values presented above are the values of the worst

run. The other two runs had standard deviations of σ = 0.054 82m and σ = 0.079 38m

respectively. A mosaic image created from the images, poses and correspondences is

shown in figure 5.33.

5.2.9 Dynamic Environment (Kiel)

After most of the experiments were conducted in calm water, the effect of moving water

and moving ground objects on the algorithm’s performance was to be tested. The trials
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Figure 5.21: Estimated trajectory with LBL readings in the Kiel harbor (fall 2011).

in Kiel were the first occasion where such data could be recorded. Since the weather

was rough, there was a lot of current and waves in the water. Due to its shallowness

the harbor had plant growth at the bottom, which moved together with the water.

This can potentially be a problem for the algorithm since it has to determine which of

the image portions belong to the ground (being useful for localization) and which are

motion of plants or ground objects (having to be treated as noise). During the 4-day

trials a number of individual experiments were conducted, most of them discussed in

section 6.1 on failure cases. This series of test was of preparatory nature to gain the

operational experience for the 2012 outdoor test campaign in Rostock.

After the evaluation of the Rostock-trials in fall 2012, the failure of the LBL system

during these trials became clear (for details see section 5.1.8.1). This made the Kiel

trials the only sea-trials with a working LBL system. Unfortunately, no validation

experiments were conducted in Kiel, so no sparse validation data is available for the
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(a) (b)

Figure 5.22: Under-ice trials winter 2011/12. Sample frame of under-ice dataset with

unsuccessful inter-frame correspondences due to non-Lambertian surface (a). The vehicle

surfacing after a successful trajectory (b).

individual experiments (the AUV’s start- and end-location were not manually enforced

or otherwise recorded). Nevertheless, the principle for a LBL-stabilized could be shown.

Similar to the basin experiments square trajectories with an edge lengths of 6m were

driven. The LBL system was deployed at the extreme positions of the pier, covering an

area of 60x80m. The resulting trajectories and LBL readings are shown in figure 5.21.

5.2.10 Under Ice (Unisee)

In Winter 2011/2012 a unique opportunity arose as the test lake froze completely due to

the low temperatures. The Bremen fire-department was kind enough to cut a hole into

the 0.2m thick ice, which could be used to lower the AUV and explore the lake under ice.

A special challenge for the vehicle was the task to return to this hole after the mission

– otherwise it would have been stuck. During this field-test the cameras were tilted

upwards, and the vision algorithm attempted to localize using the ice surface. This

failed with all selected illumination techniques (no vehicle illumination, just ambient

illumination from sun, vehicle illumination together with ambient illumination, vehicle

illumination only at night). The reason for this are the reflective properties of ice.

Ice is a non-Lambertian reflector and changes its visual appearance with the angle of

view. This makes correspondence estimation nearly impossible and thus the algorithm
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Figure 5.23: Trajectories as estimated by the GSRL and SURE-SLAM for the outdoors

validation dataset.

fails to localize the vehicle, making this one of the failure cases. A sample frame of

the under-ice dataset with unsuccessful inter-frame correspondences is shown in figure

5.22.

5.2.11 Outdoors Validation (Rostock)

The outdoors dataset was recorded in open water (Baltic Sea 2012), with moderately

turbid water (≈3 FTU), sunny outdoors lighting conditions, with a distance to the

ground of 2.5m and an average vehicle speed of 0.3m s−1. There was a steady current

of about 0.4m s−1, and about 0.5m of waves. Five 8x8m rectangular trajectories were

driven. The resulting trajectories as estimated by the GSRL and NLA are shown in

figure 5.23. The position difference at the end of the trajectory was d = 0.712m, with a
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driven distance of |η| = 160m, resulting in a relative deviation of dr = 0.45%. The stan-

dard deviation of the error between the two estimated trajectories was σ = 0.152 98m.

