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Abstract

The autonomous mobility of mobile robots has great contribution to human beings exploring haz-

ardous terrains. The motivation of this thesis is to detect different types of terrains traversed

by a robot based on acoustic data from the robot-terrain interaction thereby helping to make the

mobile robots more autonomous. The acoustic data was collected using a microphone mounted

on our robot. Then, these recorded datasets were used to train classifiers so as to distinguish

different terrain types from one another. Different acoustic features and classifiers were investi-

gated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient

for the feature extraction, and Gaussian mixture model and Feed forward neural network for the

classification. We analyze the system’s performance by comparing our proposed techniques with

some other features surveyed from distinct related works. Thus, we demonstrate the effectiveness

of our approach using five different terrain classes which are trained using real data sets gathered

from different ground surfaces. The experimental result indicates the average accuracy obtained

is approximately 93.6% and it is enhanced to 95.2% with an increase in audio duration. In

real applications, it is better to decrease the detection time and our system still has satisfactory

performance using human-like terrain labeling even for smaller audio duration. These are very

promising results which show that acoustics is an interesting domain that needs to be extensively

explored to improve the autonomy of tracked robots.
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Chapter 1

Introduction

This chapter initially explains the general introduction to mobile ground robots. Then, it presents

motivation of the thesis, particular problem addressed and outline of the thesis. Finally, the

chapter summarizes the state-of-the-art in terrain type classification.

1.1 Background in mobile ground robots

The autonomous mobility potential of mobile ground robots (rovers) provides a tremendous

contribution for humans to explore the surface of other planets or other hazardous areas. The

drawback of close teleoperational supervision of robots is the remarkable constraint on the dis-

tance traversed by a robot due to a limited communication with operators on Earth. Thus,

improvements in robot autonomy will help mobile robots to travel longer distances with re-

stricted human control, which in return results to a scientific data from locations that were

previously unaccessible. The inability of current robots to autonomously indicate terrain re-

gions such as unknown hazards, creates a significant problem on the successful realization of

a mission. In general, autonomous navigation is limited to benign environments previously

determined by human operators. Furthermore, the capacity to detect possible dangers from a

distance would pave a way to safe autonomous travel.

The mobile ground robots must be able to handle harsh, complex and unpredictable terrain

conditions. The ability of these robots to detect and avoid dangerous situations depends on

how much precise, accurate and reliable perception system they have. In addition, an increase

in accuracy can occur by the fusion of data from different sensors, so it is of great significance

for scholars in robotics to proceed searching the possible sensor choices. Mobile robots can use

proprioceptive sensors such as global positioning system (GPS), inertial navigation system (INS)

and compass to measure values internal to the system. On the other side, exteroceptive sensors

are designed to observe their environment such as contact sensors for measuring interaction

forces, range sensors for calculating the distance to objects in their operational area and vision

sensors to extract information from images. These sensors might be reliable in some factors
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and unreliable in other factors, so it is recommended to use combination of different sensors to

get accurate terrain classification. To mention an example, optical sensors are used in scene

interpretation to understand the surroundings without the requirement of interaction but they

are unreliable due to the variation in appearance. The factors that could change the appearance

include variation in lighting conditions, changes in consistency such as dirty water, distortion

of water due to wind and misleading appearance of surface vegetation. They could obscure

features such as color, intensity, shape and reflective properties coming from camera imagery.

In contrast, acoustic sensors are not sensitive to changes in appearance and none of these factors

have a great deal of influence on the sound of the vehicle-terrain interactions, but the direct

contact with hazardous terrain types may damage the robot. However, interaction can be the

only choice when the optical sensors are not working properly. These two sensing modalities

might be unreliable due to other factors in different circumstances. Thus, they can be used to

adjust each other’s mistakes.

This thesis is part of the TRADR project 1 which stands for Long-Term Human-Robot Teaming

for Robot-Assisted Disaster Response [1]. TRADR uses the experience gained from the Natural

human-robot cooperation in dynamic environments (NIFTi) project [2]. TRADR develops

technology for the successful accomplishment of different missions by teams comprising human

rescuers and different robots. For this purpose, it applies user centric design approach which

involves coordination with end users and the technology. The goals of TRADR are to develop

persistent environment models, to improve the experience of team member’s on how to operate

in disaster areas (persistent multi-robot models) and to enhance the team-work.

The motivation behind this thesis is to detect different types of terrains traversed by the robot

based on the acoustic data recorded with a microphone from the robot-terrain interaction. In

order to classify the different terrain types, human-like terrain labeling would be useful so that

the robot can use human concepts to communicate with a human operator about the terrain.

Thus, the robot is able to label the terrain in a way that makes sense to a human. It also

gives an information for the operator what kind of terrain the robot traverses. The detection

of different terrains could protect our robot from damage which might occur when the robot

collides or gets into hazardous terrain types. In addition, it might help our robot to analyze

further decisions made based on the detected terrain type. Even though it is beyond the scope

of the thesis, the other inspiration is to make mobile robots autonomous. Though the tracked

vehicles are capable of accomplishing the rescue operations, a human operator is needed to

operate them remotely. Hence, improving the autonomy of these robots is a relevant topic at

this time, particularly in the field of mobile robots performing outdoor missions.

The problem addressed in this thesis is terrain type classification based on acoustic data. To

solve this problem, our initial approach was to collect data from different ground surfaces. Then,

extract the relevant information using different feature extraction techniques and classify the

1TRADR is an EU-funded project. URL: www.tradr-project.eu.
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different terrains with the help several classifiers. The data collection is accomplished with

the help of microphone mounted on our robot. To the best of our knowledge, this is the first

time that human-like terrain labeling is used to classify different terrains based on sound using

TRADR robot. So part of our contribution is to implement and compare the performance of

different feature extraction techniques and classifiers proposed by researchers.

1.2 Outline

This paper is structured as follows: Chapter 1 explains in general the background of mobile

ground robots, the motivation for the thesis, the problem addressed and summarizes the state-

of-the-art in terrain type classification. Chapter 2 introduces the basics about acoustics and

the goals of feature extraction methods in general. Then, we describe in detail some concepts

of the feature extraction techniques for Mel frequency cepstral coefficient and Gamma-tone

frequency cepstral coefficient employed in our experiment and several other features that have

been presented in other publications.

Given the feature vector as data points, chapter 3 presents the different classification schemes

such as Gaussian mixture model and Feed forward neural network which can be used to train

our system. Thus, the basic principles of the well known training algorithms are thoroughly

explained. Chapter 4 initially discusses the basic components of TRADR robot hardware.

Then, we explain how to set up our robot step by step for data collection. Not only the external

hardware components deployed on our robot but also the software selected to record an audio

is discussed. Moreover, the position of microphones in the experiments and the characteristics

of the five terrain types are also illustrated in this chapter.

Chapter 5 provides description of the simulation environment and results. we illustrate the

parameters used specific to each implementation and elaborate the training algorithms in each

classification scheme. Then, we discuss the effectiveness of our system by analyzing its per-

formance measurement parameters considered in each experiments. Hence, we examine the

performance of the system by comparing different classifiers and feature extraction techniques

introduced in chapter 2 and 3. Finally, chapter 6 provides the conclusion and future work of

the thesis.

1.3 State-of-the-art

This section presents related works in acoustics and several other works in terrain classification

to visualize mobile robot terrain interactions. Liby and Stentz [3] used acoustic data to classify

vehicle terrain interactions that a mobile robot can have with an outdoor environment. The

microphones recorded data from different mobile robot terrain interactions to differentiate the

benign and hazardous terrains. Then, the acoustic data was hand labeled and used offline to
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train a support vector machine (SVM) which is the supervised multi class classifier. Moreover,

they have suggested that acoustics is a promising method for further improving the perception

system in mobile robots. Brooks and Iagnemma [4] measured the vibration signals via a contact

microphone rather than the normal air microphone, which means that it picks the vibrations

through solids, to distinguish between beach grass, sand and rock. In addition, they proposed

a self-supervised learning framework to predict the properties of distant terrain based on the

properties of the previously traversed terrains. Furthermore, they have shown that the labels

from the proprioceptive (vibration-based) terrain classifier are useful to train the exteroceptive

(vision-based) terrain classifier. Reinstein, Kubelka and Zimmermann [5] classified the terrains

based on the values of coefficients correcting the robot’s odometry in contrast to a standard

robot terrain classification which provides human labeled discrete terrain categories. Besides,

they used an inertial measurement unit to extract features from the vibrational data.

Hoiem et. al. [6] proposed a system capable of determining sound objects such as gunshots, dog

barks, laughter, sword clashes, laser guns, screams or car horns in complex audio environments.

They have utilized boosted decision tree classifiers in order to attain very good performance on

many sound instances. Menna et. al. [7] presented a real time 3D path and motion planner for

tracked vehicles that tries to alleviate some drawbacks of the current path planners. In three

main experiments taken in a training rescue area, on fire escape stairs and in a non-planar

testing environment they have proved that the robot is able to autonomously move in almost

any kind of structure. Durst and Krotkov [8] classified objects such as a clay brick, a concrete

brick, a ceramic tile, a wooden block and a zinc ingot based on the sound that resulted when the

object was struck with a cane. To classify the different objects, the most important two spikes

which are in the frequency domain were used as features. Amsellem and Soldea [9] proposed

a classifier based on the fusion of audio and visual modalities. The classification of the first

modality is based on the sound of a cane striking against the resonant object and the visual

modality performs classification of objects captured in 3D images.

Collins and Coyle [10] compared several classifiers on the problem of vibration based terrain

classification by including multiple vibration measurements recorded using an inertial measure-

ment unit, to differentiate different terrain types such as sand, clay, grass, gravel and asphalt.

To alleviate the vehicle mobility problem in these ground types, their vehicle control system

can be tuned for different conditions so that they are able to adjust to different terrains. Alex

et. al. [11] presented an event detection approach based on Mel and Gammatone frequency

cepstral coefficients as inputs for a bag of features. They come up with different competitive

outputs using a Gaussian mixture model on three different databases namely the ClEAR sound

event dataset, the D-CASE event dataset and the smart room recording datasets.

Wellington and Stentz [12] implemented an online adaptive method on an autonomous farm

vehicle to automatically estimate the true ground height in vegetation and tested the system

in farm land. Scanlon [13] used a single acoustic sensor in contact with a patient’s thorax or

neck to continuously monitor the sound and collected information related to the function of
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heart, lungs and digestive tract. This helped to assess, diagnose and treat the cardiac and

respiratory functions for health status monitoring. Cohn et. al. [14] used a low cost contact

microphone on a home gas regulator for controlling gas usage in its home appliances such as

water heater, furnace and fireplace. They have shown that their approach have the capability to

be easily and safely installed without any guidance from a professional. A contact microphone

is also known as transducer, pickup or piezo, and similar to an accelerometer. It is designed

specifically to sense audio vibrations in solid objects. They are more similar to accelerometers

than to air microphones because the normal microphones are used for detecting vibrations in

the air while contact microphones are designed with the capability to pick up surface vibrations.

Thus, contact microphones should be stuck to the body of the instrument to sense vibrations

directly from the device.

