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Abstract Data processing often transforms a complex signal using a set of
different preprocessing algorithms to a single value as the outcome of a fi-
nal decision function. Still, it is challenging to understand and visualize the
interplay between the algorithms performing this transformation. Especially
when dimensionality reduction is used, the original data structure (e.g., spatio-
temporal information) is hidden from subsequent algorithms. To tackle this
problem, we introduce the backtransformation concept suggesting to look at
the combination of algorithms as one transformation which maps the orig-
inal input signal to a single value. Therefore, it takes the derivative of the
final decision function and transforms it back through the previous processing
steps via backward iteration and the chain rule. The resulting derivative of the
composed decision function in the sample of interest represents the complete
decision process. Using it for visualizations might improve the understanding of
the process. Often, it is possible to construct a feasible processing chain with
affine mappings which simplifies the calculation for the backtransformation
and the interpretation of the result a lot. In this case, the affine backtransfor-
mation provides the complete parameterization of the processing chain. This
article introduces the theory, provides implementation guidelines, and presents
three application examples.
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1 Introduction1

The basis of machine learning is understanding the data (Chen et al, 2008),2

and generating descriptive features (Domingos, 2012). Consequently, for nu-3

merous data types and processing algorithms, visualization approaches have4

been developed (Rieger et al, 2004; Rivet et al, 2009; Le et al, 2012; Haufe5

et al, 2014; Szegedy et al, 2014) as a better abstraction to enhance the under-6

standing of the behaviour of the applied algorithms and of the data. Here, the7

visualization of an algorithm is often realized in a similar way as for the input8

data.9

To come up with a representation gets way more complicated when algo-10

rithms are combined for a more sophisticated preprocessing before applying11

a final decision algorithm (Verhoeye and de Wulf, 1999; Rivet et al, 2009;12

Krell et al, 2013a; Kirchner et al, 2013; Feess et al, 2013), i.e., for processing13

chains. Under these circumstances, understanding and visualization of sin-14

gle algorithms does only explain single steps in the processing chain that are15

typically not independent from each other. The order of preprocessing algo-16

rithms, e.g., influences single processing visualizations, although the value of17

the final decision function might be not or only weakly influenced. Hence, one18

is often interested in knowledge about the whole data transformation in the19

processing chain but a general approach for solving this problem is missing.20

This situation gets even worse the more complex the data and the associated21

processing chains become. If dimensionality reduction algorithms are used for22

example to reduce the complexity of the data and to get rid of the noise, the23

structure of the output data is usually very different from the original input24

after the reduction step. In such a case, it is very difficult to understand the25

connection between decision algorithm, preprocessing, and original data even26

if single parts can be visualized. Consequently, a concept for representing the27

complete processing chain in the domain and format of the original input data28

is required.29

Several approaches are described in the literature to visualize the out-30

come and transformation of classification algorithms, but again, taking the31

perspective of a single processing step neglecting the processing history (i.e.,32

the preceding algorithms).33

When using classifiers with kernels, a direct visualization of the classifier34

becomes impossible. Baehrens et al (2010) calculate the derivative of the clas-35

sification function to give information of the classifier dependent on a chosen36

sample. Unfortunately, this calculation of the derivative is quite complex, dif-37

ficult to automatize, computationally expensive, and does not consider any38

processing before the classification. This makes it hard to apply and to gener-39

alize for complete data processing chains and high-dimensional data.40

Blankertz et al (2011) discuss the visualization of the linear discriminant41

analysis (LDA) in the context of an electroencephalogram (EEG) based brain-42

computer interface (BCI) application with different views on the temporal,43

spatial and spatio-temporal domain. Here, the classifier is applied on spatial44

features and visualized as a spatial filter together with an interpretation in45
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relation to the original data and other spatial filters. For other visualizations,46

the classifier weights are not directly used. Furthermore, no complex signal47

processing chain is used, even though spatial filters are very common for the48

preprocessing of this type of data. The LDA was applied to the raw data and49

largely improved with a shrinkage criterion. As a side remark, they mention50

the possibility to visualize the LDA weights directly, when applied to spatio-51

temporal features (Blankertz et al, 2011, paragraph before section 6, p. 18).52

This direct visualization of weights of a linear support vector machine53

(SVM) has already been suggested by LaConte et al (2005).1 This approach54

is intuitive, easy to calculate, and enables a combination with the prepro-55

cessing. Furthermore, it can be generalized to other data and other classi-56

fiers (Blankertz et al, 2011).57

This paper introduces our solution approach denoted as backtransforma-58

tion. It incorporates the aforementioned approaches, but with the fundamental59

difference that it takes all preprocessing steps in the respective chain into ac-60

count. With this approach, we are able to extract the complete transformation61

of the data from the chain, so that, e.g., changes in the order of algorithms or62

the effect of insertions/deletions of single algorithms become immediately vis-63

ible. Backtransformation also considers processing chains, where the original64

(e.g., spatio-temporal) structure of the data is hidden. The data processing65

chain is identified with a (composed) function, mapping the input data to a66

scalar. In its core, backtransformation is the derivative of this function, cal-67

culated with the chain rule or numerically. The derivative is either calculated68

locally for each sample of interest (general backtransformation) or globally69

when the processing chain consists of affine transformations only (affine back-70

transformation). While the general backtransformation gives information on71

which components in the data have a large (local) influence on the decision72

process and which components are rather unimportant, the affine backtrans-73

formation is independent from the single sample2.74

Numerous established data processing algorithms are affine transforma-75

tions and it is often possible to combine them to process the data. Hence,we76

also take a closer look at this type of algorithms and we show that it is possible77

to retrieve the information on how the data is transformed by the complete78

decision process, even if a dimensionality reduction algorithm or a temporal79

filter hide information. The affine backtransformation iteratively goes back80

from the decision algorithm through all processing steps to determine a pa-81

rameterization of the composed processing function and to enable a semantic82

interpretation. This results in a helpful representation of the processing chain,83

where each component in the source domain of the data gets a weight as-84

signed showing its impact in the decision process. In fact, summing up the85

products of weights and respective data parts is equivalent to applying the86

single algorithms on the data step-by-step.87

1 Further methods are presented but they are tailored to functional magnetic resonance
imaging (fMRI) data.

2 The respective derivatives are constant for every sample and as such not depending on
it.
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In Section 2, the backtransformation concept is introduced. First, we intro-88