The number of nodes in the graph was |V | = 2464. The length of the path from the

start node to the final node was |p(V0, Vn)| = 241, the longest path in the graph had

a length of 438 nodes. The factors of about 10 (respective 5) between these numbers

show the impact of loop closing, especially if the resulting effective deviations are con-

sidered: applying the relative deviation backwards on the reduced length of p(V0, Vn),

the resulting absolute deviation at the end was d′ = 0.04m, since the distance traveled

along that path was only 8.8m in the graph. This is the point where the missing LBL

data would have improved the interpretation of the data, comparing SURE-SLAM to

a drift-compensated GSRL after a 45 minute mission.

5.2.12 Brute-Force Loop-Closing (Rostock)

The aim of the brute-force loop-closing experiment was to determine if the feature-based

approach for loop-close detection was robust to false-positives and wrong-negatives. For

this purpose a special trajectory was driven during the Rostock trials: three squares

with 8m side length, with an offset of half the side length in both the x and y axes. This

resulted in a cascade of three squares shown in figure 5.24. The idea of this trajectory

was to create a number of areas where loop-closing was possible, even with rotated

orientations. The resulting 1500 image pairs were then exhaustively matched with

each other to determine if the algorithm would find loop closings. This required 1.2

million tests and lasted 18 h. A false-positive was defined as the detection of a loop-close

where there was none, and a wrong-negative if a true loop-close was omitted. Initially

the algorithm found a number of false-positives, which could be remedied by increasing

the number of required feature-matches to 8 (theoretically 5 are sufficient, but 8 are the

numerically safer next best category (26)). After this modification, no false-positives

were found. All possible loop-closing positions but one were found, yielding only one

wrong-negative measurement. After investigation this could be remedied as well: The

position which was not detected for loop closing was the intersection of the first and the

last square. Manual analysis of the data showed that while the trajectory should have

overlapped at this point, due to drift it really did not, making a loop-close impossible.

As conclusion for this experiment, the feasibility of the feature-based approach could

be validated on a real-world dataset. The complexity of this task can bee seen by the
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Figure 5.24: The trajectory of the brute-force loop-closing experiment with loop-closure

locations.

two sample image pairs shown in figure 5.25. For a human to determine if the images

contain (possibly rotated) overlap is a very tedious task, since there is a high degree of

self- similarity and very limited global structure in the images.

5.2.13 Long-Term Stability (Glass Tank)

In order to test the long-term stability of the algorithm, an experiment using Dagon’s

station-keeping function was conducted in the glass tank. After initialization and man-

ual enforcement of the starting position in one corner of the tank (similar to section

5.2.6), the vehicle was moved to the center of the tank. There the station-keeping

was activated and the vehicle kept hovering in the same place for 90min. At the end,

the vehicle was again returned to its starting point and the final position was man-
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(a) (b)

Figure 5.25: Visual data from the Rostock datasets. Inter-frame-matching of image-

features (a). Loop-closing match of image features with a time-delay of 30 minutes (b).

ually corrected. Both the reference localization and SURE-SLAM localization were

recorded. Figure 5.26 shows the estimated trajectory. The results were a deviation of

ds = 0.2315m after a traveled distance of |η| = 11.3m, resulting in a relative deviation

of dr = 2.05% measured by the GSRL. The orientation error was 2◦. The SURE-SLAM

measurement resulted in a ds = 0.0172m after a traveled distance of |η| = 5.2m, re-

sulting in a relative deviation of dr = 0.332%. No orientation error was present in

the SURE-SLAM measurement. The shorter |η| measurement for SURE-SLAM stems

from the fact that since during position-keeping constant loop-closures can be obtained,

the maximum length of the graph is very low. For a completely dead-reckoning based

approach (GSRL) there is no distinction between hovering and driving, resulting in an

accumulation of small motion to a longer overall path.

5.2.14 Sparse Environment (Synthetic)

In this experiment the required amount of texture information for stable operation of

the algorithm was to be tested. For this purpose the synthetic dataset was modified

so a varying amount of texture could be used. The visible texture of the floor in the
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Figure 5.26: Trajectory as estimated by the GSRL for the long-term hovering experiment.