In this section we looked in to several body of work in acoustics and other terrain classification

domains. They used different variety of sensors for data collections in their corresponding

applications. Similar to the work done by Liby and Stentz [3], we used acoustics data only

to distinguish robot terrain interaction. However, the data collection methods, the robot, the

feature extraction techniques and the classification schemes used are different. In chapter 2,

we will discuss the different kinds of feature extraction techniques employed to extract relevant

information from an acoustic data.
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Chapter 2

Audio Features

The next task after having recorded audio samples for our database from different terrain types

is to extract relevant information viz important features, which can be helpful in classification.

We will start with a brief introduction into the acoustics and the goals of feature extraction

methods in general. Then, we describe the feature extraction techniques for Mel frequency cep-

stral coefficient and Gamma-tone frequency cepstral coefficient, and in section 2.4 several other

features that have been proposed in the literature. The aim of this chapter is to illustrate in de-

tail basic concepts behind the most common feature extraction techniques which are implemented

in different applications and at the same time briefly discuss other features suggested in other

publications. The proposed features are also able to imitate the behavior of human ear.

2.1 Introduction to acoustics

Nowadays the applicability of acoustic signals ranging from analyzing speech to recording earth-

quake, tracking submarines, audio and noise control, to medical diagnostic applications initiate

a huge interest in the research community. Acoustic waves are mechanical waves involving some

disturbances or vibrations in gases, liquids, and solids. These vibrations have the capacity to

stimulate the human ear and to create a sound sensation in the brain. The three different

sections of an acoustic spectrum are audio, ultrasonic, and infrasonic. The range of frequencies

which is audible to human ear is in the range of 20 Hz to 20KHz and it is more favorable

when it is between 1KHz to 4KHz. Medical applications rely on frequencies higher than 20KHz

known as ultrasonic frequency ranges while applications such as estimating earthquakes depend

on lower frequencies mentioned as infrasonic ranges.

The goal of every feature extraction technique is to capture essential information using a partic-

ular reduced representation of data. This has a great contribution to enhance the effectiveness

and efficiency of classification and can be accomplished through different methods. The first

technique is to eliminate redundancy and to remove irrelevant information from the audio data.

Redundancy refers to the part of a signal which is not required to be transmitted so as to
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completely recover an original signal at the receiving end. To mention an example, using the

same background image in a video is redundant information. On the other hand, irrelevancy

indicates to the part of signal that has no meaningful information to a human being at the

receiver side. For instance, sound signals having frequencies above 20 kHz are not audible by

humans so it is irrelevant transmitting those signals. At the same time it is good to eliminate

variability from the data that has no relevant value in classification. The other method is to

organize or restructure the data so as to gain performance improvement of the classifier. The

feature vector should also be robust against any background noise.

The generic audio classifier is visualized as shown in Figure 2.1. The feature extraction technique

extracts the important information from a speech or an audio signal and feeds it to a classifier.

In addition to this input, the classifier has also another input data collected from a stored

acoustic model. The database contains the parameters of each trained class. Different kinds

of classifiers can be employed, in our case we used Gaussian mixture model and feed forward

neural network. Finally, the classifier compares extracted features from the audio signal with

the stored acoustic data and retrieves a corresponding predicted class. There are a lot of feature

extraction techniques used in different projects; the audio features implemented in this thesis

are briefly explained in the following sections. These features are selected since they are the

most common feature extraction techniques suggested by researchers. Besides, these features

are able to mimic the behavior of human ear.

Figure 2.1: The Generic Audio classifier.

2.2 Mel-frequency cepstral coefficients (MFCC)

A wide range of techniques are employed to represent an audio signal. Perhaps the most popular

one is Mel-frequency cepstral coefficients. The main goal of MFCC feature extraction technique

is to impersonate the behavior of human ear. It is widely used in applications such as face

recognition [16], image processing [17], automatic speech and speaker recognition. The high
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level steps to calculate MFCCs are shown as follows:

I. Divide the continuous signal into short frames.

II. Compute the periodogram of the power spectrum for every frame.

III. Multiply mel filterbank and power spectra with proper spacing done by a mel scale.

IV. Find the logarithm of all mel filterbank energies.

V. Compute the DCT of the Mel spectrum.

VI. Keep only 2-13 DCT coefficients and exclude the remaining coefficients.

The basic concept of a MFCC processor as described is shown in Figure 2.2.

Figure 2.2: MFCC processor.

2.2.1 Framing and Blocking

Since an audio signal is frequently changing, the continuous signal is divided into short over-

lapping frames to get a statistically stationary audio signal. The continuous audio signal is

blocked into frames of N samples where the adjacent frames being overlapped by N −M sam-

ples (M < N). While the first frame comprises the first N samples, the second frame begins

M samples after the first frame. The standard value of N and M are 256 and 100 samples,

respectively. The drawback of taking shorter frame size is that we don’t have enough samples

to get genuine information and similarly longer frame size causes periodic change of the frame

information.

9



2.2.2 Windowing

The next step is to window each frame in order to minimize discontinuities at the beginning

and ending of the frame. The main idea here is to minimize disruptions by using a window to

diminish both beginning and ending of the frame to zero. There are different kinds of windows

with their own pros and cons. Some of them are more advantageous if applied to sinusoidal

or random signals. Some are helpful in detecting an exact frequency of a peak in a spectrum,

while some accurately specify the level of an amplitude peak. The appropriate window should be

chosen in accordance to the specific application and Table 2.3 shows the most common windows

with their features. Hamming window is the commonly used window function as compared to

Figure 2.3: Types of windows [30].

the existing many window functions such as blackman window and flat top window. Hamming

window is formulated as shown in Equation 2.1 and plotted as in Figure 2.4.

w(n) = 0.54− 0.46 cos

(
2πn

N − 1

)
0 ≤ n ≤ N − 1 (2.1)

The output after windowing can be expressed in Equation 2.2 as follows:

y(n) = x(n)× w(n) 0 ≤ n ≤ N − 1 (2.2)

Where N stands for the number of samples in the frame.

Figure 2.4: Hamming window.
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2.2.3 Fast Fourier transform (FFT)

The Fast Fourier transform is a fast algorithm for efficiently calculating the Discrete Fourier

transform (DFT) on the N samples of the frame. It converts each frame from the time domain

to the frequency domain. The Fourier transform of a continuous signal can be formulated as in

Equations 2.3 and 2.4.

X(f) =

∫ ∞
−∞

x(t)e−i2πftdt (2.3)

x(t) =

∫ ∞
−∞

X(f)ei2πftdf (2.4)

For −∞ < f < ∞, −∞ < t < ∞, and i =
√
−1. The corresponding Fourier transform for the

sampled version of a continuous signal can be defined as in Equations 2.5 and 2.6.

X(j) =
1

N

N−1∑
k=0

x(k)e−i2πjk/N (2.5)

x(k) =
N−1∑
j=0

X(j)ei2πjk/N (2.6)

For j = 0, 1, · · ·N − 1 and k = 0, 1, · · ·N − 1. While X(j) computes the frequency domain

function, x(k) represents the time domain function. When the x(k) series is real, then the real

part and imaginary part of X(j) are an even function and an odd function, respectively. The

interpretation is that the FFT coefficients between N/2 and N − 1 can be visualized as the

negative frequencies between −N/2 and −1. Some of the common operations related with FFT

are computing a spectrogram, the convolution of two time series and the correlation of two

time series. A spectrogram is defined as a visual representation of the power spectrum of the

sound as a function of time. The power spectrum of an original audio signal is estimated by a

square of the complex Fourier coefficients’ magnitude. Even though it is possible to evaluate

these operations without the help of FFT, it is preferred to use FFT due to its computational

saving. But aliasing, which is a phenomenon where high frequency components impersonate

low frequencies, is one of the problems experienced by using DFT. The next task is to calculate

the power spectrum of each frame so as to identify which frequencies are present in the frame.

2.2.4 Mel scale

The mel scale indicates how precisely to space our filter banks. According to the different

studies conducted, human perception of frequency contents of an audio signal follows a linear

frequency spacing below 1000Hz and a logarithmic spacing above 1000Hz as shown in Figure

2.5. Thus, for each actual frequency in Hz, the corresponding mel scale is computed using the

approximate formula in Equation 2.7.

mf = 2595 log10(
f

100
+ 1) (2.7)
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Figure 2.5: Mel scale [17].

We apply the mel filterbank, which are a set of triangular filters, to the power spectra with

proper spacing done according to the mel scale. Then, we take the logarithm of the energies

to match our features more closely to what humans actually hear since loudness doesn’t follow

a linear scale. The general form of the filterbank is represented in Figure 2.6. The logarithm

of these energies, which is called as Mel spectrum, can be employed for determining the first

13 coefficients using DCT. The higher frequency coefficients are discarded since they have little

information for classifying the audio signal.

Figure 2.6: Mel scale filter bank [20].

2.2.5 Discrete cosine transform (DCT)

The final task is to convert the log mel spectrum back to the time domain using discrete cosine

transform. Once MFCC is computed, we have a representation of the spectrum analogous to

the human hearing perception. The overall envelope is more important than the fine details of

the spectrum. When we compute the DCT and ignore the higher coefficients, we are keeping the

essential information in the lower coefficients. Since the higher coefficients are more noise-like,

they don’t have beneficial information and are not relevant for training. So, each frame of the

audio signal is converted to a sequence of MFCC feature vectors and the output is formulated
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in Equation 2.8 as follows:

Cn =

√
2

k

k∑
l=1

(logDk) cos

[
m(l +

1

2
)
π

k

]
(2.8)

k shows number of samples, Dk indicates the DFT values, m = 0, 1 · · · k − 1, Cn represents

the MFCC and m, which in our case is 13, is the number of coefficients. So, the total number

of coefficients extracted from each frame is 13. Note that the first coefficient ,C0, constitutes

the mean value of the input audio signal and carries little specific information so we exclude

it from the DCT. This first coefficient is known as a direct current (DC) coefficient while all

the remaining coefficients are mentioned as an alternating components (AC) coefficients. These

coefficients or waveforms are also referred as cosine basis functions and at the same time they

are orthogonal to each other. So, this orthogonality indicates that one waveform cannot be

expressed as a linear combination of any other waveforms. Thus, summation overall points of

the multiplication of one waveform with the other yields zero value while multiplication of a

waveform with it self yields a constant value.

2.3 Gammatone frequency cepstral coefficients (GFCC)

This section explains an acoustic feature extraction technique known as Gammatone frequency

cepstral coefficient which is based on Gammatone filters.

2.3.1 Gammatone filter (GTF)

Johannesma introduced Gammatone filters in 1972 to elaborate the impulse response function

of cochlea in the auditory system [21]. The Gammatone filter banks are modeled to imitate the

behavior of human hearing [22] and they are overlapped non-uniform bandpass filters.

The time domain impulse response of a Gammatone filter is described in Equation 2.11. The

function is an amplitude modulated sinusoidal tone of frequency fcHz, where the envelope is

governed by the well known Gamma distribution. The naming is originated from these two

components by observing the nature of the impulse response [23].

