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ABSTRACT
We investigate one-handed, same-side gestural interactions
with wrist-worn devices. We contribute results of an elicita-
tion study with 26 participants from various backgrounds to
learn about gestures people would like to do when only able
to interact using the arm on which they wear the device, e.g.
while carrying something in the opposite hand. Based on the
analysis of 1,196 video-taped gestures, 145 atomic gestures
could be identified, which in turn were used to create a set of
296 unique gesture combinations. From these, we identified
a conflict-free set of 43 gestures to trigger 46 common smart-
watch tasks. The results show that symbolic gestures such
as drawing a question mark for activating a help function are
consistently used across participants. We further found sym-
bolic and continuous gestures to be used significantly more
often by men. Based on the results, we derived guidelines
that should be considered when designing gestures for SSI.

Author Keywords
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ACM Classification Keywords
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Miscellaneous

INTRODUCTION
Since the development of the first Linux-based smartwatch in
2001 [23], the advancing miniaturization of technical compo-
nents has made it possible to create more and more powerful
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wrist-worn devices with smart features such as touchscreens,
customizable watchfaces and extensions through the already
well-established app store concept. Despite their technical
sophistication, the small screen size, usually only about 1.5”
to 2.5”, generates new challenges, in particular with respect
to touch input. Consequently, recent research investigated al-
ternative input possibilities such as utilizing the wristband [1,
6, 26], adding additional sensors [25, 38] or using gestural
input [29]. Although they all provide viable alternatives to
classic touch input and solve the problem of occlusion [3],
most of them cannot solve another common problem of de-
vice interactions on the go: namely, they still require the op-
posite hand for interaction. However, the opposite hand may
not be easily available, e.g. when walking in the city and car-
rying purchases, or in an industrial context while doing fac-
tory work. As shown by Ng et al. [24], such an encumbrance
negatively affects standard gestures commonly performed on
touchscreens. Hands-free alternatives such as speech input
may also not always be appropriate, e.g. due to noisy en-
vironments or privacy concerns. We therefore follow Reki-
moto’s approach of one-handed and thereby same-side inter-
actions. In contrast to other approaches (e.g. [29, 33]), we
follow a participatory design approach instead of targeting
the topic from a technical perspective, i.e. creating an input
technology and analyzing its features. In an elicitation study
with 26 participants, we let people invent gestures for a set of
46 common smartwatch interaction tasks. We thereby com-
pletely abstracted from any technical restrictions and were
only interested in the way people desired to interact. Based on
the findings in our study, we contribute (1) a characterization
of user-defined gestures for same-side interaction (SSI) with
wrist-worn devices, (2) a conflict-free set of SSI gestures for
46 common tasks that allow interacting with wrist-worn de-
vices, (3) an overview about the technical feasibility of these
gestures with respect to currently available recognition meth-
ods from the related work, and (4) guidelines that should be
kept in mind when selecting or designing gestures for SSI.



The rest of the paper is organized as follows: We first give an
overview on related work with respect to different input pos-
sibilities both for opposite-side interaction (OSI) and SSI, as
well as corresponding sensing technologies. We then present
the results of our elicitation study in which we analyzed the
characteristics of user-generated SSI gestures for a set of 46
common smartwatch interaction tasks we created based on
examining popular apps as well as related work. Based on the
results of the study, we provide a conflict-free set of SSI ges-
tures for these tasks and an analysis of the technical feasibility
of sensing the contained gestures with currently available ap-
proaches. We conclude by providing guidelines that should
be considered when designing or selecting gestures for SSI.

RELATED WORK
We will first provide an overview on related work with re-
spect to different input possibilities as well as corresponding
sensing technologies. After providing the results of our elic-
itation study, we will come back to the technical approaches
and relate the user-generated gestures to them.

In terms of interaction with wearable devices, Profita et al.
found the wrist and the forearm to be the most socially ac-
ceptable area to position such devices [27]. Comparable to a
normal watch, such wearable computing devices will change
body position as well as size and interface over time, follow-
ing cultural concepts and fashion [19]. The increasing variety
and popularity of smartwatches underpins the trend towards
a wrist-worn computing device, but as of now, only a lim-
ited set of interaction techniques exists. Most of the related
work in this field focuses on Opposite-Side Interaction (OSI)
techniques, meaning they require the hand that is not wearing
the wearable device to operate it. In this paper, we focus on
leveraging the capabilities of such a device using the arm that
is wearing it, so-called Same-Side Interaction (SSI) [12]. We
split the related work into four parts, the first two being about
interaction with wrist-worn devices, the third covering possi-
ble sensing techniques to enable SSI with a wrist-worn device
and the last part considering prior work in terms of eliciting
user interactions.