After starting in one corner of the glass tank the vehicle was hovering for 90min in the

center, and then returned to the initial position.

synthetic dataset is a combination of the roughness of the bottom mesh (its “rugged-

ness”) and the detail of its diffuse texture. Together with the vehicles lights, a three

dimensional structure and resulting texture is observed by the cameras. The roughness

of the surface is not directly modeled as displacement on the mesh level, since experi-

ments with such displacement required the mesh resolution to be too fine for reasonable

rendering times. Instead, a parametric texture is used on the “bump”-channel of the

used material, resulting in a per-pixel z-displacement of the surface. Unfortunately,

the resulting absolute z-displacement is not directly measurable. The textures used for

both the bump map and the diffuse map are based on fractals in order to provide easy

parameterization and assured non-repetivity. For both textures three different param-

eter sets were used to create a total of nine scenes for evaluation. In all nine scenes the

same trajectory for the virtual AUV was rendered, resulting in 250 stereo pairs. The
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Figure 5.27: A combination of the nine synthetic scenes used for testing in a variably

sparse environment. The vehicle trajectory is shown in red.

trajectory was a square of 5m edge length with overlap near the start/end position in

order to evaluate loop closing capability. A combined picture of all nine scenes is shown

in figure 5.27.

Two tests were conducted on these datasets: performance of visual odometry and

loop closing. The results are summarized in table 5.2. While visual odometry works

in all but the low ruggedness/low texture and low ruggedness/medium texture, loop

closing shows a more diverse picture: While it worked in all high-texture cases, it

only worked well in the high ruggedness/medium texture case, did only barely work

in the medium ruggedness/medium texture and medium ruggedness/high texture case

(with only one resp. two detected loop closures) and did not work in the medium

ruggedness/medium texture case. Two reconstructed trajectories are shown in figure
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(a) (b)

Figure 5.28: Reconstructed trajectories from the sparse synthetic datasets. Complete set

of loop closures in the low ruggedness/high texture dataset (a). No detected loop closures

but working visual odometry in the medium ruggedness/medium texture dataset (b).

5.28.

5.2.15 Impact of Internal Navigation Hardware on NLA quality (Glass

Basin)

As described in section 4, the usage of intrinsic vehicle sensors (INH - internal navigation

sensors) is not a necessity for the algorithm’s operation. If this sensor data is available,

it can improve the robustness of the SURE-SLAM significantly. The usage of INH can

counter three problems that may arise with a purely-vision solution:

• Camera calibration issues

The visual algorithm relies on intrinsic and extrinsic camera calibration. If the

calibration is broken, a direct effect can be seen on data quality. Since the vehicle

is operating in real environments, slight changes in the calibration happen quickly

(e.g. mis-alignment of the rotational component between the two cameras).

• Fast rotations

Rotations can induce significant angular motion of features in the camera images.
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Table 5.2: Results of the sparse environment experiments. The first value in each cell is

the feasibility of the terrain for visual odometry, the second value the number of detected

loop closures.

low ruggedness medium ruggedness high ruggedness

low texture no/0 yes/1 yes/2

medium texture no/0 yes/0 yes/2

high texture yes/89 yes/67 yes/41

This makes correspondence detection harder and reduces the resulting measure-

ment quality.

• Limited depth resolution

The resolution of the depth perception (z component of η1) is significantly lower

than the x and y components. As stated in section 3.3.7 at 3m operating distance

the cameras have a pixel resolution of 2mm or 4mm for the reduced resolution

used in online processing. With a stereo baseline of 30 cm the depth resolution

is only 3.8 cm and thus an order of magnitude worse. This directly results in a

reduced reconstruction quality of the z component.