Gamma distribution : Atn−1e−2πbt (2.9)

Sinusoidal tone : cos (2πfct+ φ) (2.10)

Gamma tone : Atn−1e−2πbt cos (2πfct+ φ) (2.11)

The parameter n is the filter order and regulates the shape of the envelope, A describes the

output gain, b controls the duration of impulse response, i.e., the bandwidth as given in Equation

2.12, fc determines the center frequency of filter. Moreover, φ is the phase shift which describes

the relative position of the carrier with respect to the envelope and for simplicity it is set to
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zero. According to some studies [24], [25], the gammatone filter has a good approximation of

human auditory filter when between 3 and 5 filter orders are used. The Gammatone impulse

response is visualized in Figure 2.7.

b = 1.019 ∗ 24.7 ∗
(

4.37 ∗ fc
1000

+ 1

)
(2.12)

Figure 2.7: The gammatone distribution is on top, in the middle is the sinusoidal

tone and the gammatone impulse response is described in the bottom [26].

The gammatone filters are also known as channels. Note that there are around 3000 inner

hair cells in the cochlea of the human auditory system. Since each hair oscillates at a different

frequency, it means that the system has approximately 3000 bandpass filters. So as to imitate

the behavior of the human auditory system, the center frequency of the gammatone filters are

equally distributed based on the bark scale as given in Equation 2.13.

Bark = 13 arctan (0.00076f) + 3.5 arctan

((
f

7500

)2
)

(2.13)

The bandwidth of each auditory filter can also be described by a psychoacoustic measure known

as equivalent rectangular bandwidths (ERB) as in Equation 2.14.

ERB[f0] = 6.23 ∗ 10−6f20 + 93.39 ∗ 10−3f0 + 28.52 (100 < f0 > 10000) (2.14)

The approximate frequency response of gammatone filters for modeling the human auditory

filter is given by Equation 2.15. We can estimate an nth order gammatone filter by a cascade

of n identical first order gammatone filters.

GT (f) ≈
[
1 +

j (f − f0)
b

]−n
(0 < f <∞) (2.15)

One of the factors that contribute to the acceptance of GTF in the speech-recognition commu-

nity is its simple description in terms of time-domain impulse response. Since the time-domain

implementation avoids the complex spectral evaluation, it might help on an efficient hardware

implementation [26]. In contrast, one of its drawbacks is its complex frequency domain illus-

tration. Due to this complexity, it is difficult to execute GTF in the analog domain.
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2.3.2 GFCC basics

GFCCs are based on gammatone filters designed to simulate the behavior of the human ear.

GFCC is also a FFT based feature extraction technique and the computation process is similar

to the MFCC feature extraction scheme. The block diagram for GFCC is shown in Figure 2.8.

Figure 2.8: GFCC block diagram [27].

Similar to the explanation for MFCC in section 2.2, the first step of the algorithm is to divide an

audio file into frames with duration between 20−30ms. In such a small interval, the continuous

audio signal can be considered as stationary for facilitating the signal analysis. Hamming

window is the preferred alternative to minimize discontinuities at the begin and end of the

frame. Then, FFT converts the audio signal from the time-domain to the frequency domain. So

as to simulate the cochlea, we use a group of filters known as gammatone filter bank and apply

them to the signal’s Fast Fourier transform. In order to model the human loudness perception,

the logarithm is employed for each filter bank output. Finally, the GFCC feature vectors are

extracted applying a DCT.

2.4 6D and 9D feature vectors

6D feature vectors also known as gianna features [3] are computed by combining 6 different

scalar values. These scalar values are ZCR, short time energy (STE), energy entropy, spectral

centroid, spectral rolloff, and spectral flux [28], [29]. Similarly, 9D feature vectors also called as

gianna and shape features [3] combine the above mentioned 6D gianna features and other 4D

shape features. Note that these shape features are also combinations of the scalar values called

spectral centroid, standard deviation, skewness and kurtosis [28].
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2.4.1 Zero-crossing rate (ZCR)

ZCR is a measure of the rate of sign changes of an audio signal rated by the value of the signal

[28]. If consecutive samples have different algebraic signs then a zero crossing occurs. The

periodic and noisy signals have small ZCR and high ZCR, respectively. The ZCR is formulated

as in Equation 2.16.

ZCR =
1

M − 1

M−1∑
d=1

Π{SmSm−1 < 0} (2.16)

M indicates the length of signal S, the value of the function Π(a < b) becomes 1 whenever the

inequality a < b is true, otherwise its value is 0.

2.4.2 Spectral flatness measure (SFM)

SFM is also sometimes known as “tonal coefficients” and is used in applications such as digital

signal processing to characterize an audio spectrum [28]. High spectral flatness shows that all

spectral bands of the spectrum has a similar amount of power analogous to white noise while

low spectral flatness indicates the spectral power is condensed in a comparatively small number

of bands like sine waves. As can be observed from Equation 2.17, it is computed by a ratio

of the geometric mean of the power spectrum to the arithmetic mean of the power spectrum,

where x(n) represents the amplitude.

SFM =

N

√∏N−1
n=0 x(n)∑N−1

n=0 x(n)
N

(2.17)

2.4.3 Spectral centroid and spread

Spectral centroid is a measure frequently related with the brightness of a sound and shows the

center of mass of the spectrum [28]. This feature is found by calculating the “center of gravity”

evaluated using the information from the Fourier transform frequency and magnitude values.

Equation 2.18 gives the mathematical formulation, where x represents the center frequencies of

the bins and p(x) is the probability of x.

µ =

∫
x.p(x)dx (2.18)

Similarly the spectral spread or variance indicates the deviation of the spectrum from its mean

and can be calculated as in Equation 2.19.

σ2 =

∫
(x− µ)2.p(x)dx (2.19)
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2.4.4 Spectral skewness

Spectral skewness is a feature which measures the asymmetry of a probability distribution in

the spectrum of a signal [28]. A negative or positive skewness shows the concentration of energy

on a lower and a higher parts of the spectrum, respectively. A zero value indicates a symmetric

distribution, so the probability density function is relatively evenly distributed on both sides of

the mean. It is calculated from the third order moment in Equation 2.20. Then, the spectral

skewness is evaluated as m3
σ3 .

m3 =

∫
(x− µ)3.p(x)dx (2.20)

2.4.5 Short time Energy (STE) and energy entropy

STE is found by evaluating the addition of the squares of amplitudes [29] as in Equation 2.21,

where x(n) is amplitude.

STE =

N−1∑
n=0

x2(n) (2.21)

The energy entropy is another measure which illustrates the abrupt changes in the level of

energy in the signal [29]. The mathematical formulation is shown in Equation 2.22, where K

represents the number of sub frames and σ is the normalized STE of a sub frame.

E = −
K−1∑
i=0

σ2. log2(σ
2) (2.22)

2.4.6 Spectral roll off, Spectral kurtosis and Spectral flux

Spectral roll off is frequency domain feature and it is defined as the frequency where 95% of the

signal energy is concentrated [28] as in Equation 2.23. fc represents roll off frequency while sr
2

indicates the Nyquist frequency.

fc∑
0

a2 (f) = 0.95

sr
2∑
0

a2 (f) (2.23)

Spectral flux is a measure of the change in power spectrum of a signal between successive

frames [29]. Equation 2.24 gives the mathematical formulation. Where N indicates the power

spectrum, j represents a frame and k is a sample in each frame.

Fluxj =

S−1∑
k=0

(Nj,k −Nj−1,k)
2 (2.24)

Spectral kurtosis is defined as the measure of the probability density function’s flatness with

respect to its mean value [28] and it is evaluated from the fourth moment in Equation 2.25.
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Thus, spectral kurtosis is calculated as m4
σ4 .

m4 =

∫
(x− µ)4.p(x)dx (2.25)

Once we have extracted important information using the different feature extraction techniques,

the next task is to feed those features as input in to classifiers for both training as well as testing

the system. Thus, the next chapter 3 introduces to different classification schemes utilized in

our thesis.
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Chapter 3

Classifiers

This chapter describes the most common classification schemes used in pattern recognition ap-

plications. In the beginning, we briefly present the basic concepts of Gaussian mixture models.

In this context, we explain the expectation maximization algorithm which is the most well-

established technique for estimating parameters. In addition, this chapter presents how to decide

whether the feature vector belongs to the model or not in accordance to evaluation of maximum

posterior probability of feature vectors. This chapter also introduces the inspiration for artifi-

cial neural networks, the different layers of neural networks, the different activation functions

employed and the back-propagation algorithm used to train the network properly. Finally, the

basic concepts of another classification scheme known as support vector machine is illustrated.

3.1 Gaussian mixture model (GMM)

Different kinds of models can be used to train a system. GMM is among the mature methods

which have an increasing demand in the pattern recognition community. A Gaussian mixture

model is an unsupervised classifier, because we estimate the probability density function of the

observations during a training stage, since in the beginning the data points are not assigned to

any of the Gaussian. Furthermore, it is a parametric probability density function stated as a

weighted sum of a given number of gaussian component densities as shown in Figure 3.1. In

order to classify a given data having MFCC or GFCC feature vector, the GMM parameters

are estimated in the training stage. The most common method to achieve this is Expectation

Maximization algorithm. To build a classifier with GMMs, every class constructs its gaussian

mixture independently in the training stage. Because of that, it is not necessary to retrain the

whole system when a new class is added to the classification problem. One drawback that can

restrict its practical usage in real time applications is that it demands huge amount of memory

to store the various coefficients and complex exponential calculations.
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Figure 3.1: 1-D Gaussian Mixture Model [18].

3.1.1 Univariate and Multivariate Gaussian distribution

The Univariate Gaussian distribution is also known as normal distribution. It plays a very

essential role in different methods of statistics. A normally distributed continuous random

variable is symmetric with respect to its mean. While the mean of a distribution describes the

center position of its plot, the standard deviation determines how much a given value deviates

from the center of its graph. Depending on the value of standard deviation, the curve will

become either flat and wide or tall and narrow. This belly shaped distribution is defined by

Equation 3.1 and plotted in Figure 3.2a.

p(x;µ, σ2) =
1√
2πσ

exp

(
− 1

2σ2
(x− µ)2

)
(3.1)

The parameter µ is the mean and σ the standard deviation of the distribution. A distribution

is called standard normal distribution when the µ = 0 and σ = 1. A vector variable X having

a multivariate gaussian distribution with mean µ and covariance Σ is given by the probability

density function in Equation 3.2 and shown in Figure 3.2b.

p(x;µ,Σ) =
1

(2π)
n
2 |Σ|

1
2

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(3.2)

Where x = [x1, · · · , xn]T and it is defined as X ∼ N(µ,Σ) in which N is the normal distribution,

n is the number of features in the model, µ is the n dimensional mean vector, Σ is a n by n

covariance matrix and |Σ| denotes its determinant. In most cases the features are independent

and thus Σ is a diagonal matrix.

20



(a) Univariate Gaussian density (b) Multivariate Gaussian density

Figure 3.2: On the left is a univariate Gaussian density with a single variable and

on the right is a multivariate Gaussian density with two variables [31].

