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Abstract—To cope with rising hardware complexity, design
processes are increasingly moved to more abstract description
languages. Different descriptions impede the design process
because they are usually disconnected. Therefore, adding more
layers to the design process adds additional overhead to e.g. en-
sure that changes that are applied on the system level description
are either done in accordance with other less or more abstract
descriptions or that these changes are propagated accordingly.
Managing these changes has so far been a manual task.

This paper presents the Change Impact Analysis and Control
Tool (CHIMPANC), a tool that uses state of the art analysis
methods on various abstraction levels to build a single, inter-
connected model of these descriptions. These are used to track
and manage any changes on each level of abstraction and their
various refinement steps to ensure consistency throughout the
development process.

The result is a tool that assists the developer by highlighting
inconsistencies and required proof obligations across various
descriptions in order to simplify the development process over
various abstraction levels.

I. INTRODUCTION

The increasing complexity of hardware has long become
the core issue of the underlying design and development
processes. While systems with hundreds of millions of com-
ponents can be manufactured, they need to be designed in the
first place. Traditional hardware design languages (HDLs) are
increasingly unable to handle designs this large. Traditional
HDLs such as Verilog or VHDL describe systems that are
supposed to be synthesised into hardware. They usually require
designers to specify systems down to a point where they can
be synthesised automatically. This entails that these designs
need to be built from the bottom up and can only thoroughly
be tested once the design is complete. Unfortunately, this
approach cannot cope with requirements such as shorter design
cycles and a reduced time to market.

One approach to remedy this issue is to provide designers
with more abstract languages that allow systems to be designed
top-down, starting with an abstract model of the system and
its requirements. Several of these languages are being used
today. Natural language specifications are the most abstract
form of describing a system, allowing the designers to use
arbitrary language to explain how the system is supposed to
behave and be structured. Formal modelling languages such
as the UML are built upon a formal definition to avoid the
issue of ambiguities in the description. System-level modelling
language such as SystemC are the last step before synthesizer
HDLs, allowing to build virtual prototypes that can be sim-
ulated without actually implementing in the final hardware
design.

Not only do these steps offer more abstraction than the
traditional HDLs, they also form a natural hierarchy, from ba-
sically unrestricted natural language specifications, over more
formalised ways to model a system down to an executable
model without specifying its implementation details. These
steps are supposed to be used subsequently: providing a natural
language description first, then formalising it, providing a
system level model and finally implementing the design at
the register transfer level gradually leads designers through
the process. However, when following this approach, several
new challenges arise: firstly, we have to keep the models
in the different levels of abstraction consistent across the
different languages and formalisms involved, secondly, we
need a uniform notion of refinement, and thirdly, we want to
be able to track changes and their impacts across the different
levels of abstraction.

This paper proposes the Change Impact Analysis and Con-
trol Tool (CHIMPANC) tool to handle these challenges. CHIM-
PANC extracts the relevant information from the models on the
different levels and constructs mappings between them, thus
allowing to check consistency and refinements, and moreover
calculating the impact of changes. Thus, CHIMPANC ensures
that e.g. a written specification or documentation is not made
obsolete by changes in the implementation without being
warned about it.

This paper will describe CHIMPANC, by first giving an
overview of the different abstraction levels in Sect. II, outlining
the various steps it performs to properly map levels and locate
changes and check for consistency in Sect. III, and finally
giving an overview over the front-end in Sect. IV.

II. ABSTRACTION LAYERS IN HARDWARE DESIGN

This section gives a short overview over different abstraction
levels in system design, starting with the most abstract descrip-
tion and successively approaching traditional HDLs. The idea
is that the ability to describe a system in a more abstract way
means that details can be omitted early in the design process
while retaining the ability to analyse the properties that have
already been described.

A. Natural Language

The most abstract way to describe a system is natural
language. When designing a system, specifying its properties
without having to worry about details of mathematical nota-
tion, instead simply using the language one is familiar with is
a straightforward way to start the design process.



2

Natural language basically does not restrict the designer in
any way. It offers a way to describe a system with what-
ever words the author deems appropriate. This openness also
means that this description cannot be formalised: while natural
languages come with grammars that restrict the available
constructs, these rules do not mean that the result is an
unambiguous description of a certain system. While natural
language processing techniques can address some issues, an
automatic formalisation of arbitrary text is neither possible nor
desired, meaning that these specifications need to be processed
manually.