Opposite-Side Interaction (OSI)
Early touch input on smartwatches was investigated by
Raghunath and Narayanaswami [28]. Most of their design
guidelines have been used in Android Wear. Blasko et al. [4]
used bidirectional strokes that were segmented by tactile
landmarks, which enabled eyes-free input on rectangular [5]
and circular watches. In contrast, the work of Ashbrook et al.
investigated touch interaction on a circular wristwatch [2]
without tactile landmarks. They developed a model based
on empirical data that allows determining the error rate for
variously-sized buttons placed around the rim. Another suit-
able interaction technique for smartwatches would be touch
input on the back of the device [3, 26].

Instead of relying on touch input, Xiao et al. developed
a multi-degree-of-freedom, mechanical interface for smart-
watches [38] which allowed for continuous 2D panning and
twist as well as binary tilt and click. Pasquero et al. developed
a turnable bezel for such mechanical continuous input [25].

Similar to this, Kim et al. presented a prototype of a wrist-
worn device that utilized an array of infrared proximity sen-
sors to interpret hand gestures made over it [15]. In [10],
Kerber et al. compared different OSI techniques that can be
found in today’s commercially available smartwatches.

Same-Side Interaction (SSI)
One of the first SSI-operated wrist-worn devices was pre-
sented by Rekimoto with the GestureWrist [29]. The authors
used capacitive sensors and an accelerometer to sense wrist-
shape changes and forearm movements for input. This allows
the user to input commands using only one arm, but requires
additional sensors which are typically not available in today’s
wrist-worn devices.

Kerber et al. presented the results of a user study comparing
the performance of static and dynamic peephole interactions
for a navigation task on a smartwatch [11]. This is, to the best
of our knowledge, the first direct comparison of OSI and SSI.
While they found the touch interaction of the static peephole
(OSI) to be on average 12% faster, it was marginal compared
to the advantage of using only one arm to interact (SSI).

In [12], Kerber et al. used electromyography (EMG) to con-
trol a smartwatch. Their initial pilot study compared SSI us-
ing a Myo Wristband against traditional OSI touch to con-
trol a music player on a smartwatch. While their preliminary
study did not find any significant difference in terms of task
completion time, keeping in mind the early state of commer-
cial EMG devices, their results demonstrated the general fea-
sibility of such a SSI approach.

As can be seen, the majority of prior work examined OSI and
the approaches that relied on SSI have not been convincingly
successful enough to present an alternative to touch input. On
the other hand, an effective SSI approach would provide ad-
vantages in many everyday situations in which OSI is not eas-
ily applicable. In terms of touch input, gloves (e.g. in winter
or in industrial contexts) could be a hindrance. At least for
situations that do not require visual feedback (e.g. skipping
tracks or changing the volume in a music app), input possi-
bilities that do not require interacting with the device itself or
its direct surroundings are advantageous if the device is cov-
ered by clothes such as shirts, jackets or protective clothes.
It should also not be forgotten that OSI often requires both
hands – the one that carries the device and the other to exe-
cute the interaction. Hence, situations requiring carrying or
holding something (e.g. during shopping or factory work) are
problematic for OSI. We strongly believe that gestural SSI
can be an alternative in these situations. Consequently, we
aim to understand how participants would like to use their
wrist-worn devices with SSI.

Sensing Technologies
In this paper, we focus on SSI with a wrist-worn device. Gen-
erally speaking, a variety of different interactions are possible
with just one arm, ranging from arm gestures to single-finger
movements. Even though a variety of sensors exist that al-
low sensing this type of gesture from a distance, such as the
Microsoft Kinect or Leap Motion, we focus only on sensing
technologies that can be integrated into a wearable device.



Inertial measurement units (IMU) using accelerometers, gy-
roscopes and sometimes magnetometers have become com-
mon in today’s wearable devices to detect gestures or for ac-
tivity recognition. Early work by Rekimoto explored an ac-
celerometer to detect arm orientation for gestures [29]. Ward
et al. [33] used a combination of microphones and accelerom-
eters to detect gestures and activities. Lately, the IMU inside
smartwatches has even been used to detect and support Car-
diopulmonary Resuscitation (CPR) movements [9].

With Digits, Kim et al. [14] presented a system that is based
on a combination of an infrared emitter and camera as well as
a laser line to reconstruct 3D hand poses. In contrast to this,
the use of ultrasonic sensors has been explored in [18]. While
the authors used them to realize a slidebar on the arm that
would be operated in an OSI manner, the approach could be
used to detect the same-side hand approaching the watch as
well. These techniques work very similar to a depth sensing
camera (such as the time of flight camera DUO mini lv11).
Such could be integrated in to the smartwatch and sense the
orientation of the fingers of the hand.