The experimental setup was similar to the sparse indoor validation described in sec-

tion 5.2.6. The vehicle was driving 10 complete rounds, while the NLA measurement

was computed with and without INH aiding. The speed of the turning behavior was

doubled in the trajectory follower, and the camera calibration artificially corrupted by

rotating the left camera head slightly. The resulting estimated trajectories are shown

in figures 5.29,5.30. It can clearly be seen that the small errors induced at the corners

of the trajectory result in an overall orientation drift of more than 45◦ after 10 rounds,

significantly reducing the chance for graph-based loop-closing. This effect was artifi-

cially exaggerated by corrupting camera calibration and increasing vehicle speed in this

experiment. It can be expected that during carefully planned operation the penalty on

accuracy would be less severe.
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Figure 5.29: Impact of INH (DPS, AHRS and FOG) on NLA quality with corrupted

camera calibration and increased vehicle speed. INH de-activated, visual odometry only.

5.2.16 SLAM vs. Visual Odometry (Unisee)

In this exeriment the impact of SLAM in comparison with visual odometry was to be

examined. For this purpose a similar setup as in section 5.2.7 was used, and a 8x8m

trajectory performed at the steep shore of the lake. Instead of running the NLA and

GSRL in parallel, the visual odometry and the SURE-SLAM algorithms were running

in competition this time, and their sparse deviations were compared afterwards. The

sparse deviation difference between the two measurements was 0.808 847m, the result-

ing 3d plot is shown in figure 5.31. The gap in the visual odometry only measurement

is well visible, since the visual odometry was run without intrinsic vehicle sensors its

z-component error was significant. Loop closing in the SURE-SLAM measurement

remedies this problem by optimization of the entire graph and the resulting correction

of the z-component error.
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Figure 5.30: Impact of INH (DPS, AHRS and FOG) on NLA quality with corrupted

camera calibration and increased vehicle speed. IHN activated, orientation drift compen-

sated.

5.2.17 Sherpa (Space Exploration Hall)

The algorithm was not only tested on underwater vehicles, but on land-based vehicles

as well. The most prominent among them was the robot “Sherpa”, a four-legged

walking/rolling robot developed for space-exploration in the RimRes1 project. The

robot is equipped with a stereo camera system which can be swiveled to face to the

floor (see figure 5.32(a)). In order to test the feasibility of the algorithm in this different

scenario, a number of experiments were conducted. While due to time constraints no

complete analysis could be made, it could be validated that the visual odometry portion

of the algorithm was working fine (see figure 5.32(b)).

A special problem in this scenario was the presence of a moving shadow induced

1http://robotik.dfki-bremen.de/de/forschung/projekte/rimres.html
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Figure 5.31: Impact of loop closing on trajectory: only visual odometry has a large gap

in the trajectory, the SLAM trajectory has closed that gap by loop closing.

by the robot. This resulted from a static external light source (representing the sun)

and a moving robot. The effect on the algorithm was a non-uniform illumination of the

images, and thus a resulting omission of features in the less-illuminated regions. This

can be remedied by methods such as histogram equalization, which have to be included

in the pre-processing-step.

5.2.18 Mosaicking (Glass Basin)

One of the shortcomings of the SURE-SLAM algorithm is its failure to intrinsically

create human-readable maps as output. As a graph-based SLAM approach all map

data is located in the graph nodes. This is perfectly suitable as map for the robot,
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(a) (b)

Figure 5.32: The Sherpa robot with its stereo camera system surveying the ground (a).

Geometric relations of two consecutive stereo pairs with features recorded by the Sherpa

robot (b).

which uses it for localization and modifies it according to new readings (e.g. loop-

closing). While it is possible to use the graph-based map as basis for a human-readable

map (e.g. a mosaic or a 3d reconstruction), this requires a lot of additional work for

high-quality results. The PhD-thesis by Johnson-Roberson (31) (more details on it

were given in section 1.2.2.3) shows exactly such an export component. Nevertheless,

as proof-of-concept a mosaicking module was implemented for a simple 2d environment

case. Here the ground is treated as planar, reducing the problem to an estimation of

homographies and especially the infinite homography of all images (42). An example

mosaic of the glass basin testing environment is shown in figure 5.33.
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Figure 5.33: Mosaic created from images and correspondences of the glass basin environ-

ment.
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Conclusion

A summary of the results is given in table 6.1. The results are discussed in detail in

the following sections.