B. The Formal Specification Level (FSL)

The next step to describe a system in a more exact way are
formal languages. Standardised languages such as the Unified
Modeling Language (UML) give designers a way to describe
the system readily but at the same time force them to adhere to
a formal grammar that makes these descriptions more or less
unambiguous [1]. UML thus offers a way to add precision to
the system description.

Still, this formalised notation does not specify all aspects
of the system; e.g. the UML lacks the ability to express non-
functional requirements such as timing properties. In other
words, FSL models are merely constraining the properties of
the design, e.g. by structural diagrams enriched with OCL
constraints which limit what actions may be performed by
the system and how the output values may then be structured.
However, while these models may be used to locate potential
errors early on in the design process, they are neither complete
nor actually executable.

C. The Electronic System Level (ESL)

The next step in refining the system is to create a work-
ing prototype without going into the implementation details
required by HDLs. System level modelling languages such as
SystemC can describe the behaviour of systems without spec-
ifying how this functionality is supposed to be implemented.

SystemC, as the current de-facto ESL standard language [2],
allows systems to be described using the C++ programming
language while at the same time offering designers the means
to describe the structural features of a hardware design. The
result is a virtual prototype that can be simulated: parts that
are meant to represent hardware are managed by a dedicated
simulation kernel which invokes the relevant software parts.

This means that the ESL design is much less abstract than
at the FSL, representing a model of the system that can be
executed, while still being too abstract to be translated into
hardware.

D. The Register Transfer Level (RTL) and below

The Register Transfer Level gives designers the ability to
design systems that may be translated into hardware [3].
Dedicated HDLs are specifically designed to be mapped to
hardware, focusing on the description of structural features
and parallel execution while at the same time limiting the
designer concerning elements that cannot be built as hardware

parts such as loops (which need to be unrolled and hence
bounded). Where ESL models can just specify that a module
calculates a result using arbitrary means (such as a call to
a given software library), RTL designs need to specify how
exactly the results are computed.

E. Different Levels of Abstraction

These different abstraction levels all have particular pur-
poses and use cases:
• natural language offers a way to quickly come up with an

initial description of a given system that is well-readable
without prior training and not restricted concerning the
described properties;

• FSL models specify system properties in a precise way
amenable to formal analysis and reasoning;

• ESL models offer virtual prototypes to be run and tested;
• RTL implementations allow the design to be translated

into hardware.
All the different levels describe the same system, yet

they are written in different and at first sight unconnected
languages. Thus, we need to ensure that the models at the
different abstraction levels are consistent: the natural language
requirements need to be represented as formal properties at
the FSL, the classes modelled at the FSL need to appear
in the ESL as well, etc. Further, one abstraction level may
contain several models of the system at different degrees of
abstraction: at first, an FSL model should be no more than
a translation of the natural language requirements, while a
more detailed FSL model should be detailed enough such that
we can translate it into the ESL and SystemC. This is called
refinement: gradually adding more details which constrain the
model of the system. Keeping the models occuring throughout
the development consistent with each other is called functional
change management.

III. FUNCTIONAL CHANGE MANAGEMENT

Functional change management calculates the impact of
syntactical changes using the semantics of the documents. In
order to implement functional change management across the
different levels of abstraction, we need a unifying semantics
for the different levels.

A. Underlying Semantics

In our case, the semantics is based on Kripke structures.
Without going into the details here, a Kripke structure consists
of a set of states, a transition relation between states, and a
set of propositions which hold at each state. Thus, Kripke
structures allow us to capture the key notions of state transition
and state-dependent predicates.

We now sketch the semantics of each of our levels. The NLP
cannot have a mathematically precise semantics, as such would
counteract our motivation to use natural language in the first
place (we want users to be able to express initial specifications
without having to worry about mathematical rigour at the same
time). Instead, we use decompose the natural language re-
quirements into single semantically meaningful requirements,
which are subsequently mapped to the lower levels.
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In the FSL, the class and object diagrams give us a notion
of state (see [4] for details): classes describe the system state
(via an object model), and object diagrams describe particular
system states (in particular, initial states). State transitions
are given by the OCL constraints: there is a transition with
operation o from S1 to S2 iff. (i)

1) all invariants hold in S1 and S2,
2) the preconditions of o are satisfied in S1, and
3) the postconditions of o are satisfied in S2.

Additionally, transitions can be specified using state diagrams.
Thus, the semantic entities here are classes, invariants, pre- and
postconditions, objects, or state diagrams.