Sensing the muscle activation inside the arm is another possi-
ble technology to detect arm and hand gestures. Electromyo-
graphy (EMG) has been successfully used to detect sign lan-
guage that contains some of the most complex hand ges-
tures [17]. In a recent paper, Nagar and Zhu used a wrist-
based EMG system to detect the three gestures involved in
playing rock, paper, scissors [22]. Nevertheless, EMG has
the drawback that it is often used only at the upper part of the
lower arm, which is not really convenient for a wrist-worn de-
vice. Rekimoto used capacitive sensors inside the wristband
to sense simple hand gestures [29].

Eliciting user interactions
Our approach to understanding the users’ needs and wishes in
terms of SSI is to employ an elicitation study. Incorporating
users in the design process has been successfully conducted
on many prior occasions as part of participatory design [30].
Confronting users with target actions and having them per-
form interactions that they think should cause them, has al-
ready been done several times in the past. Good et al. [8]
used it to develop a command-line email interface. It was
also used by Wobbrock et al. [35] to design EdgeWrite. Fur-
thermore, Wobbrock et al. [36] used an elicitation technique
to design surface computing gestures. More related to our
use-case, Weigel et al. [34] explored the possibility of skin-
based interactions in such a manner, whereas Vatavu and Zaiti
investigated user-defined gestures for interactive TV [32].

The works mentioned above showed, for different use-cases
and with different approaches, the applicability of such elic-
itation studies to bring up meaningful interactions through
participatory design. As smartwatches and other wrist-worn
devices are becoming more and more ubiquitous in people’s
every day lives, we expect participants of our study to have an

1https://duo3d.com/product/duo-mini-lv1, last accessed
28/07/2016

even deeper understanding of their needs and wishes. There-
fore, we are fairly certain that such an elicitation study will
generate meaningful results.

ELICITATION STUDY
To get an understanding of SSI gestures participants are will-
ing to do, we utilized a guessability study methodology [35]
that presents desired effects (e.g. “The volume is increased.”)
and elicits their causes, i.e. the gestures, to invoke them.

Tasks and Procedure
Before executing the actual elicitation study, we first con-
ducted a set of tasks (effects) representing typical situations
when interacting with a smartwatch. To compile this set, we
considered related work ([16, 34, 36]) on the one hand and
examined popular app types in the respective app stores on
the other. We selected 46 different tasks (cf. Figure 2) and
presented them in random order to every participant and for
each, the participants were instructed to invent a gesture while
using only the arm where the smartwatch was worn. As cur-
rent sensing technology could potentially capture only a sub-
set of the gestures participants are willing to do, we opted for
not using any sensing at all. Instead, the participants were
filmed from two different angles to ensure that every gesture
is clearly visible on the taped material for a manual analy-
sis afterwards. This approach opened up the possibility to
observe a completely uninfluenced behavior, free of possible
restrictions due to current technology, and has been used in
similar settings in the past [16, 34, 36]. To avoid introduc-
ing other factors that could potentially influence participants,
we also refrained from providing any output or reaction to
the participants’ gestures. However, people were equipped
with a switched-off smartwatch (LG G Watch R) for reference
(e.g. when executing gestures like bringing the smartwatch in
the direct view area). We instructed the participants that they
could execute any gesture they can think of as long as it con-
tains a movement of either shoulder, elbow, wrist, thumb or
fingers of the arm where the smartwatch was worn.

To mimic a realistic use case, the participants were told to
be walking through the city after buying some goods. Conse-
quently, they were standing during the study and carried a bag
with a book in the opposite hand. For each of the 46 tasks,
the experimenter read out aloud a description of the desired
effect to achieve, e.g. “Consider that you are listening to some
music. Now increase the volume.” and was available in case
the participants had any requests. After executing their de-
sired gesture, the participants were presented two questions
on a nearby display to rate the goodness and perceived ease
of their invented gesture each on a 7-point scale. In total, we
collected 1,196 gestures (46 gestures per participant) during
single-user sessions with a median duration of 21.5 minutes
(min=16 minutes, max=29 minutes). Figure 1 shows five ex-
amples of these gestures.

Participants
For the elicitation study, we recruited 26 voluntary partici-
pants (aged 15-38 years, median age 26 years, 8 females)
from various cultural backgrounds (Europe, Middle East,
India). 24 of them were right-handed, whereas only two

https://duo3d.com/product/duo-mini-lv1


(a) Previous track (b) Select single item (c) Take a picture (d) Approve payment (e) Emergency call

Figure 1. Five different gestures performed during the elicitation study. Captions name the effect that should be achieved with the invented gestures.

were left-handed; five wore their watch on their dominant
side. Their occupations included child care worker; chimney
sweeper; accountant; engineer; pupil; student in computer
science, English, marketing, physics, product design or psy-
chology; researcher in computer science, secretary and soft-
ware engineer. In total, 14 of them had a background related
to computer science. All but one participant had owned a
touch-enabled smartphone for at least one year and only one
participant owned a device comparable to a current smart-
watch (Striiv Fusion). None of the them received any com-
pensation for participating.