duce the general backtransformation for differentiable processing chains. This89

is followed by the special variant which is obtained when working with affine90

transformations. To be even more specific, we discuss the backtransformation91

at a processing scheme for segmented time series data in Section 2.3. Here,92

we give examples of algorithms for the affine backtransformation, the generic93

backtransformation, and also mention cases where it is not applicable. In Sec-94

tion 2.4, we describe how the backtransformation is implemented in a generic95

way. This is followed by applications of the backtransformation in Section 396

Finally, a conclusion is made in Section 4.97

2 Methods98

The requirement to apply the proposed backtransformation as outlined in99

the following is that the data processing is a concatenation of differentiable100

transformations (e.g., affine mappings) and that the last algorithm in the chain101

is a (decision) function which maps the data to a single scalar. The final102

mapping to the label in case of a classification task is not relevant, here.103

For each processing stage, the key steps of the backtransformation are to104

first choose a mathematical representation of input and output data and then105

to determine a parameterization of the algorithm which has to be mapped to106

fit to the chosen data representations. Finally, the derivatives of the resulting107

transformations have to be calculated and iteratively combined. In its core it is108

the application of the chain rule for derivatives (see Section 2.1). For the case109

of using only affine mappings, it is just the multiplication of the transformation110

matrices, as shown in Section 2.2. Details on the implementation are given in111

Section 2.4. For an example of a processing chain of windowed time series data112

with a two-dimensional representation of the data see Fig. 1 and Section 2.3.113

The backward modeling begins with the parametrization of the final de-114

cision function and continues by iteratively combining it backwards with the115

preceding algorithms in a processing chain. With each iteration, weights are116

calculated, which correspond to the components of the input data of the last117

observed algorithm.118

For the abstract formulation of the backtransformation approach, data119

with a one-dimensional representation before and after each processing step120

is used. The output of each processing step is fed into the next processing121

algorithm.122

2.1 Backtransformation using the Derivative123

This section introduces the general backtransformation. Let the input data be
denoted with x(0) = xin ∈ Rn0 and let the series of processing algorithms be
represented by differentiable mappings

F0 : Rn0 → Rn1 , . . . , Fk : Rnk → R (1)
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which are applied to the data consecutively.3 Then, the application of the
processing chain to obtain the output data xout := x(k+1) from the input data
x(0) can be summarized to:

xout = x(k+1) = F (x(0)) = (Fk ◦ . . . ◦ F0)(x(0)) . (2)

With this notation, the derivative can be calculated with the chain rule:

∂F

∂y

(
x(0)

)
=

∂F0

∂y(0)

(
x(0)

)
· ∂F1

∂y(1)

(
x(1)

)
· . . . · ∂Fk−1

∂y(k−1)

(
x(k−1)

)
· ∂Fk

∂y(k)

(
x(k)

)
,

(3)
where x(l) ∈ Rnl is the respective input of the l-th algorithm in the pro-
cessing chain with the mapping Fl and x(l+1) is the output. The terms ∂Fl

∂y(l)

and ∂F
∂y represent the total differentials of the differentiable mappings and

not the partial derivatives. Equation (3) is a matrix product. It can be calcu-
lated iteratively using the backtransformation matrices Bl and the derivatives
∂Fl−1

∂y(l−1) (x(l−1)):

Bk =
∂Fk

∂y(k)

(
x(k)

)
and Bl−1 =

∂Fl−1

∂y(l−1)

(
x(l−1)

)
·Bl with l = 1, . . . , k . (4)

Now each matrix Bl ∈ Rnl×1 has the same dimensions4 as the respective124

x(l) and tells which change in the components of x(l) will increase (positive125

entry in Bl), decrease (negative entry), or will have no effect (zero entry) on126

the decision function. The higher the absolute value of an entry (multiplied127

with the estimated variance of the respective input), the larger is the influence128

of the respective data component on the decision function. Consequently, not129

only the backtransformation of the complete processing chain (B0) but also130

the intermediate results (Bl; l > 0) might be used for analyzing the processing131

chain. Bk is the matrix used in the existing approaches, which do not consider132

the preprocessing (LaConte et al, 2005; Baehrens et al, 2010; Blankertz et al,133

2011). Note that the Bl are dependent on the input of the processing chain134

and are expected to change with changing input. So the information about135

the influence of certain parts in the data is only a local information. A global136

representation is only possible when using affine transformations instead of137

arbitrary differentiable mappings Fl.138

3 The notation of data and its components differs from the notation in classification
tasks. Here, we look at one data sample x(0) with its different processing stages x(l) and

the respective changes in each component of the data
(
x
(l)
gh

)
. The double index notation is

applied to account for different axes in the data as in time series (different sensors and time
points) or images.

4 With nk+1 := 1 it holds that ∂Fl

∂y(l) ∈ Rnl×nl+1 and the dimensions of Bl are a

consequence of the recursion. Another reason for the dimensions of Bl is that Bl corresponds
to the mapping of x(l) to the scalar output xout.
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2.2 Affine Backtransformation139

For handling affine transformations like translations, the data vectors are aug-
mented by adding a coordinate with value 1 to have homogenous coordinates.
Every affine transformation F can be identified with a tuple (A, T ), where A
is a linear mapping matrix and T a translation vector and the corresponding
mapping of the processing algorithm applied on data xin reads as

xout = F (xin) = Axin + T = (A T )

(
xin

1

)
. (5)

So by extending the matrix (A T ) to a Matrix A′ with an additional row of
zeros with a 1 at the translational component, the mapping on the augmented
data x′in =

(
xin

1

)
can be written in the simple notation: x′out = A′x′in. With

a processing chain with corresponding matrices A′0, . . . , A
′
k the transformation

of the input data x′in can be summarized to

x′out = A′k · . . . ·A′1 ·A′0 · x′in . (6)

With this notation, the backtransformation concept now boils down to itera-
tively determine the matrices

Bk = A′k , Bk−1 = A′k ·A′k−1 , . . . , and B0 = A′k ·A′k−1 · . . . ·A′1 ·A′0 . (7)