3.1.2 GMM training

A Gaussian mixture model then consists of K multivariate Gaussian distributions with a linear

combination of weights πkε{1···K}. During training, we estimate the GMM parameters, which

are the mean vectors, covariance matrix and mixture weights, of the multivariate gaussian prob-

ability density functions for given training data points consisting of feature verctors. As stated

in section 3.1 the most common and well-established technique for estimating the parameters

is the EM-algorithm. This algorithm is an iterative method which estimates the mean and

covariance matrix till some convergence threshold is reached. The EM algorithm has two steps

which are known as expectation step and maximization step. The algorithm initially assumes

a given set of parameters for the components of the Gaussians and it is assured to converge to

a local optimum. The steps are explained as follows:

1: Pick an initial guess for the parameters: means µj , covariances Σj and mixing coefficients

πj .

E-step: Compute posterior probabilities or responsibilities using the current values of

the parameters as in Equation 3.3 for all data points xi , 1 6 i 6 N and all mixture

components, 1 6 k 6 K. Note that for each data point xi, the weights are defined

such that
∑K

k=1 πk = 1.

γk (x) =
πkN (x|µk,Σk)∑K
j=1 πjN (x|µk,Σk)

(3.3)

M-step: Re-estimate the mean, covariance and mixture coefficients using the probabilities

from the E-step. The updated mean vector, covariance and mixing coefficients are found
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as indicated by Equations 3.4, 3.5 and 3.6, respectively.

µnewj =

∑N
n=1 γj (xn)xn∑N
n=1 γj (xn)

(3.4)

Σnew
j =

∑N
n=1 γj (xn) (xn − µj) (xn − µj)T∑N

n=1 γj (xn)
(3.5)

πj =
1

N

N∑
n=1

γj (xn) (3.6)

Note that xi and µj are d dimensional vectors, and the covariance matrix is of

dimensionality d ∗ d.

Step 4: Evaluate log likelihood value as in Equation 3.7 and repeat the E-step and M-step

until convergence.

There are two options in initializing the algorithm. The first one is to conduct the E-step by

setting some initial parameters which are the mean, the covariance matrix and the mixture coef-

ficients. The second option is to accomplish first M-step by starting with a set of initial posterior

probabilities or responsibilities γk (x) for every data points. When either the magnitude of the

estimated parameters or the value of the log-likelihood calculated after each iteration doesn’t

appear to change in a significant amount or falls below some threshold then it indicates that

the algorithm has converged. Note that the log-likelihood is defined as in Equation 3.7.

ln p (X|µ,Σ, π) =

N∑
n=1

ln

{
K∑
k=1

πkN (xn|µk,Σk)

}
(3.7)

Here we provide an example of the EM algorithm for a mixture of two gaussians applied to

some data sets in Figure 3.3 below. Plot (a) indicates the data points in green and the two

gaussian mixture components are shown as blue and red circles. Plot (b) shows the result of an

initial E-step where every data point is assigned to either of the gaussian components according

to the value of posterior probabilities. The condition after the first M-step is indicated in Plot

(c) in which the blue gaussian has moved to the center of mass of the blue data-set and the

same happened for the red gaussian. Figures (d), (e) and (f) indicate the results after 2, 5 and

20 iterations of the EM algorithm, respectively.

3.1.3 GMM testing

The next step after the training phase of the GMMs is to use it as a classifier in the testing

phase. In this step we decide whether a given feature vector belongs to a model based on an

evaluation of the Maximum a posterior probability(MAP) relative to the model.
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Figure 3.3: Illustration of EM algorithm for a given data set [19].

Maximum posterior probability of the parameters θ is described as finding the parameters θ that

maximizes the posterior distribution. The θ in our case represents the index of the GMM model

for every class. Thus, our system outputs the index of a class which has the highest MAP value.

The posterior distribution of θ is given by p(θ|x) and mathematically as p(θ|x) = p(x|θ)g(θ)
p(x) .

Since the denominator of posterior function doesn’t depend on θ, it doesn’t have contribution

in the maximization. Equation 3.8 shows the formula for estimating MAP, where θ is the GMM

class and x is the feature vector of the observation.

θMAP (x) = argmax
θ
P (x|θ)g(θ) (3.8)

Maximum likelihood estimate (MLE) of the parameter θ is defined as searching the parameters

θ value which maximizes its likelihood function. The likelihood function is a function in terms

of its parameters which means it is a joint probability of the perceived data conditioned on the

parameters. The likelihood function of the parameter θ is given by P (x|θ). Then, the MLE

estimate of θ is formulated as in Equation 3.9. In MLE there could be more parameters that

satisfies the property, so it might not be unique. Furthermore, MLE could fail to exist which

means there might not be θ that achieves the maximization property.

θML(x) = argmax
θ
P (x|θ) (3.9)
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Some of the advantages of MLE are: its computation is easy and it is usually interpretable. In

addition, it has asymptotic properties such as consistency, normal and efficiency. MLE is also

invariant under re-parameterization. On the other hand, it has also some disadvantages. Since

it is a point estimate, there is no representation of uncertainty. In addition, it can over-fit the

data which means the value of the parameter estimate is sensitive to a random change in the

data.

Similar to MLE, MAP has also some pros and cons. The advantages of MAP are the simplicity of

its calculation and interpretation of results. In contrast to MLE, they avoid over fitting of data.

Furthermore, it usually converges to same value as MLE. To mention some of the problems,

there is no representation in uncertainty for the parameter θ because it is point estimate. In

contrary to MLE, MAP are also not invariant under re-parameterization.

3.2 Neural network basics

Many people compare computers with the human brain and actually they have some similarities.

The human brain consists of billions of cells known as neurons. The three parts of a neuron

are the central body, dendrites or cells input to central body and the axions or cell outputs

which carry information outside the central body. The structures called synapses are used to

convert the activities of axions to electrical pulses. Similarly, computers contain billions of

switching devices called transistors which are packed on an integrated circuit. However, their

main difference is that both operate differently. While the transistors in computer are connected

in a very simple manner, the interconnection among neurons is very complex. computers use a

limited set of instructions for executions and most of them are used as a passive data storage,

while large portions of our brains work actively in parallel. The conventional computers are not

able to solve a problem unless they follow the specific set of instructions and that is why their

problem solving capacity is restricted to only known problems. The invention of neural network

concepts tried to bridge this gap.

The inspiration behind artificial neural networks is the process of information retrieval in the

human brain. The idea is to simulate the activities of a brain in a computer and perceive

patterns like humans do. The good thing about neural networks is that we don’t need to

program it to perform some activities. In other words, it can adapt to the environment like

the human brain and it learns by example. Some neural networks might have the capacity to

generalize to datasets other than the trained data if they are properly trained. Neural networks

usually utilize supervised learning for practical applications. In supervised learning the inputs

and the desired outputs are fed as training data to the network. However, it requires a lot

of training data points and it might take a lot of computational time for successful training.

When the network is trained properly, we can feed it new inputs and the system should be able

to properly estimate the target output. Some of the advantages of using neural networks are
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its adaptive learning which is the capability to learn from the provided input information, its

parallel computation of different activities and its fault tolerance.

A typical neural network consists of some set of artificial neurons or nodes which are organized

in a series of layers as shown in Figure 3.4. The nodes in each layer also contain an activation

function. The input nodes collect information from an external environment which will be

used to train the network. The output nodes contained in the last layer, provide a response

in accordance with the information it has learned before. The activity of output nodes rely on

the behavior of hidden nodes and the weights between hidden and output nodes. There could

be one or more hidden layers, containing many nodes between input and output layer, which

perform most of the activities of artificial brain. The behavior of the hidden layers depends on

the input nodes and the weight between input and hidden nodes. The links among nodes bear

weights which might have either a positive value to magnify the input or a negative value so as

to inhibit the signal. The magnitudes of the weights indicate the significance of one node for

another one. Assigning the value of weight by hand is not feasible when the number of nodes

becomes large. It is necessary to implement an algorithm which tunes the weights to the desired

output. This process of determining the weights is known as learning or training the neural

network.

Many different types of neural networks have been proposed since the first model by McCulloch

and Pitts [32]. They differ by the activation function used, the training algorithm implemented,

the topology of the system etc. Feed forward neural networks and feedback neural networks

are two examples. The information in feed-forward neural network travels in a direct way from

the input node to the hidden node and then to the output node. There is no cycle between

the neural layers. It is simple and often applied in pattern recognition areas. Feedback neural

networks are also known as recurrent neural networks (RNN) and the information travels in

both directions there by creating a cycle. They are very powerful, complex and at the same

time dynamic.

Each neuron has an activation function which produces the corresponding output for a provided

input. These functions introduce nonlinearity to the network so as to make it more powerful

and differentiate the complex relationships that are found in feature vectors. There are a lot of

different activation functions. Three common functions are the linear, threshold and sigmoid

functions. The output is linear to the input when linear function is employed and they are

most of the time used in input and output layers. The threshold function outputs one of two

levels based on whether the input is above or below the threshold value. It is difficult to train

networks with threshold functions due to the fact that the error function is a stepwise constant

which can not be easily differentiated. Sigmoid or logistic functions are among the most well

known and widely used non-linear functions. Even though all of the mentioned functions are

rough approximations, sigmoid functions approximate real neurons better than other functions.
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Figure 3.4: Neural Network Structure [33].

They are formulated as in Equation 3.10, where β is a slope parameter.

σ(t) =
1

1 + e−βt
(3.10)

The diagram of this function is shown in Figure 3.5. Note that finding the derivative of these

functions is easy which greatly facilitates updating the weights during training.

Figure 3.5: Sigmoid Function.

3.2.1 Back-propagation algorithm

To train the network properly, the weights between each node should be adjusted correctly

so that the error between the desired output and actual output is minimized. A well known

learning algorithm employed is the so-called back-propagation of error. It is an iterative process

that reduces the error learning by example. Initially the network provides an output for a given

input and set of weights. Then, we compute the mean squared error between the desired output

and actual output. In order to estimate the error of a hidden node just before the output layer,

we multiply the weights between the hidden node and output nodes with corresponding output
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node error and sum up the products. This result equals the error for the provided hidden node.

This procedure continues for all nodes from one layer to another layer in backward direction

opposite to the normal information flow. For each example case, the weight change is updated

so as to minimize the error. This iterative process repeats until the overall error is below some

threshold value.

3.3 Support vector machine (SVM)

SVMs are another method to solve the classification problem through finding separating hyper-

planes. In other words, given a model of labeled training data, the goal of the algorithm is to

output an optimum hyperplane which classifies the test data. Vladimir Vapnik and colleagues

introduced the SVM in 1995 [34]. However, due to the fact that the data is usually not linearly

separable, SVM came up with the idea of the kernel based feature space in order to represent

the data in higher-dimensional space. SVM has a solid theoretical background and became

practically successful.

For simplicity let us see how to find an optimal hyperplane which can linearly separate the blue

and red 2-D data points of two different classes. We can observe from Figure 3.6 that there

could be many straight lines which can separate the two classes. But all of them are not optimal

solutions to the problem. An optimal solution is a line which is far as much as possible from

the data points. If a line is near to data points, it might be very sensitive to noise and could

fail to classify data samples correctly.

Figure 3.6: Separating lines for a 2D-points [36].