6.1 Description of Failure Cases

There are a number of circumstances where the described visual-SLAM based NLA

fails. It is important to keep the operational conditions within these parameters if

SURE-SLAM is to be used as primary localization and navigation solution:

• Distance to ground

It is a necessity for the visual system to yield usable results that the ground is

visible and within the triangulation range of the stereo camera system. The opti-

mal operation conditions are within 2m to 5m stand-off distance to the ground

(for 30 cm stereo baseline), with operation still possible up to 1.2m to 7.5m. Fur-

ther reduced stand-off distance results in too little stereo overlap, while greater

distance reduces depth resolution, both resulting in poor localization results or

even drop-outs.

• Turbidity

Water turbidity acts as an image blurring agent and results in reduced perfor-

mance of the feature extractor. The system has been tested at a stand-off distance

of 2m with a turbidity range of 0-10 FTU. Turbidity greater than 7 FTU resulted

in decreased performance or complete drop-out.
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Table 6.1: Performance results

experiment |η| dr,s dr σ

sparse validation GSRL indoors 106.2m 0.71% N/A N/A

sparse validation GSRL outdoors 542.2m 0.41% N/A N/A

sparse long-term stability GSRL 11.3m 2.05% N/A N/A

sparse long-term stability SURE-SLAM 5.2m 0.332% N/A N/A

synthetic dataset SURE-SLAM 4500m 0.1% 0.1% 3.317m

validation SURE-SLAM indoors 103.9m 0.76% 0.22% 0.081 224 m

validation SURE-SLAM outdoors 160.0m N/A 0.45% 0.152 98 m

spider-cam trajectory 50.0m N/A 1.2% 0.32m

• Image overlap

The algorithm requires an image overlap of at least 35%.

• Motion blur

Since motion blur greatly reduces the matching effectiveness of the feature detec-

tor, it has to be avoided by selection of appropriate illumination, exposure times

and gain settings of the cameras.

• Repetitive structure

Overly repetitive structures lead to failure of the loop-closing capability of the

algorithm. The two test cases for this were a swimming pool floor (tiled in two

colors) and the net of a fish-farm in Norway. Both resulted in good results for

local navigation, but loop-closing was limited to areas with additional structure

(e.g. numbers on ground in the pool or anchor lines at the net).

• Non-Lambertian surfaces

The algorithm operates with the expectation of mainly diffusely reflecting sur-

faces (Lambertian scatterers). Specular reflecting surfaces such as ice change in

appearance independently of their relief (height towards camera), which results

in poor performance of feature matching.

• Overly dynamic ground

The algorithm will compute the motion relative to the motion of the ground. If
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the ground is covered with dynamic structures (such as sea-grass) which move

independently from the vehicle, the algorithm will report the more significant

motion, i.e. if more than 50% of the detected feature points are on moving sea-

grass, the motion relative to the sea-grass will be computed. This is a direct

effect of the RANSAC-filter used for the FM/homography filtering (for details

see section 4.2.1.4).

6.2 Resulting Characteristics for GSRL

As conclusion of the two validation experiments conducted, the upper bound for the

GSRL relative deviation value is dr(GSRL) = 0.75%. This value lies in the expected

range for the DVL/AHRS combination as described above, and will be used for the

remainder of this work.

It needs to be noted that the GSRL deviation is a composite value, since it combines

position deviation and rotational deviation. The drift of the orientation estimation

and the drift of the accumulated speed-over-ground measurements by the DVL both

contribute to the final deviation. In order to estimate how much of the drift stems from

orientation drift, the performance of the orientation estimator was evaluated separately.