This corresponds to a convolution of affine mappings.5 Each Bl ∈ R(nl+1)×2
140

defines the mapping of the data from the respective point in the processing141

chain (after l previous processing steps) to the final decision value. So each142

product Bl consists of a weighting vector w(l) and an offset b(l) and the artificial143

second row with zero entries and 1 in the last column. The term w(l) can now144

be used for interpretation and understanding the respective sub-processing145

chain or the complete chain with w(0) (see Section 3). The term is equivalent146

to the Bl from the backtransformation using the derivative (Section 2.1).147

The following section renders possible (and impossible) algorithms which148

can be used for the affine backtransformation and how the weights from the149

backtransformation are determined in detail for a data processing chain ap-150

plied on two-dimensional data.151

2.3 Backtransformation Modeling Example152

In this section, a more concrete example of applying the backtransformation153

principle is given for processing time series epochs of fixed length of several154

sensors with the same sampling frequency. We provide examples for affine155

transformations to show that there is a large number of available algorithms156

to construct a good processing chain. Additionally, cases will be highlighted157

5 Note that no matrix inversion is required even though one might expect that, because
the goal is to find out what the original mapping was doing with the data which sounds like
an inverse approach.
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D
ata Processing C

hain
respective 

backtransformation
weights on algorithm input

2d-Input Data Array
amplitudes of sensors (h) at time points (g)

Scalar Output
regression value, classification score

x
(0)
gh

w
(4)
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w
(3)
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ij

w
(1)
ih =

X

j

fhjsijw
(4)
ij

w
(0)
gh =

X

i,j

thgifhjsijw
(4)
ij

w(0)

x(5)

Temporal Filtering
subtract mean, subsampling,
low/band/high pass FIR filtering

Dimensionality Reduction
ICA, PCA, 
spatial filter (CSP, xDAWN, ∏SF)

Feature Extraction
time-domain amplitudes, polynomial fits

Feature Normalization
rescaling, standardization
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classification (SVM, FDA, LS-SVM),
regression (linear regression, SVR)

x
(4)
ij

x
(2)
ij

x
(1)
ih

x
(4)
ij = x

(3)
ij sij + bij

x
(2)
ij =

X

h

x
(1)
ih fhj

x
(1)
ih =

X

g

x
(0)
gh thgi

x(5) = b(4) +
X

i,j

x
(4)
ij w

(4)
ij

x
(3)
ij

x(3) = x(2)

Fig. 1: Illustrative data processing chain scheme with examples of affine algo-
rithms and the formulas for the backtransformation in short. Spatio-temporal

data x
(0)
gh are processed from top to bottom (x(5)). Every component of the

scheme is optional. Backtransformation takes the classifier parametrization
w(4) and projects it iteratively back (w(k)) through the processing chain and
results in a representation w(0) corresponding to the input domain. For more
details refer to Section 2.3.

which require the general backtransformation and cases where the backtrans-158

formation is not applicable.159

A possible processing chain with examples of affine mappings and the re-160

spective backtransformation weights is depicted in Fig. 1. Note that all com-161

ponents of this chain are optional and the presented scheme can be applied to162

an arbitrary data processing chain even if dimensions like time and space are163

replaced by others or left out (see Sections 2.2 and 3.2).164

An intuitive way of handling such data is to represent it as two-dimensional165

arrays with the time on one axis and space (e.g., sensors) on the other axis,166

since important preprocessing steps like temporal and spatial filters just oper-167

ate on one axis. So this type of representation eases the use and the parame-168

terization of these algorithms compared to the aforementioned mathematically169

equivalent one-dimensional representation. Furthermore, a two-dimensional170
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representation of the data helps for its visualization and interpretation. For171

parametrization of the two-dimensional arrays, the common double index no-172

tation is used, where the data x(0) is represented by its components x
(0)
gh with173

temporal index g and spatial index h. This index scheme will be kept for all174

processing stages even if the data could be represented as one-dimensional fea-175

ture vectors for some stages. The same indexing scheme can be applied for the176

parametrization of the affine data processing algorithms in the chain as will be177

shown in the following. The input of the i-th algorithm is denoted with x(i−1)178

and the output with x(i) respectively. To fit to the concept of backtransfor-179

mation, first the parametrization of the decision algorithm will be introduced180

and then the preceding algorithms step-by-step . An overview of the process-181

ing chain, the chosen parameterizations, and the resulting weights from the182

backtransformation is depicted in Fig. 1.183

Scalar Decision Function A linear decision function can be parameterized us-

ing a decision vector/matrix w
(4)
ij ∈ Rmi×nj and an offset b(4) ∈ R. The trans-

formation of the input x(4) ∈ Rmi×nj to the decision value x(5) ∈ R is then
defined as

x(5) = b(4) +

mi∑

i=1

nj∑

j=1

x
(4)
ij w

(4)
ij , (8)

with mi time points and nj sensors. Some examples for machine learning al-184

gorithms with linear decision function are SVMs (Vapnik, 1995; Steinwart185

and Christmann, 2008; Chang and Lin, 2011), balanced relative margin ma-186

chines (Krell et al, 2014a), regularized fishers discriminant analysis classi-187

fiers (Mika et al, 2001), passive-aggressive perceptrons (Crammer et al, 2006),188

linear regression, support vector regression (Smola and Schölkopf, 2004), ridge189

regression, and one-class SVMs (Schölkopf et al, 2001; Krell and Wöhrle, 2015)190

and there are many more.191

Depending on the application, data might be not linearly separable or a192

nonlinear separation provides better results. Here, a common approach is to193

use nonlinear kernels instead of the linear function. All common kernels are194

differentiable, so here the general backtransformation can be still applied in-195

stead of the affine backtransformation. As long as the decision function is196

differentiable, the general backtransformation can be used, too. When com-197

bining (linear or differentiable) classifiers as an ensemble it depends on the198

final gating function, if the resulting scalar comes from an affine/differentiable199

function6. The same holds for neural networks where different transition func-200

tions could be used. Unfortunately, for neural networks the derivative might201

not improve the understanding especially when it is showing unexpected local202

behavior as explained by Szegedy et al (2014). Nevertheless, most often these203

methods are differentiable. If there is no strict step function used but the func-204

tion is locally Lipschitz or even locally linear the approximation of a derivative205

6 A weighted sum of classifiers preserves linearity/differentiability. A majority vote will
result in a non-differentiable classifier but when the score is the sum of the voters for the
selected class, the resulting function will still be locally linear/differentiable.
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could be still used even though some information in the critical points might206

be hidden. Furthermore, in these cases it is better to use a derivative, which207

considers the left and the right side for each component.208

If there is no scalar output or the function is locally constant it is not209

possible to derive information from the backtransformation. A decision tree210

usually produces no useful output function. If the output of a classifier is only211