In the ESL, the semantics are given by the SystemC
semantics. States are given by the instances of the Sys-
temC modelling classes (sc_module etc.), and transitions
are given by the simulation (see [5] for details; however,
we use a reasonable abstraction from the concrete SystemC
implementation instead of a mathematically precise model
of the implementation). Thus, our semantic entities here are
classes, attributes, and methods.

The semantic entities on the respective abstraction levels
give rise to notions of mapping between them. From the natu-
ral language level to FSL and ESL, we map each requirement
to one or more specification elements which implement them.
Within the FSL, we define a notion of refinement; essentially,
a concrete specification C is a refinement of an abstract
specification A if all state transitions in C (corresponding to
a trace in the underlying Kripke structure) can be mapped
back to a state transition in A, i.e. C restricts the possible
state transitions of A. This refinement can be more concretely
realised by refining the state (data refinement) or the operations
(operational refinement), or combinations thereof. An example
of the former is the introduction of new classes or attributes,
an example of the latter is the implementation of a single
operation by a state diagram. From the FSL to the ESL,
we have the usual implementation of UML diagrams, except
that we may map classes in the FSL to instances of the
sc_module class (corresponding to the fact that in hardware,
objects exist more or less a priori). Within the ESL (e.g.
between two SystemC models), we do not consider refinement.

A system development consists of several layers
L1, . . . , Ln, each of which contains one or more specifications
from one of the abstraction levels described above. The first
layer typically contains the natural language specifications,
and the last layer Ln ESL or RTL specifications. Between the
layers, specifications are related via refinement: a specification
SP from layer Li is mapped to a specification SP ′ of layer
Li+1 if SP ′ is a semantic refinement. This mapping allows
us to keep track of properties; for example, if all initial NL
requirements are mapped to formal properties which are later
proven we can be confident that the implementation satisfies
the original specifications.

The mappings are mostly constructed automatically (see
Sect. III-E below), but partly have to be constructed by the
user (in particular, the one mapping the NL requirements).

B. A Common Data Structure

The specifications on the different levels are written in a
variety of different formalisms, each in their own syntax.
Since we aim to extensibly support a wide variety of file
types reaching from natural language to low level hardware
descriptions, it would be inflexible to implement a direct
adaptor for every input syntax. Hence we decided to employ
the widely adopted, generic Eclipse Modelling Framework
(EMF) [6], which then serves as a common basis for other
file types. This means that any format is supported as soon as
there is a translation into EMF. For the FSL this does not incur
any additional overhead if we use the UML tools provided by
the EMF. Natural Language is currently simply represented
as a list of SysML requirements. For SystemC, we use the
debug output of the clang compiler to generate an EMF model,
including namespace and class structures with type hierarchies,
operations and attributes. RTL formats like VHDL or Verilog
can be supported by providing a transformation into EMF but
that is not yet implemented.

C. Syntactic Difference Analysis

The underlying architecture of the functional change man-
agement has been derived from the GMoC system [7]. A
generic diff algorithm for hierarchical annotated data serves
as a basis [8], and provides support for syntactic difference
analysis. We adapted this algorithm to operate on generic EMF
objects (EObjects). This way we can obtain a minimal set of
changes between two EMF files. The GMoC diff algorithm
allows us to specify equivalence between the objects; in our
case, which attributes identify an object, which orderings have
a meaning and which do not. The example in Fig. 1 states that
a UML class is identified by its name, and that the order of
the contained attributes and operations is irrelevant, while on
the other hand the order of the parameters of an operation has
a semantic meaning.

element EClass {
annotations {
name!

}
constituents {
unordered { _ }

}
}

element EOperation {
annotations {
name!

}
constituents {
ordered { _ }

}
}

Fig. 1. Example ecore.equivspec file

We chose the industry-proven Neo4j graph database for
persistence, because it allows us to efficiently traverse and
transform the abstract syntax tree while providing superb
scalability. On top of this we implemented an interface from
EMF to Neo4j which allows us to analyse differences between
files on disk and the persisted syntactic tree in the database.