3.3.1 Compute optimal hyperplane

The ultimate goal of the SVM algorithm is to find a hyperplane which provides the largest

minimum distance to training data points. As can be shown in Figure 3.7, the width of the

margin is twice the minimum distance to the data points. For each data point xi, with i = 1 · · ·n
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Figure 3.7: Separating lines for a 2D-points [19].

data points and a class label y ∈ {1,−1}, a decision boundary is parameterized by a vector W

and a constant b as in Equation 3.11.

W TX + b = 0 (3.11)

While any data above the decision boundary have a value of 1, any data below the boundary

is labeled as −1. We can figure out if the class is classified correctly by checking if both y and

W TX + b are either positive or negative. Mathematically, this can be compactly written as in

Equation 3.12.

yi(Xi.W + b) ≥ 1 ∀i (3.12)

We also define two hyperplanes which are parallel to each other above and below the decision

boundary as shown in Figure 3.7 and formulated as in Equations 3.13 and 3.14. Support vectors

are defined as the training examples which are near to the canonical hyperplanes. Thus, our

objective is to maximize the distance between these newly added two boundaries.

Xi.W + b ≥ +1 when yi = +1 (3.13)

Xi.W + b ≤ −1 when yi = −1 (3.14)

Note that the vector W is perpendicular to both straight lines. So, the distance to support

vectors or to newly added boundaries is given by the formula in Equation 3.15.

M =
2

‖W ‖
=

2√
W TW

(3.15)

Where M is the margin. Our desire is to increase the gap between data points in the two

classes and at the same time maximizing this distance could help to minimize the classification

problem. Thus, maximizing 2√
WTW

is the same as minimizing
√
WTW
2 . Since square root
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function is monotonic function, we can in turn minimize WTW
2 . In summary, the optimization

problem is given as in Equations 3.16 and 3.17.

minimizeW,b
W TW

2
(3.16)

subject to : yi(W
TXi + b) ≥ 1 (∀data points Xi) (3.17)

This is a quadratic optimization problem in which we minimize the quadratic function subject

to some linear inequality constraints. To solve the optimization problem Lagrange multipliers

[35] are introduced.

3.3.2 Kernel functions

Kernel function is a similarity function which is mainly used to map the data into higher

dimensional space. This function helps us to do certain calculation faster, hoping that the

data could be separated in the higher dimensional space. When there is no straight line or

hyperplane in 2 dimension which can be utilized to separate the data points, then the usage of

kernel function helps us to tackle this problem. Furthermore, the kernel function is given as in

Equation 3.18.

K(Xi, Xj) ≡ φ(Xi)
Tφ(Xj) (3.18)

When data vectors Xi are mapped in to higher dimensional feature space by the function φ, the

formulation of the quadratic optimization problem is similar to above except the replacement

of Xi with φ(Xi). Mathematically, SVM is formulated as in Equations 3.19 and 3.20.

minimizeW,b
W TW

2
+ C

∑
i

ξi (3.19)

subject to : yi(W
Tφ(Xi) + b) ≥ 1− ξiand ξi ≥ 0 (∀data points Xi) (3.20)

Nowadays, researchers proposed different kinds of kernels but the choice of a kernel varies in

accordance to the kind of problem at hand. The most common ones are:

Gaussian kernel: This type of kernel is an instance of radial basis function kernel and is

formulated as in Equation 3.21. The value of sigma has a pivotal role in the performance of this

kernel. We use Gaussian kernel when the number of features are small and number of training

samples are large.

K(Xi, Xj) = exp(−γ ‖ Xi −Xj ‖2), γ > 0 (3.21)
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Polynomial kernel: This similarity function is defined as in Equation 3.22 and it performs

well when all the training data are normalized. But most of the time it performs worse as

compared to Gaussian kernel. The customizable parameters are the slope sigma, constant r and

degree d.

K(Xi, Xj) = (γXT
i Xj + r)d, γ > 0 (3.22)

Sigmoid kernel: Since the origin of this kernel is from neural networks, it is well known

for SVM. The tunable parameters are the slope sigma and constant r. It is formulated as in

Equation 3.23.

K(Xi, Xj) = tanh(γXT
i Xj + r)d) (3.23)

Chapter 4 illustrates the system setup and data collection. It introduces the software and

hardware components required for recording an audio. Then, it explains the recording setup

step by step and briefly presents the position of microphone. The next chapter also discusses

the selected five terrain types.

30



Chapter 4

System setup and data collection

This chapter provides a brief introduction to the basic components of TRADR hardware which

is extensively used in our experiment. It describes how to setup the robot for data collection.

External hardware components deployed on our robot and the software required to record an audio

are described. In addition, recording setup and position of the microphone in the experiments

are discussed. Finally, this chapter explains the different varieties of samples recorded in each

of the five terrain types considered.

4.1 Unmanned ground vehicle (UGV) hardware

This section introduces the basic components of TRADR robot hardware. Tracked vehicles are

more suited for search and rescue applications than wheeled vehicles due to the large contact

area of the tracks with the ground. We used the tracked vehicle known as TRADR robot,

which is shown in Figure 4.1, for making experiment in the thesis. The platform is a version

of the Absolem platform from Bluebotics 1 and it was developed for the NIFTi project 2. The

robot platform, with two tracks on the side connected to the central body, is portable and can

speed up to 5km/hr in flat surfaces. Each track has two active flippers and the mechanical

differential system helps the rotation of the tracks, thus stability shows improvement on sloppy

grounds. Some of the sensors installed on the robot are rotating 2D laser scanner to build up

the 3 dimensional models of the area, microphones to collect sounds and vision systems placed

on an arm to collect some images and/or videos. The robot platform can be divided into two

main systems known as locomotion system and platform body.

1 http://www.bluebotics.com/mobile-robotics/absolem/
2 http://www.nifti.eu/
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Figure 4.1: TRADR robot [37].

4.1.1 Locomotion system

The locomotion system is comprised of two main tracks, which are located on the left and

right side of the body, and four flippers as shown in Figure 4.2. While brackets are used to

mechanically connect the two main tracks and body, a differential is employed to link the two

main tracks together. Each of the main tracks have three motors. One of the motors is used for

traction of the main track and the two flippers, the remaining two are required for controlling

the flippers. Besides it is possible to control the flippers individually.

4.1.2 Platform body

The platform body accommodates the main electronic components such as an embedded PC,

power PCB which is used for managing power distribution and 3D PCB used for handling

the rotation of 3D sensor. Furthermore, the sensors deployed on the body are 3D sensor,

omnicamera, IMU and GPS. The 3D sensors are rotating 2D laser scanners which are used to

scan the environment around the robot. The omnicam helps to get a bird’s eye view around the

robot. In addition, an emergency stop button, a pull wire emergency switch and status LEDs

are situated on top of the body for safety matters.

4.2 Robot system setup

In general this section explains the robot setup for data collection. The logitech cordless rum-

blepad2 receiver is connected to robot’s USB port as shown in Figure 4.3a. Then, we mount

a laptop on top of the robot as shown in Figure 4.3a in order to save the recorded audio files.

The next step was to deploy an external microphone (Elecom table microphone) on back of

the robot near ground where robot terrain interaction occurs. This is an electret capacitor

microphone and its directional characteristics is omni-directional. Besides, it has high sound

collecting properties and suitable for active robot terrain interaction without bothering much
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Figure 4.2: UGV hardware.

by its surrounding noise. The frequency ranges from 30 to 16000Hz.

(a) Robot system setup
(b) Joystick

Figure 4.3: The robot setup for data collection showing where the sensors and laptop

are mounted. Left side and right side of Figure 4.3a are the close up of the joystick

receiver and Elecom Table microphone, respectively. While Figure 4.3b shows the

logitech cordless rumblepad2 transmitter used for running robot manually.

A USB adapter, in our case a Sennheiser USB adapter, is used to connect the microphone with

the laptop. Since in our laptop headphone and microphone jack are connected together, we

prefer to use USB sound adapter. There are some advantages of using external USB adapter.

First, external USB sound adapter accomplishes an analog to digital conversion (ADC) that

happens outside a computer which may improve the recording quality. Second, these adapters

render correct voltage for the microphones and produce more predictable outputs. Note that

using an external sound conversion device is not required but it is highly recommended.

Audacity is an open source program used to record and manipulate sound as digital audio

waveforms, supporting sound file formats such as WAV, AIFF, MP3 and Ogg vorbis. An audio
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file in audacity is editable and every action is undo-able. Audacity is cross platform and runs

on different operating systems such as Windows, Max Os X and unix platforms. Even though

audacity is one of the powerful audio editors that have no limit on the size of any track, it

also has drawbacks. The disadvantage is that on most systems it cannot support multitrack

recording, in other words it can not record more than two channels at the same time. Figure

4.4 shows a screenshot of the audacity interface.

Figure 4.4: Audacity.

In audacity we can modify the preference in edit menu such as device for recording, project

frequency, channels (either mono, stereo or more than 2 channels). In our case we are using

one microphone, so we record using one mono channel. Monophonic (mono) sound is the most

basic sound format and uses mostly a single microphone for recording and usually uses only one

loudspeaker for reproduction. In addition, the signal doesn’t have any level or phase information

and everyone hears the same sound. In contrary, stereophonic (stereo) sound is a reproduction

of sound that exploits two or more independent audio channels so that we can have the feeling

of sound heard from different directions. Stereo recording is accomplished with a carefully

positioned two or more than two special microphones. Similarly, the reproduction is enhanced

with a carefully placed loudspeakers. Some of the specific settings used for the recording are

shown in Table 4.1.

Host Channel Sample rate Sample format Device recording

ALSA 1(mono) 11025Hz 16 bit PCM default

Table 4.1: Audacity specific setting.
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Note that Advance Sound Linux Architecture (ALSA) is a linux kernel component which pro-

vides device drivers for sound cards.

So as to accept data using external microphone, the input sound setting of the laptop is changed.

Thus, we select the microphone usb headset in the input sound setting as in Figure 4.5. After

adjusting the setting, we are ready to record sound.

Figure 4.5: Sound setting.

After booting or turning on the robot using the power button switch, we have set the robot

to launch basic drivers automatically. After 15 second time delay, the driver is started. The

motion of flippers indicate that the drivers are started and the drivers look for the Joystick.

Once connection is created between the joystick receiver and transmitter, we run it manually

using the logitech cordless rumblepad2 as shown in Figure 4.3b. In order to turn on the receiver,

we press the button on it and a green light flashes on and off.

4.3 Position of microphone

This section discusses how to determine the best position for the microphone on our robot so

as to minimize the effect of background noise on classification. Initially, the planned system

setup for recording sound was to put different microphones on the robot and see the effect of

noise originating from robot’s CPU, fans and wheels. However, we couldn’t record multichannel

audio at once due to unavailability of the device that is required for multichannel recording. We

have instead recorded sound putting one microphone at different parts of the robot in different

circumstances and visualize the effect of noise. The microphone locations nominated for trial
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were the left and right front position, center position, left and right back position of our robot. In

all the suggested scenarios the microphone was near ground, where the robot terrain interaction

occurs, in order to minimize errors as much as possible and at the same time record accurate

sound. Actually while running the robot, the noise from its CPU and fan was insignificant.