±1, no information can be obtained. Another example for a locally constant212

function could be obtained from a linear decision function f(x) by limiting213

its values to the interval [−1, 1] with min {1,max {−1, f(x)}}. For every x214

with |f(x)| > 1 the resulting new decision function is locally constant and no215

interpretation of the derivative is possible.216

Feature Normalization With a scaling s ∈ Rmi×nj and transition b ∈ Rmi×nj

and the same indexes as for the linear decision function, an affine feature
normalization can be written as

x
(4)
ij = x

(3)
ij sij + bij with i ∈ {1, . . .mi} and j ∈ {1, . . . nj} . (9)

This covers most standard feature normalization algorithms like rescaling or217

standardization (Aksoy and Haralick, 2001). Nonlinear scalings, e.g., using ab-218

solute values as in min
{

10,
∣∣∣x(3)ij

∣∣∣
}

, or sample dependent scalings, e.g., division219

by the Euclidean norm sij = 1

‖x(3)‖
2

, are not affine mappings and could not220

be used for the affine backtransformation.221

The general backtransformation could still be used for differentiable nor-222

malizations like Euclidean normalization if x(3) 6= 0. Using min or max results223

in locally constant behavior which restricts the applicability of the backtrans-224

formation.225

For the affine backtransformation, the formula of the feature normalization
need to be inserted into the formula of the decision function:

x(5) = b(4) +
∑

i,j

(
x
(3)
ij sij + bij

)
w

(4)
ij = b(3) +

∑

i,j

x
(3)
ij sijw

(4)
ij . (10)

Here, b(3) = b(4) +
∑

i,j bij summarizes the offset. As denoted in Fig. 1, sijw
(4)
ij226

is the weight to the input data part x
(3)
ij .227

Feature Generation For simplicity, the data amplitudes at different sensors228

have been directly taken as features and nothing needs to be changed in this229

step
(
x(3) = x(2)

)
. Other linear features like polynomial fits would be possible,230

too (Straube and Feess, 2013). Nonlinear features (e.g., standard deviation,231

sum of squares, or sum of absolute values of each sensor) would not work232

for the affine backtransformation but for the general one. Symbolic features,233

mapped to natural numbers will be even impossible to analyze with the general234

backtransformation.235
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Dimensionality Reduction on the Spatial Component A spatial filter trans-236

forms real sensors to new pseudo sensors by linear combination of the signal237

of the original sensors. To use well known dimensionality reduction algorithms238

like principal component analysis (Lagerlund et al, 1997; Rivet et al, 2009;239

Abdi and Williams, 2010, PCA), and independent component analysis (Jut-240

ten and Herault, 1991; Rivet et al, 2009, ICA) for spatial filtering, the space241

component of the data is taken as feature component for these algorithms and242

the time component for the samples. Examples for typical spatial filters are243

common spatial patterns (Blankertz et al, 2008, CSP), xDAWN (Rivet et al,244

2009; Woehrle et al, 2015), and πSF (Ghaderi and Straube, 2013).245

The backtransformation with the spatial filtering is the most important246

part of the concept, because spatial filtering hides the spatial information247

needed for visualization or getting true spatial information into the classifier.248

The number of virtual sensors ranges between the number of real sensors
and one. The spatial filter for the j-th virtual sensor is a tuple of weights
f1j , ..., fnhj defining the linear weighting of the nh real sensors. The transfor-
mation for the i-th time point is written as

x
(2)
ij =

nh∑

h=1

x
(1)
ih fhj , (11)

where the time component could be ignored, because the transformation is
independent of time. The transformation formula can be substituted into for-
mula (11):

x(5) = b(3) +
∑

i,j

nh∑

h=1

x
(1)
ih fhjsijw

(4)
ij (12)

= b(3) +
∑

i,h

x
(1)
ih ·


∑

j

fhjsijw
(4)
ij


 . (13)

Equation (13) shows, that the weight
∑

j fhjsijw
(4)
ij is assigned to the input249

data component x
(1)
ih . If there is no time component, a spatial filter is just a250

linear dimensionality reduction algorithm. It is also possible to combine dif-251

ferent reduction methods or to do a dimensionality reduction after the feature252

generation.253

For spatial filtering, linear transformations are the common choice. But254

for more general dimensionality reduction algorithms like the PCA, it is also255

possible to use kernels. Since kernels are usually differentiable, it would be still256

possible to apply the generic backtransformation, when such an algorithm is257

used in the processing chain.258

Detrending, Temporal Filtering, and Decimation There are numerous discrete-259

time signal processing algorithms (Oppenheim and Schafer, 2009). Detrending260

the mean from a time series can be done in several ways. Having a time win-261

dow, a direct approach would be to subtract the mean of the time window,262
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or to use some time before the relevant time frame to calculate a guess for263

the mean (baseline correction). Often, such algorithms can be seen as finite264

impulse response (FIR) filters, which eliminate very low frequencies. Filtering265

the variance is a quadratic filter (Krell et al, 2013b) and infinite impulse re-266

sponse (IIR) filters have a feedback part. Both filters are not applicable for267

the backtransformation, because they have no respective affine transforma-268

tions and because they rely on the complete signal which makes it impossible269

to obtain a local derivative.270

One can either use uniform temporal filtering, which is similar to spatial
filtering with changed axis, or introduce different filters for every sensor. As
parametrization, thgi is chosen for the weight at sensor h for the source g and
the resulting time point i with a number of mg time points in the source
domain:

x
(1)
ih =

mg∑

g=1

x
(0)
gh t

h
gi . (14)

Starting with the more common filter formulation as convolution (filter of
length N):

x
(1)
ih =

N∑

l=0

al · x(0)(n−l)h
g:=n−l

=

n∑

g=n−N
a(n−g) · x

(0)
gh , (15)

the filter coefficients ai can be directly mapped to the thgi and the other coef-271

ficients can be set to zero.272

Reducing the sampling frequency of the data by downsampling is a com-273

bination of a low-pass filter and systematically leaving out several time points274

after the filtering (decimation). When using a FIR filter, the given parame-275

terization of a temporal filter can be used here, too. For leaving out samples,276

the matrix tgi for sensor h can be obtained from an identity matrix by only277

keeping the rows, where samples are taken from.278

The final step is similar to the spatial filtering part:

x(5) = b(3) +
∑

i,h

(
mg∑

g=1

x
(0)
gh t

h
gi

)
·


∑

j

fhjsijw
(4)
ij


 (16)