Analysis Methodology
In the following, we describe our approach to analyzing the
collected video material. We first manually described every
user-defined gesture (e.g. “Rotate lower arm inwards.”) and
classified it according to the involved body parts: fingers (in-
cluding thumb), wrist, elbow and shoulder. We further dis-
tinguished between continuous and discrete gestures as pre-
viously done by e.g. [36, 37]. Continuous gestures describe
movements that directly relate to the impact they have, e.g.
rotating the lower arm to scroll in a longer text, whereas dis-
crete gestures describe closed movements such as pointing
somewhere. Another dimension we investigate is the size of
the movement or in other words the required space to execute
it. A movement of the index finger alone is considered as a
small movement whereas for example waving with the com-
plete arm is considered a large movement. We do not further
distinguish intermediate steps, i.e. a gesture is considered ei-
ther small or large. We also annotated whether the gesture is
inspired by touch-based interaction, such as the pinch gesture
typically used when zooming out, and lastly, we also analyzed
whether the gesture is mimicking an interaction in the phys-
ical world (either specifically or symbolically). An example
of the former is changing the value of a virtual spin-control
by rotating the lower arm with thumb and index expanded as
they would grasp the physical control; the latter can be illus-
trated with a gesture such as drawing a question mark when
calling a help function.

Results
An analysis of the 1,196 videotaped gestures showed that they
consisted of 296 unique gestures. We then decomposed com-
bined movements into their atomic parts as far as practica-
ble, e.g. “Rotate lower arm while clenching into a fist” was

split into “Rotate lower arm” and “Clench into a fist”. Af-
ter this step, 145 atomic base gestures were identified which
were further analyzed. From the 296 unique gestures, 121
(40.9%) consisted of only an atomic base gesture, whereas the
other 175 gestures (59.1%) were combinations of two or more
atomic base gestures, the largest one consisting of six parts.
We then analyzed the distribution of the gestures per partic-
ipant. Each participant used 17 to 37 unique gestures (me-
dian=30.5) to trigger the given 46 tasks. The repetition count
for the most often utilized gesture varied between 3 and 18
(median=4.5). A Dixon’s Q test with 99.5% confidence level
revealed two outliers (Q=0.53 > 0.517 and Q=0.54 > 0.517)
which we excluded from further analysis.

Based on the remaining 24 participants (7 female, 13 with
a background related to computer science), we re-analyzed
the set of 1,104 gestures and identified 284 unique ones, of
which 121 (42.6%) were atomic base gestures, whereas the
other 163 gestures (57.4%) were combinations of two or more
atomic base gestures. Each of the remaining participants used
17 to 37 unique gestures (median=31) to trigger the given 46
tasks. The repetition count for the most often utilized ges-
ture now varied between 3 and 10 (median=4). The most
frequently used gesture was applied 36 times, whereas 140
gestures were only used once and additional 47 only twice.

None of the participants had any problems finding gestures
for the given tasks, which is also supported by an average
goodness rating of 5.29 for the 1,104 gestures. An average
rating of 6.27 for ease shows that the participants were able
to create gestures they deemed to be easily executable. Mann-
Whitney tests revealed that male participants, based on their
self-assessment, considered their gestures significantly bet-
ter suited (U = 149, 323, p < 0.001) and easier to execute
(U = 141, 857, p < 0.001) than women did for their ges-
tures. Furthermore, men used significantly more symbolic
gestures (U = 136, 735, p < 0.01) and more continuous ges-
tures (U = 131, 031, p < 0.05) than women did. Table 1
gives an overview of the gestures along the dimensions pre-
sented earlier. We report our findings separately for the 145
atomic base gestures and the resulting 284 unique gestures.

Gesture Composition
As already reported, 163 of the gestures did not consist of
only a single movement, but were a combination of move-
ments. We thereby distinguish gestures that are executed suc-



Dimension Base Gestures Unique Gestures

Involved body parts
Fingers (F) only 39 56
Wrist (W) only 9 6
Elbow (E) only 18 19
Shoulder (S) only 5 5
F and W 1 16
F and E 3 30
F and S 2 15
W and E 2 4
W and S 1 -
E and S 53 54
F, W and E 3 5
F, W and S - 1
F, E and S 7 64
W, E and S 2 8
F, W, E and S - 1

Continuous 17 36
Discrete 128 248
Large 75 142
Small 70 142
Touch-inspired 12 20
Real-world-like 16 35
Symbolic 76 147

Table 1. Results from the analysis of the 145 atomic base gestures and
the 284 unique gestures built from them.

cessively, e.g. “Extend index finger, then retract index finger”
and those that can be seen as variants of other gestures, as is
the case for “Rotate lower arm with extended index finger”,
in which the main gesture is “Rotate lower arm” and the ex-
tended index finger only results in a modification. From the
145 atomic base gestures, 13 have also been used to create
variants with “Extend index finger” (45×) and “Clench into
a fist” (26×) being the most used modifiers. In total, 61 main
gestures have been used with modifiers to create 106 variants.