Since both back positions are a bit farther from the small noise coming from the embedded pc,

they provide a little bit better sound quality compared to the other positions. So in our data

collection, the microphone was mounted in the back position. Furthermore, since the effect of

background noise such as noise from the embedded pc was not noticeable, we didn’t use any

filter mechanism in implementation of the algorithms. In the experiments, 16 bit acoustic data

were collected at a frequency of 11025Hz.

4.4 Data collection

The data collection was performed at the campus of the Saarland University, Saarbruecken,

Germany. The data were collected using the Elecom table microphone mounted on the robot

that was connected to the laptop using a USB adapter. The microphone was placed on the

back of the robot near ground to capture robot terrain interaction sound and to minimize the

effect of background noise. The joystick was used to manually drive the robot in different places

around the campus. We drive the robot using the default constant speed of the logitech cordless

rumblepad2 joystick. The data was collected from four outdoor and one indoor robot terrain

interaction, each of them considered as distinct class in our classification task.

The class in an indoor terrain interaction is known as carpet class. The other four classes in

the outdoor terrain interactions are categorized as grass, pavement, gravel and sand. The only

hazardous terrain type considered for the platform is the sand class. The remaining four inter-

actions are collectively known as benign interactions. In our data collection, we didn’t consider

other hazardous terrain interactions such as splashing in water and hitting with rocks in order to

protect the different sensitive sensors in particular and our robot in general from damage. Data

were collected for each class by driving our robot in many flat as well as uncomfortable surfaces.

For reliable terrain classification, the locations nominated for running our robot have different

characteristics so that there will be variation in the data sets of each class. Furthermore, when

the robot traversed in a terrain, the sound varied in accordance with a contact between main

track of the robot and road surface.

The sites for gravel terrain as manifested in Figure 4.6 vary from dense structured gravel to dirt

road with a wet crushed stones mixed with varying level of mud. In some occasions the robot

slipped since some of the places were not only flat but also inclined ones.

As shown in Figure 4.7 the grass terrain varies from neat and wholesome grassland to mixture of

grass with dropped down leaves from plants. The concentration of vegetation alters in the grass

land. For the pavement terrain as illustrated in Figure 4.8, the locations differ from smooth,
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(a) Gravel in hilly surface (b) Wet gravel

(c) Crushed stones (d) Fine grained gravel

Figure 4.6: Examples of various environments employed for the gravel class ranging

from fine grained gravel to a crushed stones mixed with varying level of wet mud.

(a) Wholesome grass land (b) Grass with leaves (c) Grass with dense leaves

Figure 4.7: Sample snapshots of grass terrain type where the robot traverses in

environments varying from dense grass land to a mixture of grass with vegetation.

durable new asphalt pavement to old roads with fine grained stones or concrete.

The location for carpet terrain type as indicated in Figure 4.9a is inside DFKI, Saarbruecken

offices and its surroundings. Similarly, the location for sand terrain type as shown in Figure

4.9b is a construction area in the campus and differs from a fine grained sand to mixture of

wet sand with mud and small size stones. After the robot collected 31 samples for sand class,

we were not able to continue recording because the belt of main track shifted a little bit from

its normal position. The soft sand enters inside the main track belt and creates a problem on

rotation of tracks. So, it is highly recommended not to use the platform on soft sand because

it has a risk of forcing the track going out of its way.

Note that in all terrain types, the sound is different while the robot tries to turn and change its

position to traverse in other direction. This might be because the tracks slip around a single
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(a) Smooth asphalt (b) Old road (c) Pavement

Figure 4.8: Examples of different sound collected for pavement class in different

environments ranging from rough and old roads to smooth asphalts.

(a) Carpet terrain (b) Sand terrain

Figure 4.9: On the left side is a robot in carpet terrain and the right side shows the

sand terrain in a construction area near Mensa inside Saarland university.

static point while there is no phenomenon of normal wheel rotation.

4.5 Software tools

The programming language used for implementation of the software is Matlab. The operating

systems utilized are Ubuntu 12.04 and Windows 7. The implementation of terrain classification

based on sound using MATLAB is due to its capability to test algorithms right away without

recompilation and its ability to read and write audio files in different formats easily using

functions such as wavread and wavwrite. It also has a huge and getting bigger database of built-

in algorithms for signal processing and at the same time GMM’s training algorithm is already

implemented in the Statistics Toolbox using gmdistribution class. Similarly, we also used the

pattern recognition toolbox to test a feed forward neural network as classifier. In addition, the

written documentation is clear, understandable and supported with plenty examples. It has also

online resources such as web seminars. Moreover, MATLAB’s built-in graphing tools and GUI

builder helps to analyze and interpret our data easily for intelligent decision making process.

In this chapter we looked at the system setup and data collection. In chapters 2 and 3, we

theoretically describe the feature extraction techniques and the classifiers used for training the

system. In the next chapter, the simulation environment, the different experiments done and
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their corresponding results are analyzed.
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Chapter 5

Experiments and results

Chapter 2 and 3 gave a general description of feature extraction techniques and classification

schemes. In this chapter, we present the different experiments accomplished and analyze the

corresponding results. Initially, we illustrate the parameters used which are specific to each im-

plementation and explain some of the GMM training algorithm convergence issues. Then, we

briefly introduce the different performance parameters considered. The first experiment accom-

plished is done using MFCC, GFCC, 6D and 9D feature vectors as feature extraction techniques

and GMM as classifier. The precision, recall, accuracy and confusion matrix results are an-

alyzed in detail. The next two experiments are performed to check at what point reduction of

training data begins to have an influence on the system performance. The first experiment was

done by keeping test data size fixed, varying only the training data size. The second was executed

by varying both training as well as test data size. Since in real applications a shorter detection

time is better, we conduct another experiment to measure the effect on accuracy when changing

the size of test audio samples.

The next section of this chapter describes the experiment done using MFCC, GFCC, 6D feature

vector and 9D feature vector as feature extraction techniques and a feed-forward neural network

as classifier. We present the performance parameters: confusion matrix, mean-squared error

and receiver operating characteristics. Finally, this chapter describes the graphical user interface

designed which could help users to interact easily with our system.

5.1 Preprocessing

In chapter 2, we provided the general description of feature extraction techniques used to rep-

resent an audio signal. In this section, we explain the parameters employed specific to our

implementation. We divided the original files into 4 second chunks, resulting in 324 chunks for

each class except for the ’sand’ class which has only 31 chunks. The total length of audio for

all classes in our database is 88.5 minutes. The audio was recorded in 16 bit PCM mono, with

a sampling rate of 11025Hz. The advantage of working with a small length chunk of sound is
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to minimize the computational time during execution. To evaluate the spectrogram for each

chunk, the frames comprise 256 samples with 60% overlap. The next frame begins 100 samples

after the first one, and the duration of each frame is approximately 25ms. Then, a hamming

window is utilized to minimize the discontinuities at the beginning and end of a frame. The

number of coefficients used for the FFT are 256. This provides a spectrum with 256 Fourier

coefficients. But in order to decrease execution time, we keep only the first half coefficients.

Finally, the power spectrum is computed by squaring the absolute value of FFT coefficients.

5.2 MFCC and GFCC implementations

In MFCC implementation, the first and last triangle filters are centered at 100Hz and 5512.5Hz,

respectively. The number of filters employed are 26. Then, multiplying a normalized filter bank

with the power spectrum of a signal results in 26 MFCCs. The feature vector of each frame is

represented by taking only the 2− 13 coefficients from the output of DCT.

In the GFCC implementation, we substitute the MFCC filterbank by linear phase gammatone

filters. We use 23 filters of order 4, so that the multiplication of Gammatone filters with the

power spectrum provides 23 GFCCs. Similar to MFCC, the first coefficient of the DCT doesn’t

contain relevant information and is not included as a feature. So the feature vector for the

individual frames consist of only the coefficients 2− 23.

In the implementation, the MFCC features were compared with the GFCC features with regard

to the recorded data sets in different terrains. While 13 MFCC coefficients provided enough

information, we took 23 coefficients for both feature extraction techniques in order to have a

fair comparison.

5.3 GMM classifier training algorithm

We trained our system using the GMM model and training algorithm as implemented in the

Statistics ToolboxTM software using the gmdistribution class. This class fits the data using an

expectation maximization algorithm. We conducted experiment with the K number of Gaussian

components to find the value which gives the best accuracy. The inputs for the gmdistribution.fit

class are the features extracted using either MFCC, 6D feature vector, 9D feature vector or

GFCC and the k number of components. The dimension of the data is n by d , where n

represents number of observations and d is dimension of the feature vector.

In few scenarios, the gmdistribution converges to a solution which gives a singular or close-

singular covariance matrix (ill-conditioned covariance matrices) for one or more gaussian com-

ponents. A solution having singular covariance matrix is most of the time nonsense. Occasion-

ally, this problem may be avoided by trying another set of initial values. Some of the reasons

for this problem could be:
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1) The dimension of data is comparatively higher, but there are not enough adequate observa-

tions.

2) Having highly correlated features of our data and some or all of them are discrete.

3) Using too many components to fit the data.

We used the following three suggested solutions in order to circumvent getting ill-conditioned

co-variance matrices.

1) If solutions with an ill-conditioned covariance matrix are not a big issue, we can utilize

’Regularize’ choice in gmdistribution.fit to append a small positive number to the diagonal of

every covariance matrix.

2) To utilize an equivalent covariance matrix for each Gaussian component, you can assign the

value of ’SharedCov’ to true.

3) For every Gaussian component put ’diagonal’ as the value of ’CovType’.

Note that in a GMM model, adding a new class is not difficult because only the GMM parameters

for the class have to be estimated. In addition, there is not significant effect on the classifier

and it only involves an introduction of supplementary case to the results of the classifier.

5.4 Performance measurements

Let C be the set of all classes and c1 · · · cN be an element of C. N represents the number of

classes and in our case its value is 5. The performance parameters [38] used for the classes in

Table 5.1 are described as follows. Note that the definitions are with respect to class ci and the

other classes are symbolized as cj where j 6= i.

Actual label (Gold standard)

ci (positive) cj (negative)

Predicted label
ci (positive) True positives False positives

cj (negative) False negatives True negatives

Table 5.1: Outcomes of two class prediction.

True positive (TP) is the number of true positive sound files belonging to class ci and correctly

classified as class ci.

False positive (FP) is the number of false positive sound files tested and incorrectly classified

as belonging to class ci. The parameter indicates an estimation of a sound file which belongs

to class cj and wrongly classified as a member of another class ci.

True negative (TN) is the number of sound files tested which belong to the labeled class cj

and at the same time is classified as a member of class cj . Note that TP and TN are correct

classifications.
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False negative (FN) is the number of sound files tested which are members of class ci but

are recognized as belonging to class cj .

The field of information retrieval comes up with five core metrics to assess the performance of

a classifier. These metrics are precision, recall, accuracy, F-measure and confusion matrix [38].

Precision is the proportion of true positives against the sum of true positives and false positives

of a class as in Equation 5.1.

Precision =
TP

TP + FP
(5.1)

Recall is expressed as the number of true positives divided by the sum of true positives and

false negatives of a class as shown in Equation 5.2.