= b(3) +
∑

g,h

x
(0)
gh ·


∑

i,j

thgifhjsijw
(4)
ij


 (17)

= b(3) +

mg∑

g=1

nh∑

h=1

x
(0)
ghw

(0)
gh . (18)

The input component of the original data x
(0)
gh finally gets assigned the weight279

w
(0)
gh =

∑
i,j t

h
gifhjsijw

(4)
ij . Note that for some applications it is good to work280

on normalized and filtered data for interpreting data and the behavior of the281

data processing. In that case, the backtransformation is stopped before the282

temporal filtering and the respective weights are used.283
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Others The aforementioned algorithms can be combined and repeated (e.g.,284

concatenations of FIR filters or PCA and xDAWN). Having a different feature285

generator, multiple filters, decimation, or skipping a filter or normalization286

the same calculation scheme could be used resulting in different b(3) and w(0).287

Nevertheless, w(0) has the same indexes as the original data x(0). After the288

final mapping to a scalar by the decision function, a shift of the decision cri-289

terion (e.g., using threshold adaptation as suggested by Metzen and Kirchner290

(2011)) is possible but has no impact on the backtransformation because it291

only requires w(0) and not the offset. If a probability fit (Platt, 1999; Lin et al,292

2007; Baehrens et al, 2010) was used, this step has to be either ignored or the293

general approach (Section 2.1) has to be applied. Since the probability fit is a294

mostly sigmoid function which maps R→ [0, 1], it is also possible to visualize295

its derivative separately. For the interpretation concerning a sample, the func-296

tion value is determined and the respective (positive) derivative is multiplied297

with the affine transformation part to get the local importance. Hence, the298

relations between the weights remain the same but the absolute values only299

change. This approach of mixing the calculations is much easier to implement300

and interpret.301

If nonlinear preprocessing is used to normalize the data (e.g., to have vari-302

ance of one), the normalized data can be used as input for the backtransfor-303

mation and the respective processing chain. This might be even advantageous304

for the interpretation when the visualization of the original data is not help-305

ful due to artifacts and outliers. An example for such a case is to work with306

normalized image data like the MNIST dataset (LeCun et al, 1998) instead of307

the original data, where the size of the images and the position of the digits308

varied a lot (see also Section 3.2 and Section 3.3).309

If any of the algorithms in the observed processing chain is not an affine310

mapping, the affine backtransformation cannot be applied. For getting the real311

derivatives for the general backtransformation all algorithms need to be differ-312

entiable. But if the derivative vanishes at some points due to locally constant313

behavior, the backtransformation might be meaningless. On the other hand,314

if a generalized derivative can be determined for non-differentiable algorithms315

this might still work (Clarke, 1990; Rockafellar and Wets, 2009).316

2.4 Generic Implementation of the Backtransformation317

This section gives information on how to apply the backtransformation concept318

in practice especially when the aforementioned calculations are difficult or319

impossible to perform and a “generic” implementation is required to handle320

arbitrary processing chains.321

The backtransformation has been implemented in a signal processing and322

classification environment called pySPACE (Krell et al, 2013a) and can be323

directly used7. This modular Python software gives simple access to more than324

7 http://pyspace.github.io/pyspace/

http://pyspace.github.io/pyspace/
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200 classification and preprocessing algorithms and so it provides a reasonable325

interface for a generic implementation. It provides data visualization tools for326

the different processing stages and largely supports the handling of complex327

processing chains.328

In practice, accessing the single parameterizations for the transformation
matrices Ai for the affine backtransformation might be impossible (e.g., be-
cause external libraries are used without access to the internal algorithm pa-
rameters) or too difficult (e.g., code of numerous algorithms needs to be written
to extract these parameters). In this case, the backtransformation approach
cannot be applied directly in the way it is described in Section 2.2. Instead,
the respective products and weights for the affine backtransformation can be
reconstructed with the following trick which only requires the algorithms to be
affine. No access to any parameters is needed. First, the offset of the transfor-
mation product is obtained by processing a zero data sample with the complete
processing chain. The processing function is denoted by F . The resulting scalar
output is the offset

b(0) = F (0). (19)

Second, a basis {e1, . . . , en} of the original space (e.g., the canonical basis)

needs to be chosen. In the last step, the weights w
(0)
i , which directly corre-

spond to the base elements, are determined by also processing the respective
base element ei with the processing chain and subtracting the offset b(0) from
the scalar output:

w
(0)
i = F (ei)− F (0). (20)

The calculation of the derivative for the general backtransformation ap-
proach is more complicated. Deriving and implementing the derivative function
for each algorithm used in a processing chain and combining the derivatives
can be very difficult, especially if the goal is to implement it for a large num-
ber of relevant algorithms, e.g., as provided in the pySPACE framework. A
generic approach would be to use automatic differentiation tools (Griewank
and Walther, 2008). These tools generate a program which calculates the
derivative directly from the program code. They can also consider the con-
catenation of algorithms by applying the chain rule. For most standard imple-
mentations, open source automatic differentiation tools could be applied. For
existing frameworks, it is required to modify each algorithm implementation
such that the existing differentiation tools know all derivatives of used elemen-
tal functions used in the code, which might be a lot of work. Furthermore, this
approach would be impossible if black box algorithms were used. So for sim-
plicity, a different approach, which is similar to the previous one for the affine
case can be chosen. This is the numerical calculation of the derivative of the
complete decision function via differential quotients for directional derivatives:

∂F

∂ei
(x0) ≈ F (x0 + hei)− F (x0)

h
. (21)

Here, ei is the i-th unit vector, and h is the step size. It is difficult to choose
the optimal h for the best approximation, but for the backtransformation
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a rough approximation should be sufficient. A good first guess is to choose
h = 1.5 ·10−8 〈x0, ei〉 if 〈x0, ei〉 6= 0 and in the other case h = 1.5 ·10−8 (Press,
2007). In the backtransformation implementation in pySPACE, the value of
1.5 ·10−8 can be exchanged easily by the user. It is additionally possible to use
more accurate formulas for the differential quotient at the cost of additional
function evaluations like

∂F

∂ei
(x0) ≈

F (x0 − hei)− 8F (x0 − h
2 ei) + 8F (x0 + h

2 ei)− F (x0 − hei)
6h

.

