2.3 'Mission planning for reconfigurable multi-robot systems' (NP-T-03)

Thomas M. Roehr⁽¹⁾

(1) Robotics Innovation Center, DFKI GmbH, Robert-Hooke-Straße 1, 28359 Bremen, Germany

Contact: thomas.roehr@dfki.de

Abstract

This talk present an approach to mission planning for reconfigurable multi-robot systems. It briefly introduces some formal background to the topic, and illustrates the current work-in-progress for developing a temporal mission planning system. The planning system operates on an OWL-based organization model in order to fully exploit reconfigurability. The planner implementation relies on a large collection of state of the art technologies and combines them in a novel way to solve the problem at hand.

Mission planning for reconfigurable multi-robot systems

by Thomas M. Roehr

Project Day 17.9.2015 Workgroup Navigation & Planning

Universität Bremen

Do what you can, with what you have, where you are.

Theodore Roosevelt

Universität Bremen

Mission

- autonomous multi-robot exploration of the lunar surface driven by science targets
- Example science targets
 - take samples at location b_{3} , b_{4} , b_{5}
 - take pictures from location b_{3}, b_{4}, b_{5}
 - map area around *landing site*
 - place infrastructure elements/sensor equipment at base 1 and 2

Universität Bremen

The set of available resources

Robots Capabilities					
Locomotion	\checkmark	\checkmark	\checkmark		
Manipulation	\checkmark		\checkmark		
Imaging	\checkmark	\checkmark			\checkmark
Power	\checkmark	\checkmark	\checkmark	\checkmark	√
Mapping	✓	✓	✓		
Count (Example Scenario)	1	1	1	3	10

Universität Bremen

4

A reconfigurable multi-robot system

Definition 1.1

A physical robotic system represents an **atomic actor** $a \in A$, when it cannot be separated into two or more robotic systems

Definition 1.2

A physical coalition of two or more atomic actors is a **composite actor** CA, i.e. $CA = \{a_i, ..., a_i\}, where a_i, ..., a_i \in A, |CA| = 1$

Definition 1.3

Atomic and composite actors are single minded, individual robotic actors.

Definition 1.4

A **reconfigurable multi-robot system** *RMRS* is a set of fully cooperative atomic actors that can temporarily from composite actors

Universität Bremen

A reconfigurable multi-robot system

Robot
Robot +Image: Second s

 $|CA| \le |A|$ possible combinations $\le 2^{|A|}$

The number of available and compatible electromechanical interfaces limits the possible combinations, but, e.g., finding an optimal coalition is $O(2^N)$

Universität Bremen

- $M = (A_a, STR, C)$, where
 - > A_a is the set of available atomic actors
 - STR is the set of spatio-temporally qualified requirements
 - C is the set of (temporal) constraints
- $r \in STR$ is a spatio-temporally qualified expression (*steq*) of the form $(S, A_r)@[l, t_s, t_e]$, where
 - S is the set of required services
 - A_r is the set of required atomic actors
 - I is a location variable
 - t_s and t_e are temporal variables, such that $t_s < t_e$

Universität Bremen

Final assignment

- (6) Find a good assignment to actual robots
 - What is good?
 - efficient: minimum energy cost
 - safe: keep a high or given level of redundancy to guarantee mission success

Conclusion

- Looks like mission planning for reconfigurable multi-robot systems is doable
 - current implementation yet lacks the construction of the time expanded network
 - flow optimization has been implemented as linear program, thus in this form likely not scalable
- Technologies involved:
 - knowledge-based reasoning (OWL) (using my C++ implementation of owlapi)
 - constraint-based problem solving (using Gecode)
 - flow optimization, linear programming (using GLPK)
 - temporal constraint satisfaction (using my C++ implementation)
 - graphs and graph algorithms (integration using my graph_analysis library a wrapper for lemon, SNAP, and boost)

Universität Bremen