D. Semantic Difference Analysis

The distinctive feature of the diff algorithm is that it takes
the intended semantics of the documents into account. This
is achieved by representing the semantics by a graph as
well(explicit semantics). The semantic graph is extracted from
the syntactic graph by graph rewrite rules, which can be
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<ePackage name=’acs’>

<eClass name=’Person’>

<eAttribute name=’age’>
<eReference name=’home’

eType=’Building’>

<eClass name=’Building’>

Class
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status: added

Class

name: Building
status: added

Attribute
name: age
status: added
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name: home
status: added
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(a) after initial extraction

<ePackage name=’acs’>

<eClass name=’Person’>

<eAttribute name=’age’>

<eClass name=’Building’>

<eReference name=’neighbours’

eType=’Building’>

Class

name: Person
status: deleted

Class

name: Building
status: deleted

Attribute
name: age
status: deleted

Reference

name: home
status: deleted

ha
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hasA typ
e

origin or
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in

or
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in
(b) after application of syntactic diff

<ePackage name=’acs’>

<eClass name=’Person’>

<eAttribute name=’age’>

<eClass name=’Building’>

<eReference name=’neighbours’

eType=’Building’>

Class

name: Person
status: preserved

Class

name: Building
status: preserved

Attribute
name: age
status: preserved

Reference

name: home
status: deleted

Reference

name: neighbours
status: added

ha
sA

hasA typ
e type

hasA

or
ig

in

or
ig

in

or
ig

in origin

(c) after second extraction

Fig. 2. Change management via explicit semantics

efficiently implemented in Neo4j; after extraction, the nodes
of this semantic graph are connected to the origin nodes of
the syntactic tree (Fig. 2(a)).

When a change in an input file occurs, a diff is applied to the
syntactic tree. Then, we mark the nodes of the semantic graph
as “deleted” (Fig. 2(b)) and extract the graph again (Fig. 2(c)).
Nodes that are already present in the graph are marked as
“preserved”, nodes that do not exist are marked as “added”,
and all other nodes remain marked as “deleted”. During this
process additional semantic knowledge can be used to handle
individual nodes as required.

E. Change Propagation Across the Layers

The semantic graphs of specifications from adjacent layers
can be mapped semi-automatically by inspecting naming,
types and structure of models. Users are always in control
of these mappings and can alter or complement them where
required to reflect their intentions.

Change propagation follows syntactic changes across the
origins along the mappings of the semantic graph. That is, if
a syntactic change occurs we find which parts of the semantic
graph have their origins in the that part of the syntactic graph
which has changed, and then check which mappings either
point into, or originate from this part of the semantic graph.
For example, suppose we have three layers L1, L2, L3 with
classes C1 in L1 implemented by C2 in L2 and class C2

in L2 implemented by class C3 in L3. Classes C1, C2 and
C3 contain references R1, R2 and R3 respectively, where R2

implements R1 and R3 implements R2. The user might change
the type of R2. This change affects the abstraction R1 and
the refinement R3 and might lead to inconsistencies on either
side. If an operation is inserted into C2 this affects only the
refinement C3 since an operation does not have to be present
in the abstraction C1 for C2 to be a valid refinement. A more
complex example arises if we look at proof obligations that
arise from refined OCL constraints. These proof obligations
are of the form c1 ∧ ... ∧ cn =⇒ d, where c1 to cn are
constraints on the refined level and d is a constraint in the
abstract level. If we prove this externally (our tool does no
OCL reasoning), we can discharge the obligation and insert

additional dependency edges between the constraints c1 . . . , cn
and d. If one of these constraints changes the proof will be
invalidated and the proof obligation pops up again. Impact
rules such as these are described directly as CYPHER queries;
this makes the impact system extensible.

IV. THE CHIMPANC TOOL

In the previous section it became apparent that functional
change management needs user interaction, and hence an in-
tuitive and visual user interface. Existing tools that encompass
this workflow are rare and usually focus on a single, specific
aspect such as natural language processing [9] or SystemC
code generation [10] – a sophisticated cross-layer change
management tool has yet to be developed. CHIMPANC is our
answer to this. It implements the basic concepts of Sect. III,
and allows the user to easily inspect, modify and augment the
refinement mappings. On top of this we visualise how changes
in one layer affect the other layers.

A. Proposed Workflow
We envision a design workflow which is compatible with

existing hardware design process models established in the
industry. Since in practice there exists a heterogeneous tool in-
frastructure ranging from word processors down to specialised
tools for circuit design, all used by a diversity of people
with different levels of understanding, it would be impractical
to integrate our change management into all of these tools.
Hence, we propose the CHIMPANC tool as an independent
augmentation of the process. While the different designers
keep using their accustomed tools they get the possibility to
define and inspect relations between formerly unrelated layers
and gain a new, richer perspective on the design. This process
becomes even more valuable thanks to the automatic mappings
which our tool constructs.