Agreement Score
We further analyzed the gestures in relation to the tasks they
were executed for. Therefore, we grouped the 1,104 gestures
on a per-task basis into 46 groups and analyzed these groups
individually. Based on the agreement concept presented in
[35, 36] and refined in [31], we computed the corresponding
score. The overall agreement score AR is thereby defined as

AR =

∑
t∈T

(
|Pt|
|Pt|−1

∑
Pi⊆Pt

(
|Pi|
|Pt|

)2
− 1
|Pt|−1

)
|T |

In the equation above, t refers to a task in the set of all tasks
T , Pt is the set of gestures executed for task t, and Pi is a
subset of Pt consisting of identical gestures. A higher score
thereby refers to a higher agreement, i.e. a larger number of
people that consistently chose an identical gesture. To give a
specific example, consider a task like “Pause” for which three
different gestures have been created by the participants. The
three gestures were repeated 7, 5 and 3 times respectively.
Based on this gesture distribution, the following agreement
score is computed:

ARPause =
15
14

((
7
15

)2
+

(
5
15

)2
+

(
3
15

)2)− (
1
14

)
= 0.32

In Figure 2, the agreement scores for the 46 tasks are illus-
trated in blue. The overall agreement score is A = 0.07.
An unpaired t-test revealed a no significant difference in
the agreement score between male (M=0.08, SD=0.1) and
female (M=0.06, SD=0.09) participants, t(90) = −0.983,
p = 0.328. The same analysis was conducted without con-
sidering different variants as separate gestures. The corre-
sponding agreement scores are depicted in Figure 2 in or-
ange. The overall agreement score is slightly increased to
A = 0.09. Again, no significant difference in the agreement
score between men (M=0.1, SD=0.11) and women (M=0.08,
SD=0.11) could be observed; t(90) = −0.89, p = 0.376.

Continuous Tasks/Gestures
From the set of 46 tasks, seven tasks can be seen as contin-
uous, e.g. “Decrease volume” or “Zoom out”. As outlined
above, 36 unique gestures were considered continuous, re-
sulting in 118 gesture executions containing one of them.

Considering all gestures, we have a consensus of 89.5%, i.e.
89.5% of the continuous (discrete) tasks are executed with
a continuous (discrete) gesture. A Mann-Whitney-Test re-
vealed that consensus of gestures for discrete tasks is signif-
icantly higher than for continuous tasks, U = 114, 696, p <
0.001. A Rosner’s Extreme Studentized Deviate test with
a significance level of 0.05 revealed eight outliers. Consis-
tently, all of them were continuous tasks with a higher number
of discrete gestures chosen. However, for four of these tasks,
the majority chose a continuous gesture, and in the other four
cases, the most often repeated gesture was a continuous one.

Negatively Connoted Tasks/Gestures
From the set of tasks we defined for the elicitation study, sev-
eral can be seen as having a negative connotation, for exam-
ple “Delete” or “Reject call”. To get a better understanding
of what people consider as “negative”, we let five indepen-
dent researchers rate the 46 tasks as positively or negatively.
We considered a task as negative if at least four of the five
ratings supported this. In total, 11 tasks were classified as
negative. On the other side, the analysis revealed 19 atomic
base gestures that contained a movement away from the body
– something we hypothesize is connected to unwanted or neg-
ative actions. Furthermore, nine additional gestures exist that
have a clear negative connotation, e.g. “Thumb down”.

Considering all executed gestures, we have a consensus of
80.9%, i.e. 80.9% of the tasks that are considered to have
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Figure 2. Agreement scores, representing the amount of people that consistently chose an identical gesture, for the 46 tasks without (orange) and with
(blue) considering gesture variants as separate gestures, ordered by score values for the former.

a negative connotation are executed with a gesture that con-
tained a movement away from the body or had a negative con-
notation, whereas the tasks without a negative connotation
were executed with a gesture that did not contain a move-
ment away from the body. A Mann-Whitney test revealed
that consensus on gestures for negatively connoted tasks is
significantly lower than for non-negatively connoted tasks,
U = 144, 888, p < 0.001. A Rosner’s Extreme Studentized
Deviate test with a significance level of 0.05 revealed seven
tasks as outliers, which we further investigated.