(22)

3 Applications329

Having a transformation of the decision algorithm back through different data330

representation spaces to the original data space might help for the under-331

standing and interpretation of processing chains in several applications (e.g.,332

image detection, classification of neuroscientific data, robot sensor regression)333

as explained in the following. First, some general remarks will be given on334

visualization techniques. Afterwards, the affine and the general backtransfor-335

mation will be applied on handwritten digit classification (Section 3.2 and336

Section 3.3) because it is a relatively simple problem which can be under-337

stood without expert knowledge. Finally, a more complex example is given on338

EEG data classification (Section 3.4) and an outlook for further applications339

(Section 3.5).340

3.1 Visualization in General341

As suggested by LaConte et al (2005) for fMRI data, the backtransformation342

weights could be visualized in the same way as the respective input data is343

visualized. This works only if there is a possibility to visualize the data and344

if this visualization displays the “strength” of the values of the input data.345

Otherwise, additional effort has to be put into the visualization, or the weights346

have to be analyzed as raw numbers. For interpreting the weights, it is usually347

required to also have the original data visualized for comparison (as averaged348

data or single samples) because higher weights in the backtransformation could349

be rendered meaningless if the corresponding absolute data values are low or350

even zero. Additionally to the backtransformation visualization of one data351

processing chain, different chains (with different hyperparameters, training352

data, or algorithms) can be compared (Krell et al, 2014b). Differences in the353

weights directly correspond to the differences in the processing. Normally,354

weights with high absolute values correspond to important components for355

the processing and weights close to zero are less important and might be356

even omitted. This very general interpretation scheme does not work for all357

applications. In some cases, the weights have to be set in relation to the values358

of the respective data components: If data values are close to zero, high weights359
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might still be irrelevant, and vice versa. To avoid such problems, it is better360

to take normalized data, which is very often also a good choice for pure data361

visualization. Another variant to partially compensate for this issue is to also362

look at the products of weights and the respective data values.363

According to Haufe et al (2014), the backtransformation model is a back-364

ward model of the original data and as such mixes the reduction of noise with365

the emphasis of the relevant data pattern. To derive the respective forward366

model they suggest to multiply the respective weighting vector with the co-367

variance matrix of the data. From a different perspective, this approach sounds368

reasonable, too: If backtransformation reveals that a feature gets a very high369

weight by the processing chain, but this feature is zero for all except one outlier370

sample a modified backtransformation would reveal this effect. Furthermore,371

if a feature is highly correlated with other features, a sparse classifier might372

just use this one feature and skip the other features which might lead to the373

wrong assumption, that the other features are useless even though they pro-374

vide the same information. On the other hand, if features are highly correlated375

as it holds for EEG data this approach might be also disadvantageous. The376

processing chain might give a very high weight to the feature, where the best377

distinction is possible, but the covariance transformation will blur this impor-378

tant information over all sensors and time points. Using such a blurred version379

for feature selection would be a bad choice. Another current drawback of the380

method by Haufe et al (2014) is that it puts some assumptions on the data381

which often do not hold: The expectancy values of noise, data, and signal of382

interest are assumed to be zero “w.l.o.g.” (without loss of generality). Hence,383

more realistic assumptions are necessary for better applicability. The effect of384

the covariance correction by Haufe et al (2014) will be analyzed in Sections 3.2385

and 3.3.386

Note that in Fig. 1, Section 2.2, and Section 2.3 it has been shown that387

every iteration step in the backtransformation results in weightings w(i) which388

correspond to the data x(i). This data is obtained by applying the first i algo-389

rithms of the processing chain on the original input data x(0). So depending390

on the application, it is even possible to visualize data and weights of interme-391

diate processing steps. This can be used to further improve the overall picture392

of what happens in the processing chain.393

3.2 Processing Chain Visualization:394

Handwritten Digit Classification: Affine Processing Chain395

For a simple application example of the backtransformation approach, the pub-396

licly available MNIST dataset is used (LeCun et al, 1998). This dataset con-397

tains numerous normalized greyscale images of all digits with a size of 28× 28398

pixels. They are stored as one-dimensional feature vectors (784 features). For399

processing, we first applied a PCA on the feature vectors and reduced the di-400

mension of the data to four (or 64). As a second step, the resulting features were401

normalized to have zero mean and standard deviation of one on the training402
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data. Finally, a linear SVM (Chang and Lin, 2011) with a fixed regulariza-403

tion parameter of one is trained on the normalized PCA features. Without404

backtransformation, the filter weights for the 4 (or 64) principal components405

could be visualized in the domain of the original data and the single weights406

assigned by the SVM could be given, but the interplay between SVM and407

PCA would remain unknown, especially if all 784 principal components would408

be used. This information can only be given with backtransformation and is409

displayed in Fig. 2 for the distinction of digit pairs (from 0, 1, and 2). The410

generic implementation of the affine backtransformation was used, since only411

affine algorithms were used in the processing chain (PCA, feature standardiza-412

tion, linear classifier). The forward model to the backtransformation, obtained413

by multiplication with the covariance matrix, is also visualized in Fig. 2. Note414

that the original data is not normalized (zero mean), although this was an415

assumption on the data for the covariance transformation approach by Haufe416

et al (2014)8.417

Generally, it can be seen that the classifier focuses on the digit parts, where418

there is no overlay between the digits on average. For one class there are high419

positive values and for the other there are high negative weights. For the classi-420

fication with 64 principal components, the covariance correction smoothes the421

weight usage and results in a visualization which is similar to the visualization422

of the backtransformation for the classification with 4 principal components.423

Hence, the 60 additional components are mainly used for canceling out “noise”.424

3.3 Processing Chain Visualization:425

Handwritten Digit Classification: Nonlinear Classifier426

To show the effect of the generic backtransformation for a nonlinear processing427

chain, the evaluation of Section 3.2 is repeated with a radial basis function428

kernel for the SVM instead of a linear one. The hyperparameter of the kernel,429

γ, has been determined according to Varewyck and Martens (2011). Everything430

else remained unchanged. Again the generic implementation was used. Note431

that every sample requires its own backtransformation. So for the visualization432

of the backtransformation, only the first four single samples were taken.433

It can be clearly seen in Fig. 3 that there is a different backtransformation434

for each sample. Similar to the results in Section 3.2 (Fig. 2), the backtransfor-435

mation with covariance correction (when 64 principal components are taken436

as features) seems to be more useful in contrast to the raw visualization which437

also contains the noise cancellation part. This is surprising because this ap-438

proach has been originally developed for linear models and not for nonlinear439

ones (Haufe et al, 2014). Using a correction with a “local” covariance would440

be more appropriate in this case but more demanding from the computation441

and implementation point of view. A large number of principal components442

seems to be a bad choice for the nonlinear kernel, because it does not seem to443