To relate refinement layers the users start by defining a
project definition file. Here they declare the refinement struc-
ture by providing a list of layers, each with a type indicator
(currently one of the values isl, fsl, esl) for the respective
specification level and an arbitrary list of files belonging to this
layer. After this initial project definition is done, the tool can
be used.
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Fig. 3. The CHIMPANC user interface.

B. The User Interface

CHIMPANC is realised as a web interface and can thus either
run locally or on a team server, configured for a specific system
that is being developed. When users open the application in a
browser they get presented a multi column layout representing
the different specification layers (Fig. 3). The leftmost column
is the most abstract one — typically natural language — while
every additional column to the right represents a refinement
step. There are usually more refinement steps involved than
would fit into the user interface, so there is a navigation bar
on the top where one can select the layer in focus.

Fig. 4. Highlighting of mappings

All extracted model elements are represented as bold identi-
fiers. Mapped model elements appear green. When a user hov-
ers the mouse over such a mapped element the corresponding
refinement is visually emphasised (Fig. 4).

Fig. 5. Highlighting of inconsistencies

Fig. 6. Inline display of proof obligations

Inconsistencies are highlighted with red squiggly underlines.
These include abstract models, attributes, references, opera-
tions and parameters which are unmapped in a refinement
(Fig. 5) as well as mismatching mapped types and inconsistent
multiplicities of references. In addition, unproven OCL refine-
ments are displayed as a red number next to the respective
class definition which indicates the number of open proof
obligations on the other hand discharged proof obligations
appear as a green number (Fig. 6). When the user moves the
mouse over a marked element a tooltip will appear, containing
information about the inconsistency.

Fig. 7. A content warning in natural language

Content warnings are highlighted with orange squiggly un-
derlines. These are currently only present in natural language
where we automatically rate the quality of refinements, using
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the techniques from [11]. Again, a detailed description of
the warning can be obtained by hovering the mouse over the
marked element (Fig. 7).

Fig. 8. An impact warning

Finally impact warnings appear as orange elements indi-
cating that user attention is required (Fig. 8). An impact
can either indicate that a refinement has changed or that the
abstraction has been changed or removed. Impacts warnings
are the default fallback when there is no automatic solution
to propagate a change across layers. It still offers a high
value to developers because the possibly affected portions of
refinements and abstractions can are narrowed down to small
fractions of the specification and inconsistencies can easily
be identified. Removed refinements do not trigger an impact
warning because they already result in an inconsistent model,
and thus an inconsistency error.

V. CONCLUSION

We presented CHIMPANC, a tool which supports a com-
prehensive system design flow across different levels of ab-
straction levels, from natural language down to system-level
models. CHIMPANC manages the models of the systems at
the different abstraction levels, keeps track of dependencies,
and calculates the impact of changes. Furthermore, it can warn
about inter layer inconsistencies that would previously be left
unnoticed by the established tool chain.

We believe that our tool is easy to integrate into existing
workflows since it is independent of the utilised tools and can
be extended to support all kinds of formats using EMF as a
simple and well documented interface. Users can provide rules
for refinement and automatic impact propagation as graph
rewriting rules in the form of CYPHER queries. Even if not
all designers in a team use the tool, it offers added value,
since it provides a way to detect and communicate the impact
of changes across different layers.

A. Related Work

There are several independent approaches to change man-
agement for some of the individual specification levels we
described. EMF itself for example offers a toolset to analyse
differences between two models [12] and there are entire
change management systems for UML [13]. However, these
systems share several limitations, the foremost being that
there are no semantic connections to external models taken
into consideration, leaving the user without knowledge about
impacts to other specification layers. Also we are not aware
of any other change management tool available which is
able to calculate the impact of changes on the correctness
of UML/OCL refinements. In addition, CHIMPANC supports

impact analysis between SystemC and the FSL as well as
between natural lanugage and the FSL.

B. Future Work

The integration of RTL as well as formal semantics for
SystemC refinements are still required to depict the entire
hardware design workflow.

The mapping from natural language to FSL is currently
manual. We are evaluating NLP techniques to partly automate
this process. Automatic change propagation rules from FSL
to natural language would be very valuable since they would
imply drastically enhanced means of communication between
designers and stakeholders and remove a lot of possibility for
misunderstandings.

To move the tool out of the prototype status, we are planing
to conduct a large case study together with industry partners.
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