In line with the results from comparing negatively and non-
negatively connoted tasks, all seven tasks were rated as nega-
tively connoted, but at most half of the participants in the elic-
itation study chose a gesture that includes a movement away
from the body or with a negative connotation. An in-depth
analysis of the used gestures showed an overlap with the
task’s opposite in five of the seven cases, e.g. for “De-activate
device”, participants used the same gestures they used for
“Activate device”. In this sense, participants did not regard
the negative aspect of the specific task but invented gestures
they deemed suitable for both the positive and the negative
task. A similar effect could be observed for the sixth task,
namely “Mute”, which showed overlaps with “Increase vol-
ume” – a task that could be seen as its opposite. In case of
the last task, “Delete”, two aspects could be observed. One
the one hand, 50% of the invented gestures were in fact nega-
tively connoted. Regarding the remaining twelve gestures, on
the other hand, we often see a combination of two unbiased
gestures that together make up a negative impression, e.g.
“Clench into a fist” and “Spread fingers” are not negatively
connoted by themselves, but if both are combined consecu-
tively, they create the impression that something is grabbed
and dropped vigorously, which can be seen as a negatively
connoted action.

Conflict-free Gesture Set for SSI
For the next part of this paper, we considered the most fre-
quently used gesture(s) for each of the 46 tasks to create a ges-
ture set suitable to be used for controlling a smartwatch solely
based on same-side interactions. For 35 tasks, a unique most
frequently used gesture could be found with repetition counts

between 3 and 15 (median=5.5). 14 of the chosen gestures
were conflict-free, i.e. the gesture was only used to trigger
one task. The other gestures formed nine sets with potential
conflicts, i.e. the same gesture was used to trigger multiple
tasks. Based on the nature of the task set, not every overlap
is in fact a conflict. To give a specific example, we consider
the two tasks “Decline payment” and “Switch off appliance
in smart home”. Both have “Thumb down” associated as the
most frequently used gesture. When considering the context,
there is no actual overlap as both situations are not very likely
to occur in parallel without having a clear indication for the
user which of the two tasks is the currently active one, e.g.
a full-screen dialog could request approval for the payment.
Based on this approach, only two of the nine sets actually
contain a conflict that needs to be resolved. For both sets,
we identified the candidate with the lowest repetition count
to replace it with (one of) the second most used gesture(s).
For tasks with more than one most frequently used gesture,
we consider as suitable all gestures that do not conflict (in the
same sense as above) with other tasks. The concept of hav-
ing more than one triggering action, called aliasing, is known
to increase input guessability [7, 35]. With the same idea in
mind, the distinct gesture sets could also be extended by the
second or third most frequently used gesture as long as no
conflicts are introduced. Table 2 (page 8) shows the gestures
that are used in the conflict-free gesture set for our 46 tasks
(Table 3, on the same page).

As outlined above, we also wanted to check which of the
gestures could potentially be sensed by one or several of the
technologies presented in the related work section. Our esti-
mate with respect to the three types of sensing, electromyog-
raphy, inertial measurement unit and infrared/depth sensing,
is also included in Table 2. Although this looks promising at
first glance as every gesture could potentially be sensed, some
limitations have to be taken into account. First of all, a mech-
anism to distinguish involuntary motion from gestures done
on purpose is required. As using the touchscreen or pressing
a button would again require the opposite hand, this is not a
suitable approach, but a motion delimiter such as the one pre-
sented in [13] could be used. Furthermore, it has to be con-
sidered that many different gestures have to be detectable and



reliably distinguishable in parallel, as high recognition rates
with low rates of false-positives are crucial for such a sys-
tem. However, recent work also combining different types of
sensors such as electromyography and pressure sensors [20]
seems promising in this respect. Nonetheless, only an evalua-
tion with corresponding implementations of the systems men-
tioned can provide reliable insights, but this is beyond the
scope of this paper.

Discussion
The analysis showed that the participants in general did not
have any problems generating gestures for SSI that are both
suitable to invoke the given tasks and easy to perform.

An overall agreement rate of below 0.1 is remarkable com-
pared to related elicitation studies that typically reached
higher values (see [31] for the results of 18 studies). To assess
this result, we should keep in mind that all but one participant
did not have prior experience with smartwatches or compa-
rable devices. Consequently, no interaction model (legacy
bias [21]) was present as a fallback (as is for example the case
with typically well-known mouse interaction when eliciting
surface gestures). Although the result indicates that a person-
alized interaction approach might be necessary, we consider
the compiled conflict-free gesture set as meaningful for two
reasons: (1) Due to aliasing as explained above, the practical
applicability of the gesture set is further expanded and (2) the
gesture set can be seen as an informed starting point, thereby
reducing the need for the user as well as the developer to first
define gestures for every interaction.

Based on the results from our elicitation study, we also de-
rived guidelines that should be kept in mind when designing
gestures for SSI. Although they are not surprisingly different
from what is known from similar research for gestural input,
we see it as additional confirmation for the field of smart-
watch interaction, and especially SSI, which has not been in-
vestigated before.

Similar tasks are triggered by similar gestures
If we consider similar tasks, e.g. “Go up one item in a list”,
“Go back one item in a slider”, “Scroll up in a text” and
“Undo” which all four are concerned with going back to
something that has been seen before, we also see similar ges-
tures in the conflict-free gesture set, namely “Move arm from
down to up”, “Stroke upwards” (used for two tasks) and “Ro-
tate lower arm outwards”. In total, seven groups of similar
tasks could be defined – five of these also show similar ges-
tures, whereas the other two groups are dominated by sym-
bolic gestures.