Using a long-term test where the vehicle was sitting outside of the water on a table,

the angular random walk was recorded using the Allen-variance. A value of 3◦h−1 was

measured. Since this measurement was taken with no roll and pitch variation (which

increase the error since only a single-axis FOG is used), the upper bound for random

walk error in the orientation estimator was selected as 6◦h−1.

6.3 Resulting Characteristics for NLA

The resulting corrected deviations for the SURE-SLAM are dc = 1.033m for the in-

doors dataset and dc = 1.912m for the outdoors dataset after a traveled distance

of |η| = 106m and |η| = 160m respectively, with corrected relative deviations of

dc,r = 0.97% and dc,r = 1.2%. These results lie in the expected range considering

that no external reference was used in the measurements of the GSRL. They represent

the upper bounds for the expected error of the SURE-SLAM as validated with the

GSRL.
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Table 6.2: Comparison between the SURE-SLAM and the GSRL. All values are upper

limits/upper bounds.

SURE-SLAM GSRL

relative deviation 1.2% 0.75%

update frequency 8Hz 12Hz

robustness against noise low low

robustness against envi-

ronmental conditions

medium (turbidity,

distance)

medium (layering,

structure)

computational complexity high low

impact on vehicle instru-

mentation

cameras, light DVL, LBL

versatility good good

6.4 Comparison Between GSRL and NLA

As a result of all the experiments it can be summarized that SURE-SLAM performed

well (see table 6.2). While its relative deviation is higher than of the GSRL, it is

only slightly higher. The same can be said for its update frequency, which should be

easily improvable with the advance of computation power on embedded systems. Most

important is the robustness against environmental conditions. Here the strengths and

weaknesses seem to be highly disjunct, showing the opportunity of combining both

methods into an even better system (see section 6.5.1).

6.5 Future Work

This thesis has created a solid foundation for future work on underwater vehicle local-

ization. A number of ideas for future work on this topic can already be mentioned. They

can be separated into work with the algorithm and work with the vehicle Dagon. As

a new location for larger-scale controlled-environment experiments the new underwater

exploration hall will be available from the beginning of 2014. With its size of 23x19x8m

it allows significantly more space for testing. An impression of the exploration hall is

given in figure 6.1.
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(a) (b)

Figure 6.1: Topside view of the new exploration basin (a). View through the lower

viewport into the basin (b).

6.5.1 Future of the SURE-SLAM Algorithm

Currently the SURE-SLAM algorithm is designed as standalone-localization solution

for an underwater vehicle. If other modalities are available on a given vehicle, the

data from these sensors can still be used to improve the overall localization quality.

This could either be done in a post-processing filter, taking the estimates from all

localization algorithms and fusing them, or more closely coupled. In the latter case

techniques similar to the VAN approach by Eustice described in section 1.2.2.3 could

be used. In the case of Dagon for example instead of using GSRL and SURE-SLAM

in parallel competitively, they could work together to remedy their specific problems

as summarized in table 6.2.

A limitation of the algorithm is its requirement for a stereo camera configuration

which has its baseline perpendicular to the main motion axis. This combined with rea-

sonable baseline lengths (30 cm on Dagon) makes the integration into typical torpedo-

shaped AUVs complicated. One of the ideas to remedy this, is the usage of three

calibrated cameras: two in the required stereo configuration with a small baseline (e.g.

10 cm) and a third camera perpendicular to this baseline with the originally required

baseline. This should yield similar results with only slight modifications of the algo-

rithm.

Both ideas will be put to test in the “Europa-Explorer” project, funded by the

German Federal Ministry of Economics and Technology (BMWi). The project Europa-
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Figure 6.2: Schematic overview of a possible mission scenario for the Europa-Explorer

project. 0) ice-drill penetrated the ice-shield. 1) AUV has been released from the pay-

load compartment. 2) AUV descends to ocean floor. 3) exploration using cameras/sonar

and internal sensors. 4) ascend to the ice/water boundary. 5) return to ice-drill (using

autonomous localization buoys) and docking for energy/data exchange.

