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Abstract

In this paper we describe a multimodal-multisensor
annotation tool for physiological computing; for example
mobile gesture-based interaction devices or health
monitoring devices can be connected. It should be used as
an expert authoring tool to annotate multiple video-based
sensor streams for domain-specific activities. Resulting
datasets can be used as supervised datasets for new
machine learning tasks. Our tool provides connectors to
commercially available sensor systems (e.g., Intel
RealSense F200 3D camera, Leap Motion, and Myo) and a
graphical user interface for annotation.
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Introduction

Humans learn models of the three dimensional world and a
native model of physics at a very young age. Today, one
can embed such knowledge into intelligent user interface
applications as wearable sensors and systems are
becoming ubiquitous. Including physiological data should
enhance humans and computers in such a way that the


http://dx.doi.org/10.1145/2968219.2971459

resulting interactive experience is improved. Resulting
interfaces can, for example, contribute to industry 4.0
settings [6] or to smart environments in health care [5].

However, available tools for data acquisition and annotation
are mostly limited to a particular sensor. The Video Image
Annotation Tool ! allows to manually annotate regions of
MPEG video files in a frame by frame manner. ANVIL [2]
offers a multi-layered annotation for gesture research based
on 2D video input. Our tool extends the idea of video
annotation by providing access to depth information and
signals of body-worn sensors. Dasiopoulou et al. present
an overview of the state-of-the-art in image and video
annotation tools [1]. Two new directions are prominent: first,
recent works take advantage of highly capable devices such
as smartphones and tablets that embrace novel interaction
paradigms [4]; we generalise this to multi-modal
multi-sensor annotation. Second, the tool LabelMovie, that
has been opted for videos (spatio-temporal annotation),
offers crowd-sourcing and machine learning options for
quality assurance or automated evaluation, respectively [3].

With this work we provide a tool that allows a user to
generate multimodal supervised dataset for pervasive
settings. First, it enables a user to capture multiple sensor
streams at once and provides support for state-of-the-art
body-worn devices and depth cameras (see Table 1).
Second, it enables researchers to efficiently scan and
annotate these data streams (see Figure 1). Our tool
presented here accounts for the need of additional seed
annotations for running machine learning based annotation
tools on new multi-modal multi-sensor data, which, in most
circumstances, also needs to be collected individually for
domain applications.

Thttps://sourceforge.net/projects/via-tool/
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Figure 1: User interface of the annotation component.

Activity Annotation Tool

Our tool enables experts to record and annotate data
streams of state-of-the-art sensors in order to create high
quality supervised machine learning datasets. It comprises
two main components, one for capturing sensor streams
and one for annotating these data. The capture component
facilitates to synchronously collect data from multiple
sources at once either to record and annotate them or for
real-time classification. The annotation component (see
Figure 1) is responsible for exploring and labelling record
sessions.

Capturing of Sensor Streams

The Device Module is responsible for initializing and
capturing data from an input device plug-in (see Figure 2).
Devices and its individual parameters (e.g., framerate) are
configured beforehand. The Event Manager collects all raw
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Figure 2: Software architecture of the capture component. Device modules interface the native SDKs of the individual camera or interaction
controller. The Event Manager collects and synchronises incoming data streams to either write them to the disk or to analyse them in real-time.

Session Data Storage Model Store

Event Manager

Application Controller

data events triggered by active input modalities and
synchronizes them according to the capture timestamps
delivered by each device module. For capturing sensor
streams the Dumper Module serializes all raw data events

Cameras
Device Output Platiorm to the Session Data Store. It contains the raw data as well
Webcam (UVC) RGB Windows, Linux as annqtatlons which will be 'm.anually added in an
Intel RealSense F200  RGB, depth, point cloud ~ Windows annotation process. The Training Module as well as the
Creative Senz3D RGB, depth Windows, Linux Classification Module are still target of future work, but can
PMD Nano RGB, depth, amplitude ~ Windows, Linux easily be integrated by, e.g., utilising an existing machine
learning framework [3]. The Classification Module will share
Interaction Devices the same interface as the Dumper Module. Finally, the
Device Output Platform Application Connector will notify any connected application
Leap Motion hand tracking data Windows, Linux on classification events.
Myo IMU, EMG data Windows
Annotation of Session Data
Table 1: List of supported devices, the corresponding output data Annotating the raw data in the Session Data Store requires
and their platform compatibility. a suitable visualization of the sensor data. Our user

interface facilitates three viewports for this purpose: a
line-graph view to visualise 1D-signals and two image-views
to show the 2D and 3D slice for the selected point in time.
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Channels of interaction devices (1D) can be hidden or
shown via selection in a separate list, for example, if
accelerometer data is meaningful only. All interactions
related to navigation and annotation are based around the
1D view-port: the lower navigation bar shows start- and
stop-markers of annotations (green) and allows to zoom into
the 1D-signal (black markers), the upper navigation bar
shows the position marker (blue) and label markers for the
zoomed region aligned with the 1D view-port.

Conclusion

We presented a new multimodal-multisensor annotation tool
which also supports 3D data sources and additional
annotation layers. The tool enables us to generate
multi-channel supervised machine learning datasets for
intelligent interactive systems. We already support some of
the most prominent devices available on the consumer
market. However, the plug-in structure of our tool makes it
possible to include further devices for observation,
modelling, and prediction of user behaviour (e.g., mobile
eye tracking equipment or smart watches). In future work,
we will integrate suitable machine learning toolkits for
seamless training and semi-automatic labelling.
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