Opposing tasks are triggered by opposing gestures
Considering opposing tasks such as “Go up one item in a list”
and “Go down one item in a list”, we also see opposing ges-
tures in the final gesture set, i.e. “Move arm from down to
up” and “Move arm from up to down”. In total, 15 sets with
opposing gestures could be defined – six of these contain op-
posing gestures, whereas six additional ones are made up of
symbolic gestures. Only three sets, namely “Undo/Redo”,
“Go back/forward in a slider” and “Go to previous/next track”
did not directly contain opposing gestures. In these three

cases, the “forward” direction is consistently associated with
a movement towards the body. However, the countermotion
is not expressed by a movement away from the body. Instead,
another movement towards the body is chosen, but, a com-
pletely different one. As going back to a previously seen or
heard item is rather positive (people want to experience the
same thing again), this could serve as an explanation.

Atomic gestures have higher agreement than combined ones
Although the set of all user-generated gestures contains a
large number of gestures that are combinations of more than
one atomic gesture, only two gestures in the final gesture set
are combined ones. As combinations provide more variabil-
ity, it is not surprising that the set that is made of the most-
often chosen, identical gestures mainly contains unambigu-
ous, atomic gestures. A positive side-effect of this trend is,
however, that the gestures are potentially easier to remember
and faster to perform.

Symbolic gestures have a high agreement
The sets of the most-frequently used gestures for the 46 tasks
contain symbolic gestures in 31 cases (67.4%), which indi-
cates on the one hand that people have similar symbolic de-
pictions in mind, and on the other hand that these symbolic
depictions could be expressed appropriately by means of one-
handed gestural interactions. To give a prominent example,
consider the task “Accept a call”, for which more than 50%
of the participants executed a movement of their hand towards
their ear, which symbolizes moving a phone to their ear.

CONCLUSION AND FUTURE WORK
In this paper, we investigated one-handed, same-side inter-
actions with wrist-worn devices such as smartwatches. We
presented the results of an elicitation study with 26 partici-
pants from various backgrounds to learn about SSI gestures
that are preferred by the users. We analyzed a set of 46 com-
mon smartwatch tasks and identified a conflict-free set con-
sisting of 43 SSI gestures. We provide further insights with
respect to involved body parts, the composition of gestures
and their symbolic nature in the specific context. We also
found symbolic as well as continuous gestures to be used sig-
nificantly more often by men.

To the best of our knowledge, the presented results are the
first in-depth analysis of SSI with wrist-worn devices. The
fact that users had no difficulties finding gestures for all use-
cases while being limited to using only one arm, demonstrates
that SSI is a real alternative for smartwatch interaction while
on the go or in other situations that hinder OSI.

For future work we will investigate possible sensing tech-
niques in more depth. While our initial survey suggests that
most gestures should be possible to sense, an in-depth analy-
sis, especially of the capabilities of a wrist-worn EMG, needs
to be conducted. Furthermore, we will follow up with a so-
cial acceptability study of these gestures and see how practi-
cal they are in everyday life. Last but not least, we have to
consider the connection of user input (what we investigated
here) and interaction feedback or output, respectively – espe-
cially when mixed with the next input interaction (e.g. open a
message, read a bit, scroll in the message, etc.).



ID Description Detectable via

1 Shake wrist IMU
2 Point with index finger EMG, IMU/IR&DC
3 Wave out to in EMG, IMU
4 Show number 1-5 EMG/IR&DC
5 Slow stroke 90◦ downwards EMG, IMU
7 Thumb up EMG, IMU/IR&DC

11 Thumb down EMG, IMU/IR&DC
12 Make a fist EMG/IR&DC
16 Wave up to down EMG, IMU
21 Draw a question mark IMU
22 Pinch EMG/IR&DC
28 Unpinch/zoom EMG/IR&DC
33 Move hand to ear IMU
35 Move hand (dynamic peephole) IMU
36 Move arm in parallel to body to the inner side IMU
40 Rotate lower arm outwards (continuous) IMU
41 Move hand to mouth IMU
43 Push flat hand forward EMG, IMU
45 Spread fingers EMG/IR&DC
52 Rotate lower arm outwards IMU
54 Move arm down to up IMU
55 Move arm up to down IMU
56 Rotate lower arm inwards (continuous) IMU
62 Rotate lower arm 180◦ IMU
63 Move arm to rest position (hanging) IMU
66 Move hand to direct view area IMU
69 Wave up to down with index finger only EMG
72 Stroke upwards EMG, IMU
74 Stroke downwards EMG, IMU
88 Wave arm away from the body IMU
89 Circular movement of lower arm inwards IMU
98 Shake lower arm left and right IMU

104 Move arm further away from head / eyes IMU
117 Extend index finger EMG/IR&DC
119 Stretch arm above head IMU
139 Rotate lower arm IMU
140 Tap EMG/IR&DC
142 Grab virtual item, throw away to the outside EMG, IMU/IR&DC
146 Snap with middle and thumb EMG/IR&DC
156 Extend middle finger EMG/IR&DC
166 Clap open hand on leg IMU
178 Move arm up to down (continuous) IMU
218 Retract index finger EMG/IR&DC

Table 2. Gestures used in the conflict-free gesture set. Directional
indications refer to the body of the performer, e.g. “out to in” means a
movement from the outside to the inner side.