Explorer is a pilot survey for future missions to Jupiter’s moon Europa. It focuses on the

aspect of navigation of robotic systems on, and especially under the ice-shield of Europa.

Below the surface an ocean comprised of liquid water is expected. After penetration of

the ice-shield an exploration can be conducted. A possible mission scenario is drafted,

which covers all aspects of an exploration from the time of landing until the transmission

of the survey results (see figure 6.2). For this purpose a very small diameter vehicle is

needed (around 20 cm) in order to fit through an autonomously drilled hole in the ice-

shield. The navigation system of the vehicle will include the SURE-SLAM algorithm

with the modifications mentioned above for ground-relative localization while surveying

the ocean floor (27).

Finally the experiments including LBL measurements have to be done. As soon
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as the device is repaired and was tested again in the university lake (or the new test

basin), during the next scheduled outdoor mission (summer 2014 in Italy), the respec-

tive experiments will be executed.

6.5.2 Extensions of the SURE-SLAM Algorithm

During this work a number of ideas for extensions of the SURE-SLAM algorithm were

collected an will be shortly presented in this section.

FPGA for Feature extraction Using a GPU as co-processor was only second choice

when designing the vehicle and the algorithm. The ideal device for the extraction of

features on a mobile robot is an FPGA, as was already stated in section 3.3.3. Since by

now implementations of feature extraction on FPGAs became available (e.g. (59)), it

is only a logical step to utilize them, making the vehicle benefit from a lower-powered

co-processor and maybe even faster processing.

Loop-Closing Improvement In contrast to particle-filter-based or EKF-based SLAM

approaches, graph-SLAM approaches have no problem with so called “delayed states”

(29). The process of loop close integration into the pose graph is de-coupled from the

data acquisition. This means if at any given time the available processing power does

not permit complete evaluation of all loop closing candidates (see 4.2.3), this work can

be delayed to a time where more processing power is available. During non-loop-closing

operation (i.e. in areas where no loop closing is necessary or possible) only 50% of the

processing power available is used. During loop-closings, the required processing power

can jump to 500%. The exceeding 400% can now be delayed and distributed to be

executed in one of the non-loop-closing phases. This way, all information can be used

without the vehicle having to wait at loop-closing events.

Another idea for loop-closing was to use multi-threading similar to the way it was

used for feature extraction (see section 4.2.4.3). This has the prospect of boosting

the number of loop-closures which can be processed significantly, especially when the

vehicle PC is upgraded to the latest 4-core 8-thread mobile processors.

Konolige (35) introduced the idea of skeleton frames. Faced with the problem

of large graphs in graph-SLAM, his idea was to extract a skeleton graph from the

complete graph which only contains the nodes necessary to keep the graph together
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(hence skeleton frames). Loop closing is then only applied on the skeleton graph,

and since its relation to the complete graph is known, can be back-propagated. The

feasibility of this approach for the SURE-SLAM needs to be studied.

Long-Term Loop-Closing One of the questions regarding long-term feasibility of

the algorithm was, if it could recognize areas it had previously visited if not only

minutes/hours have passed but days or weeks. This “long-term loop-closing” should

work as long as the environment did not change too severely. In order to put this

to the test, the following experiment was planned for the Unisee environment: The

vehicle was moving from a defined starting point at the pier to a survey location, doing

a small-scale survey, and returning to the pier. Two weeks later the same experiment

was to be conducted, and the data from the first experiment given to the algorithm as

prior map. This way, ideally both a new map and its geometric relation to the old map

should be computed during the mission. Due to problems with Dagon’s thrusters only

the first half of the experiment could be conducted during this thesis, thus it has to be

repeated in the future.