Recall =
TP

TP + FN
(5.2)

While higher precision indicates a lower false positive values, higher recall shows a lower false

negative values. When both performance measures have higher score, it shows that the classifier

is providing accurate results and at the same time most of them are positive results. If a classifier

has higher recall and lower precision, this shows that the results are many but it also indicates

most of its predicted labels are incorrect as compared to the actual labels. In contrary, a

classifier with higher precision and lower recall indicates small retrieved results but most of its

predicted labels are correct in comparison to the correct labels (gold standard).

Accuracy is the ratio calculated by dividing sum of true positives and true negatives to the

total number of files in its database as defined in Equation 5.3. A feasible analogy for grasping

the principles behind precision and accuracy is to visualize a basketball player shooting baskets.

The player will be considered as accurate if he shoots correctly into the basket. But the player

will be regarded as precise if he shoots the ball to same location regardless of whether it is close

to the basket or not.

Accuracy =
TP + TN

TP + FP + FN + TN
(5.3)

F measure is a combined measure and it is defined as a weighted harmonic mean of precision

and recall measurements. Mathematically it is formulated as shown in Equation 5.4.

F =
2 ∗ P ∗R
P +R

(5.4)

Confusion matrix is mainly used to measure the performance of a classifier by analyzing

prediction of the classifier. While the rows of the matrix indicate predicted instances, the

columns show actual labels. The diagonal entries of the matrix provide the correct number of

classification for each class but the off-diagonal instances represent the number of incorrectly

classified objects. Note that the precision, recall and overall accuracy can be computed from

the confusion matrix. An example for a confusion matrix of a two class classifier is shown in

Table 5.2.
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Actual label

Class1 Class2

Predicted label
Class1 A B

Class2 C D

Table 5.2: Confusion matrix example.

A is the number of correct predictions for class1. B is the number of items classified by mistake

as members of class1 but actually belong to class2. C represents the number of instances

classified wrongly as elements of class2 though they are members of class1. D indicates the

number of correct predictions for class2.

5.5 Experiment using MFCC, GFCC, 6D feature vector, 9D

feature vector and GMM

We divided the total set of samples S into two parts, Training and Testing set. Each sound

sample has a duration of 4 seconds. While the feature extraction techniques used are MFCC,

6D feature vector, 9D feature vector and GFCC, the classifier employed in the implementation

is GMM. The classifier is then trained offline in order to distinguish the five labeled classes from

one another based on the value of maximum posterior probability of the feature vectors.

The data from the robot terrain interaction were recorded in different places for each class on

our campus. The number of data points used in the training stage and testing stage are shown

in Table 5.3. Each sound sample has a duration of 4 seconds and the total size of the audio

recorded in our database 1 from all terrain types is 88.5min. The confusion matrix evaluated

class Train Test

Grass 140 175

Pavement 140 175

Gravel 140 175

Carpet 140 175

Sand 20 11

Table 5.3: Number of data points for each class.

using MFCC, GFCC, 6D feature vector and 9D feature vector is given in Table 5.4, 5.5, 5.6 and

5.7.

All methods were evaluated using the test and training data sizes in Table 5.3, and a 5-fold

cross-validation. The given values are of this cross validation of training and testing instances of

the labeled class. In MFCC, we use 2 gaussians for the GMM model and 23 channels of the Mel

filter bank. The first coefficient from DCT is excluded because it contains the mean of input

1 http://ox6.dfki.de/publications/infostore/10/Bernd%20Kiefer?secret=694424e304f6dbb14f3b1eaff75b9e83
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Actual label

Grass Pavement Gravel Carpet Sand

Predicted

Grass 175 0 1 0 0

Pavement 0 175 14 0 1

Gravel 0 0 142 0 0

Carpet 0 0 0 175 0

Sand 0 0 18 0 10

Table 5.4: MFCC Confusion Matrix with 95.2% accuracy.

Actual label

Grass Pavement Gravel Carpet Sand

Predicted

Grass 156 8 33 3 0

Pavement 1 113 17 6 0

Gravel 14 10 104 0 1

Carpet 4 42 11 123 2

Sand 0 2 10 43 8

Table 5.5: GFCC Confusion Matrix with 70.8% accuracy.

signal which doesn’t have significant audio specific information. The 2-13 cepstral coefficients

of MFCC were enough for classifying the four classes except the gravel class. So, to improve

the results for the gravel class, the number of features were increased to 23.

For the grass, pavement and carpet using 60 samples in the training were good enough to

provide satisfactory results in classification. These three classes have an average precision of

96.4 % and an average recall of 98.3%. In contrast, recall and precision value for the gravel

class using the same number of samples in training are 66% and 99%, respectively. However,

if the number of samples increases to 140, the recall of the gravel class rises to 81% as shown

in Figure 5.2. For the sand class, 20 samples were enough to get a satisfactory (90.9% recall)

classification output. In summary, as stated by the confusion matrix in Table 5.4 the accuracy

of using MFCC feature extraction technique is 95.2%.

Some of the gravel instances were wrongly classified as sand and pavement instances. This

shows us that there is some similarity in the recorded audio of test samples. This might be

because of the similarity of fine grained gravel audio samples with audio recorded in rough old

asphalt. Some of the gravel data sets were taken on wet soil surfaces which might make a great

contribution to classify it by mistake as samples from the sand class.

We also implemented another feature extraction technique called GFCC which is based on

Gammatone filter bank. In our implementation, we replaced the filterbank of the MFCCs by

Actual label

Grass Pavement Gravel Carpet Sand

Predicted

Grass 130 6 20 15 0

Pavement 8 116 51 4 0

Gravel 1 11 53 2 1

Carpet 36 43 42 155 0

Sand 1 0 10 0 10

Table 5.6: 6D feature vector Confusion Matrix with 65.4% accuracy.
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Actual label

Grass Pavement Gravel Carpet Sand

Predicted

Grass 128 10 29 10 0

Pavement 12 97 35 3 0

Gravel 9 33 81 5 1

Carpet 24 32 23 157 0

Sand 2 2 7 0 10

Table 5.7: 9D feature vector Confusion Matrix with 66.5% accuracy.

gammatone filters. We used the same training and test data sizes and got an accuracy of

70.8% in accordance with the confusion matrix in Table 5.5. The best number of gaussians

for the GMM model was 1 and the number of channels (filters) utilized by the gammatone

filterbank were 23. In addition, we have also used 6D feature vector and analyzed the results.

In accordance to Table 5.6 its performance, with an accuracy of 65.4%, is the worst as compared

to the other feature extraction techniques. Using 9D feature vector, the accuracy rises to 66.5%

as shown in Table 5.7. But still the performance is lower than the other features.

Figure 5.1: precision of the five classes.

The precision of sand recognition in all algorithms is lower as compared to the other four classes.

This reduction can be due to the fact that there is less training data samples. However, the recall

value in MFCC shows that all relevant instances of sand are retrieved except for one sample.

The higher precision value of recognizing grass(99.4%), gravel(100%) and carpet(100%) using

MFCC as can be observed in Figure 5.1 indicates that almost all of the retrieved samples are

relevant.

Furthermore, higher recall value of recognizing grass, pavement and carpet as shown in Figure

5.2 describes that MFCC algorithm returns all the relevant results. In general, when using

GMM as classifier, MFCC has a far better performance than GFCC, 6D and 9D feature vectors.

Moreover, the difference in performance of all feature extraction techniques is shown in Figures

5.1 and 5.2.
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Figure 5.2: Recall of the five classes.

In comparison, Liby and Stentz [3] used a microphone to collect acoustic data sets in benign and

hazardous terrain types. They considered three different classes in each terrain type categories.

The data collection procedures are different from ours since they use a different vehicle. Using

9D ( gianna and shape) feature vector and binary SVMs between each pair of classes as classifier,

they achieved an average accuracy of 92% overall classes.

5.6 Accuracy for fixed and variable test data size, and variable

training data size

This section explains the two experiments performed in order to check at what point reduction

of training data begins to have an influence on system performance. The first experiment shows

the change in accuracy found by fixing the test data size to 175 samples and varying the training

samples from 20 to 140. As can be observed in Figure 5.3, the X-axis indices A,B,C,D,E, F

and G represent using 20, 40, 60, 80, 100, 120 and 140 training data samples, respectively. While

using MFCC, the accuracy varies from 88.9% to 95.6% in accordance to the size of training

data. On the other hand in GFCC, the accuracy increments from 49.6% to 71%. As can be

seen from Figure 5.3, changing training data size in MFCC does not cause a big difference in

the accuracy. But using more than 60 training samples for each class excluding sand are enough

for achieving better accuracy. On the other hand, in GFCC small change in training data size

has significant difference in the accuracy value. Thus, from our experimental result, GFCC has

better performance when the number of training samples are more than 120. We can deduce

that as the number of training datasets increases the performance improves as well without

over-fitting.

The second experiment reveals change in accuracy perceived by varying both training data size

and testing data size. In this experiment, we used the data removed from training for test. As

can be seen from Figure 5.3, in MFCC the accuracy varies from 86.4% to 95.6%, while in GFCC
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Figure 5.3: Accuracy with fixed and variable test data size. The X-axis indices

A,B,C,D,E, F and G represents using 20, 40, 60, 80, 100, 120 and 140 training data

samples, respectively.

the variation is significant which ranges from 52.8% to 71%. We can deduce that, in MFCC

more than 60 training samples and in GFCC more than 120 training samples are enough for

attaining satisfactory performance.

5.7 Effect of varying audio duration on accuracy

Another experiment is accomplished to evaluate an accuracy change due to variation in duration

of each audio sample. In real applications, it is better to decrease the detection time or duration

of audio sample, so that the robot takes an immediate action accordingly for hazardous terrains.

Initially, we divided the continuous audio signal into chunks of one second, two seconds and

four seconds. Then, our system is trained and tested separately for the three different scenarios

and their accuracy is evaluated. We used the same audio length in the corresponding scenarios.

It is also possible to train on longer ones and test the sample of varying audio length. It can

be seen from the plot in Figure 5.4, while using MFCC, when an audio length varies from one

to four second, its accuracy fluctuates in an interval between 93% and 95.6% . We can observe

that there is no significant change in accuracy by reducing an audio length from four to one

second. Similarly in GFCC, utilizing a bigger audio length has better performance as compared

to using a lower audio length but still 5% accuracy difference in human-like labeling is not very

big. It will be more realistic to decrease an audio length to 1 sec since it might not be feasible to

use 4 seconds audio length during online testing. Moreover, in accordance to the experimental
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result, our system still has satisfactory performance using human-like labeling even for smaller

audio duration.

Figure 5.4: Accuracy with three different audio length.

5.8 Neural network experiment

In this experiment, we use the Matlab R2013a neural network pattern recognition toolbox for

classification. The feature extraction techniques used are MFCC, GFCC, 6D (gianna) feature

vector [3] and 9D (gianna and shape) feature vector [3]. Since lower detection time is feasible

for real applications, an audio duration of 1 second is considered. The inputs to our neural net-

work implementation are training data, corresponding target outputs for the training data and

number of neurons in each layer. The result of the experiment is a neural network architecture

with corresponding weights of all links binding the nodes in each layer calculated by minimizing

the mean of squared errors. The implementation has matrices A and B as input to the network.