8 Nevertheless, the resulting graphics look reasonable.
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Fig. 2: Contour plots of backtransformation weights for handwritten digit clas-
sification: The white and black silhouettes display an average contour of the
original data (digits 0 vs. 1, 0 vs. 2, and 1 vs. 2). The colored contour plots
show the respective weights in the classification process before and after covari-
ance correction with a different number of used principal components (case A
and B). Negative weights (blue) are important for the classification of the first
class (black silhouette) and positive weights (red) for the second class (white
silhouette). Green weights are close to zero and do only contribute weakly to
the classification process.

generalize that well and is using a lot of small components instead of focusing444

on the big shape of the digits.445

In case of using only 4 principal components, the approach mainly shows446

the shape of the digit 2 (or 0 for the first column). In contrast, the visualiza-447

tions without covariance correction clearly indicate with a blue color which448

parts are relevant for classifying it as the first class and with the red color449

which parts are important for the second class. An interesting effect occurs for450
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A (4 principal comp.)
0 vs. 1 0 vs. 2 1 vs. 2

covariance correction

B (64 principal comp.)
0 vs. 1 0 vs. 2 1 vs. 2

covariance correction

Fig. 3: Contour plots of backtransformation weights for handwritten digit clas-
sification with nonlinear classifier: The setting is the same as in Fig. 2 except
that no average shapes are displayed but the shape of the sample of interest
where the backtransformation is calculated for.
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the first classifier at the fourth digit (1). Here a closer look could be taken at451

the classifier and the data to find out why there are yellow weights outside the452

regular shape of the digit 1. This might be the result of some artifacts in the453

data (e.g., a sample with very bad handwriting near to the observed sample)454

or an artifact in the processing.455

In the nonlinear and the linear case with 64 principal components the456

backtransformation reveals that the decision process is not capable of deriving457

real shape features for the digits. This might be a reason, why a specially tuned458

deep neural network performs better in this classification task (Schmidhuber,459

2012).460

3.4 Processing Chain Visualization: Movement Prediction from EEG Data461

The electroencephalogram (EEG) is a very complex signal, measuring elec-462

trical activity on the scalp with a very high temporal resolution and more463

than 100 sensors. Several visualization techniques exist for this type of signal,464

which are used in neuroscience for analysis. When processing EEG data for465

brain-computer interfaces (BCIs), there is a growing interest in understanding466

the properties of processing chains and the dynamics of the data, to avoid467

relying on artifacts and to get information on the original signal back for fur-468

ther interpretation. Here, very often spatial filtering is used for dimensionality469

reduction to linearly combine the signals from the numerous electrodes to a470

largely reduced number of new virtual sensors with much less noise (see Sec-471

tion 2.3). These spatial filters and much more importantly the data patterns472

they are enhancing are visualized with similar methods as used for visualizing473

data. If the spatial filter is the main part of the processing (e.g., only two474

filters are used), this approach is sufficient to understand the data processing.475

However, often more filters and other, additional preprocessing algorithms are476

used. Hence, the original spatial information cannot be determined for the in-477

put of the classifier. This disables a good visualization of the classifier and an478

understanding of what the classifier learned from the training data. So here,479

backtransformation can be very helpful.480

To illustrate this, a dataset from an EEG experiment was taken (Tabie and481

Kirchner, 2013). In this experiment, subjects were instructed to move their482

right arm as fast as possible from a flat board to a buzzer in approximately483

30 cm distance. The classification task was to predict upcoming movements484

by detecting movement-related cortical potentials (Johanshahi and Hallett,485

2003) in the EEG single trials. Before applying the backtransformation and486

visualizing the data as depicted in Fig. 4, the data has been normalized with a487

standardization, a decimation, and temporal filtering. Only the last part of the488

signal, which is close to the movement, was visualized. The processing chain489

was similar to the one in Section 2.3. The details are described by Seeland490

et al (2013).491

The averaged input data in Fig. 4 shows a very strong negative activa-492

tion at the motor cortex mainly at the left hemisphere around the electrode493



20 blinded author names

time before movement onset:
−200 ms −150 ms −100 ms −50 ms

0.45

-0.07
0

Am
pl
itu
de

0.7

-0.7

0

W
ei
gh
t

Fig. 4: Visualization of data for movement prediction and the corresponding
processing chain: In the first row the average of the data before a movement is
displayed as topography plots and in the second row the backtransformation
weights are displayed, respectively. The data values from the different sensors
were mapped to the respective position on the head, displayed as an ellipse
with the nose at the top and the ears on the sides.

C19. This activation is consistent with the occurrence of movement related494

cortical potentials and is expected from the EEG literature (Johanshahi and495

Hallett, 2003). The region of the activation (blue circle on the left hemisphere496

at the motor cortex region) is associated with right arm movements, which497

the subjects had to perform in the experiment.498

The backtransformation weights are much more spread over the head com-499

pared to the averaged data. There is a major activation at the left motor500

cortex at electrodes C1 (negative) and C3 (positive), but also a large spread501

activation at the back of the head at the right hemisphere (around the elec-502

trode P8). On the time scale, the most important weights can be found at the503

last time point, 50 ms before movement onset.504

This is reasonable, because the most important movement related infor-505

mation is expected to be just before the movement starts, although movement506

intention can be detected above chance level on average 460 ms before the507

movement onset (Lew et al, 2012). Note that the analysis has been performed508

on single trials and not on averaged data and that for a good classification509

the largest difference is of interest and not the minimal one. The high weights510

at C1 and CP3 clearly fit to the high negative activation found in the aver-511

aged data and as such highlight the signal of interest. For interpreting the512

other weights, two things have to be kept in mind. First, EEG data usually513

contains numerous artifacts and second, due to the conductivity of the skin514

9 A standard extended 10− 20 electrode layout has been chosen with 128
electrodes: http://www.brainproducts.com/filedownload.php?path=downloads/

actiCAP-128-channel-Standard-2_1201.pdf.