Active Navigation, Exploration Currently the SURE-SLAM algorithm is only

used passively: it does not actively change the vehicle behavior, but only provides the

navigation with localization and motion data. There are a number of ways to improve

navigation by using further information from the algorithm: For example a warning

can be sent to the navigation component if localization quality is deteriorating (e.g.

due to increased turbidity) in order for the navigation to change direction to avoid loss

of localization. Such behaviors can be summarized as “exploration feature”, and there

is already work going into this direction (66), (54).

Long-Term Map Management As stated in section 4.2.4.4, currently the SURE-

SLAM algorithm is not fit for long-term operation due to memory restrictions. There

are a number of approaches to remedy this, all concerning detection of sub-maps, which

then can be handled independently (i.e. stored on disk) and then joined (3). For graph-

SLAM approaches this is relatively straightforward, especially if the trajectory to be

executed is known beforehand.
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6.5.3 Future of the AUV Dagon

The vehicleDagon will continue to be used as experimentation platform for localization

algorithms. Since it can now be seen as DFKI-RIC’s best equipped vehicle with a

completely functional localization suite in two modalities, it is the ideal platform for

further development of algorithms in the underwater domain. In the near future, it

will be used as main vehicle in the Europa-Explorer project mentioned above, until the

exploration vehicle is finished and operational. After this, it will be used in the project

“Trans-TerrA” 1, which aims to transfer space technologies to terrestrial applications.

One of the application will include a docking system for underwater vehicles (based

on works like (44)), and Dagon will be the test and carrier vehicle for this purpose.

Preliminary experiments with a prototype were already conducted (64), laying the

ground-work for extension and improvements.

1http://robotik.dfki-bremen.de/de/forschung/projekte/transterra.html

127



6. CONCLUSION

128



References

[1] Motilal Agrawal, Kurt Konolige, and M.R. Blas.

Censure: Center surround extremas for realtime

feature detection and matching. Computer Vi-

sionECCV 2008, pages 102–115, 2008.

[2] Josep Aulinas, Marc Carreras, Xavier Llado,

Joaquim Salvi, Rafael Garcia, Ricard Prados,

and Yvan R. Petillot. Feature extraction for un-

derwater visual SLAM. OCEANS 2011 IEEE -

Spain, pages 1–7, June 2011.

[3] Josep Aulinas, CS. Lee, Joaquim Salvi, and

Yvan R. Petillot. Submapping SLAM based

on acoustic data from a 6-DOF AUV. In 8th

ifac conference on control applications in ma-

rine systems, number 1988, 2010.

[4] Josep Aulinas, Yvan R. Petillot, and X. Lladó.
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[36] Rainer Kümmerle and G. Grisetti. g2o: A gen-

eral framework for graph optimization. In IEEE

International Conference on Robotics and Au-

tomation (ICRA), 2011.

130



REFERENCES

[37] Charles Loop and Zhengyou Zhang. Comput-

ing rectifying homographies for stereo vision.

In Computer Vision and Pattern Recognition,

1999. IEEE Computer Society Conference on.,

pages 125–131, 1999.

[38] D. Lowe. Distinctive image features from scale-

invariant keypoints. International Journal of

Computer Vision, vol:60no2pp91–110, 2004.

[39] Ian Mahon, Stefan Williams, Oscar Pizarro,

and M. Johnson-Roberson. Efficient View-Based

SLAM Using Visual Loop Closures. IEEE

Transactions on Robotics, 24(5):1002–1014, Oc-

tober 2008.

[40] J. Matas. Robust wide-baseline stereo frommax-

imally stable extremal regions. Image and Vi-

sion Computing, 22(10):761–767, 2004.

[41] A. Milella and Roland Siegwart. Stereo-based

ego-motion estimation using pixel tracking and

iterative closest point. In IEEE International

Conference on Computer Vision Systems, 2006.

[42] L.G.B. Mirisola and J.M.M. Dias. Exploiting in-

ertial sensing in visionbased mapping and navi-

gation. Technical report, 2007.

[43] F.A. Moreno, J.L. Blanco, and J. González.
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