Matrix A consists of training datasets and its dimension is n by p. While n is the length of the

feature vector, in our scenario it differs depending on the feature extraction method assumed,

and p represents the number of training samples. Matrix B associates the desired output for

the corresponding training samples and has a dimension of m by p. Note that m represents

number of classes to be classified, in our case it is 4, and p is the number of training samples.

We recorded 300 samples for each class and in the implementation p contains 1200 samples.

The dimension of MFCC and GFCC feature extraction techniques for each audio sample is

12∗109 matrix. We tried two different ways to feed these features as inputs to the feed forward

neural network (FFNN). In the first place, we have changed the matrix feature vector of each

audio sample to a column vector. Thus, the number of inputs passed for both methods is 1308.

The second option is to find the mean overall frames of a feature vector for a given audio sample.

So every audio file will have its corresponding 12 coefficients as input to the network. Similarly,
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the inputs of gianna and gianna shape feature vectors are 6 and 9, respectively. Furthermore,

in this two layer FFNN 10 neurons in hidden layer and 4 output neurons is considered. For

every test input sample, only one node in an output layer generates a value of ′1′. While the

remaining other nodes provide an output value of ′0′. Since the samples collected for sand

class are small, we have trained the system only using the remaining four classes. The training

algorithm utilized in this experiment is scaled conjugate gradient back-propagation algorithm

(Trainscg). The transfer function employed in our scenario for the hidden and output neurons

is sigmoid function. We trained the data points using the toolbox and then execute the rest of

test samples against the trained network. 70% of the original data are used for training, 15%

are validation data and the remaining 15% are testing data.

The confusion matrix using the four feature extraction techniques is shown in Figures 5.5 and

5.6. The green colored squares in the diagonal of the matrix show correct classifications, the red

colored squares indicate incorrect classifications. Smaller percentage in the red squares repre-

sents fewer misclassification which shows that the system is good enough to classify accurately.

The gray squares on the matrices right side and matrices bottom indicate precision and recall

measures, respectively. If there are higher wrong classifications, it is recommended to train the

network again with a varying number of hidden neurons. Moreover, the overall accuracy of the

network is indicated by blue colored squares.

Plot 5.5a shows the confusion matrix using gianna features with an average accuracy of 81.2%.

Plot 5.5b shows the slight improvement in accuracy to 82.2% by gianna and shape features.

As can be seen from plot 5.5c, GFCC with 1308 inputs has the worst average accuracies as

compared to the others. But the accuracy rises to 82.8% when the number of inputs are 12 as

shown in Figure 5.6a. In contrast, Figure 5.5d indicates that MFCC is by far the best method

with an average accuracy of 93.9% for our scenario. We can observe from plot 5.6b that the

accuracy of MFCC doesn’t change significantly when 12 number of inputs are used.

The network performance of the system is also measured using mean square error (MSE). This

function calculates the performance based on the mean of squared errors. The performance for

the three data sets using MFCC can be observed in Figure 5.7a. As can be seen from the plot,

the mean of squared error starts initially with a big value and then rapidly decreases to smaller

value. When the non-training validation set error passes a minimum threshold, the training of

its network stops. In Matlab, the default stopping criteria is when the validation error doesn’t

decrease for 6 consecutive epochs. An epoch represents the handing over of all training samples

to the experiment.

The other performance measure is receiver operating characteristics (ROC) plot. This figure

represents the relation between true positives and false positives for all terrain types. As can

be observed from the diagram 5.7b, more than 85% of the four terrains are correctly classified

before very small percentage of the terrains are misclassified as other terrains. The movement

of the line from bottom left corner to top left corner then to top right corner, indicates that our
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(a) 6D confusion matrix (b) 9D confusion matrix

(c) GFCC confusion matrix (d) MFCC confusion matrix

Figure 5.5: The indexes 1, 2, 3, 4 represents grass, pavement, gravel and carpet

class, respectively. Plots (a), (b), (c) and (d) show gianna, gianna and shape,

GFCC with 1308 inputs and MFCC with 1308 inputs confusion matrix, respec-

tively.

classifier achieved better performance.

When the network is not performing properly, we can use some techniques to enhance the

results. The first option is to initialize both its network and training again. Note that the

parameters are distinct every time we initialize the network and its solution might also change
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(a) GFCC confusion matrix (b) MFCC confusion matrix

Figure 5.6: The indexes 1, 2, 3, 4 represents grass, pavement, gravel and carpet

class, respectively. Plots (a), (b) show GFCC with 12 inputs and MFCC with 12

inputs confusion matrix, respectively.

(a) MSE using MFCC (b) ROC using MFCC

Figure 5.7: The legend class 1, 2, 3 and 4 represents class grass, pavement, gravel

and carpet, respectively.Plots (a) shows MSE with feed forward back propagation

network using MFCC. plot (b) represents test ROC curve for MFCC using FFNN.
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accordingly. The second approach is to increase the number of neurons in hidden layer. The

third alternative is to attempt using different training algorithms. The last option could be to

try utilizing more training data because this might help in designing a network that generalizes

better to unseen data. We used the first, second and last options to improve the performance

of the network. The detailed confusion matrix plots, MSE plots and ROC curves for the other

feature extraction techniques can be seen in appendices A, B, C and D.

5.9 Graphical user interface

The graphical user interface developed helps users to interact easily with our system and make

the program easier to use. The typical advantages of GUI are for making user-friendly, speed

up user’s work, more attractive and fancy for non technical people. Generally, it looks more

professional when it is properly developed. However, it might have some disadvantages if it is

not properly built. In addition, it is slower than a command line interface and demands more

memory resources as compared to non-graphical one.

Users can select an audio recorded in different terrains from the popup menu as modeled in

Figure 5.8. It is designed to be situated on the left side of our GUI and shows list of audios

that can be utilized for testing. Our system manipulates the selected audio as input to display

predicted terrain type to screen. The display positioned in middle helps to unveil predicted

terrain type. On the right side, there are four push buttons utilized for training and testing our

data using both MFCC and GFCC feature extraction techniques. Initially, we train the system

by clicking either ’TRAIN MFCC’ or ’TRAIN GFCC’ buttons. Then, by pressing either ’TEST

MFCC’ or ’TEST GFCC’, it compares an audio nominated from popup menu with the trained

GMM model for each class and in return displays the predicted terrain to screen. Finally,

the other display, which is found below the predicted terrain type screen, informs whether the

estimation was correct or wrong.

Figure 5.8: Graphical user interface.
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Chapter 6

Conclusion and Future work

This chapter summarizes the results and concludes the work done in the thesis. In addition, it

presents the possible future work that can be accomplished as extension of our system.

This thesis proposes classification of different terrain types based on robot terrain interaction

using only acoustic data. We used human-like labeling of the terrain for verbal description of

the robot’s activities. The presented terrain type classification is based on the analysis of sound

recorded by a microphone sensor with GMM and feed forward neural network classification

schemes. We implemented MFCC and GFCC feature extraction techniques and compared the

performance to the 6D and 9D feature vectors suggested by Liby and Stentz [3]. We survey also

other related work on terrain type classification based on acoustics and other features. Liby

and Stentz attained an average accuracy of 92% across all classes using 9D (gianna and shape)

feature vector and support vector machine (SVM) as classifier. They considered the interactions

in grass, pavement, gravel, water, hard objects and slippery terrain types.

The five terrain types considered in our implementation are grass, pavement, gravel, carpet and

sand. However, due to the occurrence of technical problem during data collection when our

robot traverses on sand, it was not possible to collect as many sand samples as for the other

four classes. This is no real limitation, since it is not recommended to run the robot on sand

surfaces anyway.

To train the classifier on a variety of terrain instances of each type, the audio samples for each

class were collected in a variety of places. Then, the classifiers were trained offline in order

to classify given test samples. We varied the test sample length ranging from 1 to 4 sec to

see if the method could be used in real time fashion. The experimental results indicate that

MFCC gives by far better performance than the other feature extraction methods in both GMM

as well as FFNN classifiers. However, for features other than MFCC, the accuracy improves

when the FFNN classifier is employed. We achieved an overall accuracy of 93.5% for 1 second

test samples, which rises to 95.6% when the audio duration is increased to 4 sec. The gravel

performance was not as good as the other terrains and sometimes was confused with sand and
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pavement. We observed also that the performance improves with an increase in the number

of training data points without over-fitting. We believe that enlarging the size of database for

each class will help to attain a more generic classifier. These are very promising results and it

shows that acoustics is an interesting technique for terrain perception of a tracked robot.

It is possible to estimate the reliability of the classification by comparing the resulting maximum

posterior probabilities from the GMMs of each class. This can be done by evaluating the

confidence level of the probabilities. The classification would be more reliable if the confidence

level is higher.

Even though we attained good accuracy using five terrain types, it is recommended to include

additional terrain types as well for a future study. Adding a new class only means adding

a GMM model for the new class and an introduction of an additional possible output in the

classifier. According to different studies, speed has a huge impact on the acoustic signature of the

robot terrain interaction. The effect of speed was minimized by driving the robot manually at

constant speed for all of the experiments. Although it was out of the scope of this project/thesis

to experiment with data sets collected at different speeds, future work can be accomplished to

visualize the real impact of driving at different speed on performance of terrain classification.

Since one sensor can be reliable in one factor and unreliable in the other factor, it is recommended

to use fusion of different sensor modalities. Future work could be extended on how to combine

different feature vectors for better prediction of gravel class in particular. This combination

of features could be from either one sensor or different sensor modalities. The area of sensor

data fusion is a hot research area at this time and it is playing a pivotal role in mobile robot

interactions. Furthermore, we couldn’t record multichannel audio due to unavailability of the

device that allows multichannel recording. Future work could analyze its influence on the quality

of the classification. In addition, since the effect of noise from the embedded pc on robot was

not significant in our implementation, we didn’t use any noise extraction techniques. For further

studies, we suggest to study the internal as well as background noises and try to evaluate more

rigorously whether there is an effect on accurate terrain classification.

As extension to our system, one could possibly also consider doing a human classification ex-

periment and see how well people can guess the terrains from the sounds only. That would

give a sense of how well the classification performs compared to human hearing. Using the

proposed feature extraction techniques in the thesis, one could also try to determine the correc-

tion coefficients for the adaptive traversability approach developed by Reinstein, Kubelka and

Zimmermann [5].
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Appendix A

MFCC using FFNN

A.1 MFCC confusion matrix using feed forward neural network
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A.2 MFCC ROC using feed forward neural network
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Appendix B

GFCC using FFNN

B.1 GFCC confusion matrix using feed forward neural network
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B.2 GFCC ROC using feed forward neural network

B.3 GFCC MSE using feed forward neural network
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Appendix C

6D feature using FFNN

C.1 Gianna confusion matrix using feed forward neural network
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C.2 Gianna ROC using feed forward neural network

C.3 Gianna MSE using feed forward neural network
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C.4 Gianna feature vectors plots
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Appendix D

9D feature using FFNN

D.1 Gianna and shape confusion matrix using feed forward neu-

ral network
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D.2 Gianna and shape ROC using feed forward neural network

D.3 Gianna and shape MSE using feed forward neural network
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