http://www.brainproducts.com/filedownload.php?path=downloads/actiCAP-128-channel-Standard-2_1201.pdf
http://www.brainproducts.com/filedownload.php?path=downloads/actiCAP-128-channel-Standard-2_1201.pdf
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it is possible to measure every electric signal at a certain electrode also on515

the other electrodes. Keeping that in mind, the activation around P8 could516

be interpreted as a noise filter for the more important class related signal at517

C1 and CP3. This required filtering effect on EEG data is closely related to518

spatial filtering, which emphasizes a certain spatial pattern (Blankertz et al,519

2011, section 4.2). It could be also a relevant signal which cannot be observed520

in the plot of the averaged data. These observations are now a good starting521

point for domain experts to take a closer look at the raw data to determine522

which interpretation fits better.523

3.5 Applications Beyond Visualization524

In the following, we shortly describe two further applications of the affine525

backtransformation.526

3.5.1 Group Ranking527

The formula in Equation (18) has the same structure as a normal linear classi-528

fier. Each weight gives an information about the importance of certain signal529

components of the input. Summing up the absolute values of one sensor can530

now be done in the way as suggested for SVMs (Feess et al, 2013; Lal et al,531

2004) to get a sensor ranking:532

Rh =

ng∑

g=1

∣∣∣w(0)
gh

∣∣∣ . (23)

Such a ranking can then be used for sensor selection algorithms to reduce533

the number of used electrodes for a BCI and ease comfort and save costs.534

It can be used in robotics or other applications too, where the reduction of535

input sources can be beneficial. A similar ranking could be also applied to the536

time points. The advantage of this ranking method is that it directly operates537

on the processing chain and not solely on the input data or feature domain.538

Note, that the quality of the ranking also highly depends on the quality of539

the processing chain. If a processing chain is worse than an other, chances are540

high that also its ranking is worse (Krell, 2015, section 3.4.3).541

3.5.2 Reinitialization of Linear Classifier with Affine Preprocessing542

There could be several reasons for exchanging the preprocessing in a signal543

processing chain. For example, first some initial preprocessing is loaded but544

in parallel a new better fitting data specific processing is trained or tuned545

on new incoming data (e.g., a new spatial filter (Woehrle et al, 2015)). If546

dimensionality would not be fitting after changing the preprocessing chain, a547

new classifier would also be needed. But even if dimensions of old and new548

preprocessing were the same it might be good to adapt the classifier to that549
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change to have a better initialization. Here, the affine backtransformation can550

be used as described in the following.551

For this application, a processing chain of affine transformations is assumed
which ends with a sample weighting online learning algorithm like the passive
aggressive algorithm or a perceptron. Since the classification function is a
weighted sum of samples, it enables the following calculation:

w =
∑

i

αiyix̂i =
∑

i

αiyi(Axi + T ) = A
∑

i

αiyixi + T
∑

i

αiyi (24)

= Aw(0) + Tb with w(0) =
∑

i

αiyixi and b =
∑

i

αiyi . (25)

Here, xi is the training data with the training labels yi and x̂i is the prepro-
cessed training data given to the classifier. The weights αi are calculated by
update formulas of the classifier. During the update step, w(0) must be cal-
culated additionally but neither xi, yi, nor αi are stored. When changing the
preprocessing from (A, T ) to (A′, T ′)

w′ = A′w(0) (26)

is a straightforward estimate for the new classifier. The advantage of this
formula is, that it just requires additionally calculating and storing w(0). So
the resulting classifier can be still used for memory efficient online learning.
Especially, even if neither (A′, T ′) nor (A, T ) is known, w′ can be calculated
using the new signal processing function F̂ (x) = A′x+ T ′:

w′ = A′w(0) = F̂ (w(0))−T ′b = F̂ (w(0))−0A′w(0)b−T ′b = F̂ (w(0))−F̂ (0w(0))b .
(27)

So, w′ can be computed by processing w(0) and a sample of zero entries in the552

signal processing chain. This only requires some minor processing time but553

no additional resources. Usually the processing chain is very fast and so the554

additional processing time should not be a problem. For giving a proof of con-555

cept, this application of the backtransformation was used in a setting, where556

the preprocessing was randomly changed. With the aforementioned approach557

the change could be perfectly compensated without any loss in performance558

(Krell, 2015, section 2.4.6).559

4 Conclusion560

In this paper, a direct approach is given to look at the complete data processing561

chain (in contrast to separate handling of its components) and to transform562

it to a representation in the same format as the data. This could be used563

to improve the understanding of complex processing chains and might enable564

several applications in future. It was shown that backtransformation can be565

used for visualization of the decision process and a direct comparison with566

a visualization of the data is possible and enables an interpretation of the567

processing. Our approach extends existing algorithms by also considering the568
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preprocessing, by putting no restrictions on the decision algorithm, by provid-569

ing the implementation details, and integrating the backtransformation in the570

pySPACE framework which already comes with a large number of available571

algorithms.572

Backtransformation can be used for interpreting the behaviour of the de-573

cision process, but it remains an open question on how the further analysis is574

performed, so that additional investigations and expert knowledge might be575

required. A related problem occurs when using temporal and spatial filters.576

Here the solution is to visualize the frequency response and the spatial pat-577

tern instead of the pure weights of the transformation. The frequency response578

gives information on how frequencies are filtered out and spatial patterns give579

information on which signal in space is emphasized by the respective spatial580

filter. It would be interesting to develop new methods, which improve the inter-581

pretability of the decision process, e.g., by extending the method of covariance582

multiplication with a more sophisticated calculation of the covariance matrix583

or by deriving a different formula for getting the forward model. This might584

enable the backtransformation to reveal new signals or connections in the data585

which can then be used to improve the observed data processing chain.586

In future, it would be interesting to further analyze the application of587

the backtransformation, e.g., by using other data or processing chains, by588

analyzing regression problems, or by integrating it into other algorithms and589

analyzing its benefit.590
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Krell MM, Wöhrle H (2015) New one-class classifiers based on the origin644

separation approach. Pattern Recognition Letters 53:93–99, DOI 10.1016/j.645

patrec.2014.11.008646

Krell MM, Straube S, Seeland A, Wöhrle H, Teiwes J, Metzen JH, Kirchner647

EA, Kirchner F (2013a) pySPACE - a signal processing and classification648

environment in Python. Frontiers in Neuroinformatics 7(40), DOI 10.3389/649

fninf.2013.00040, https://github.com/pyspace650
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