The last column indicates the sensing technology that could potentially
detect the gesture. A comma-separated list indicates that a combination
of technologies is required; alternatives are indicated by “/”.
EMG = Electromyography
IMU = Inertial Measurement Unit
IR&DC = Infrared Sensing or Depth Camera

Task Utilized Gesture IDs Conformity

Activate device 66 21%
De-activate device 1, 63 33%
Open app 7, 12, 45, 62 29%
Close app 88 17%
Select single item 4, 12, 69, 140 33%
Select multiple items 4 17%
Select numbered item 4 63%
Zoom in 28 33%
Zoom out 22, 104 42%
Pan 35 50%
Accept/Select 7 38%
Reject/Discard 88 25%
Open menu 45 29%
Help 21 33%
Switch task 52 13%
Undo 72 13%
Redo 36, 89 17%
Delete 142 21%
Go up one item (list) 54 29%
Go down one item (list) 55 29%
Go back one item (slider) 72 17%
Go forward one item (slider) 3 13%
Scroll up (cont.) 40 21%
Scroll down (cont.) 16, 178, 56 38%
Shuffle list 98 21%
Accept call 33 54%
Reject call 88 33%
Emergency call 33 25%
Mute 41 17%
Increase volume 40 13%
Decrease volume 56 13%
Next track 3 25%
Previous track 72 17%
Play 117 + 156 13%
Pause 43 17%
Approve payment 7 46%
Decline payment 11 21%
Select appliance 2 54%
Switch on appliance 2, 146 25%
Switch off appliance 11 13%
Press a button 2 29%
Select value with spin control 139 50%
Start exercise 5 8%
Stop exercise 166, 74, 12, 88 33%
Show weather forecast 119 13%
Take a picture 117 → 218, 12 25%

Table 3. Conflict-free gesture set for 46 common smartwatch
interaction tasks based on the most-frequently used user-defined SSI
gestures. Alternatives are indicated by a comma-separated list,
simultaneous executed gestures are indicated by a +, gestures that are
executed successively are connected by a →. The third column
indicates the percentage of participants that chose the exact gesture
during the elicitation study.
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Löchtefeld, M., and Krüger, A. EMPress: Practical Hand
Gesture Classification with Wrist-Mounted EMG and
Pressure Sensing. In Proc. CHI ’16 (2016), 2332–2342.

21. Morris, M. R., Danielescu, A., Drucker, S., Fisher, D.,
Lee, B., schraefel, m. c., and Wobbrock, J. O. Reducing
Legacy Bias in Gesture Elicitation Studies. interactions
21, 3 (2014), 40–45.

22. Nagar, A., and Zhu, X. Gesture Control by Wrist
Surface Electromyography. In Proc. PerCom
Workshops ’15 (2015), 556–561.

23. Narayanaswami, C., Kamijoh, N., Raghunath, M.,
Inoue, T., Cipolla, T., Sanford, J., Schlig, E.,
Venkiteswaran, S., Guniguntala, D., Kulkarni, V., and
Yamazaki, K. IBM’s Linux Watch: the Challenge of
Miniaturization. Computer 35, 1 (2002), 33–41.

24. Ng, A., Williamson, J., and Brewster, S. The Effects of
Encumbrance and Mobility on Touch-Based Gesture
Interactions for Mobile Phones. In Proc.
MobileHCI ’15, ACM (2015), 536–546.

25. Pasquero, J., Stobbe, S. J., and Stonehouse, N. A Haptic
Wristwatch for Eyes-Free Interactions. In Proc. CHI
’11, ACM (2011), 3257–3266.

26. Perrault, S. T., Lecolinet, E., Eagan, J., and Guiard, Y.
Watchit: Simple Gestures and Eyes-Free Interaction for
Wristwatches and Bracelets. In Proc. CHI ’13, ACM
(2013), 1451–1460.

27. Profita, H. P., Clawson, J., Gilliland, S., Zeagler, C.,
Starner, T., Budd, J., and Do, E. Y.-L. Don’t Mind Me
Touching My Wrist: A Case Study of Interacting with
On-Body Technology in Public. In Proc. ISWC ’13,
ACM (2013), 89–96.



28. Raghunath, M. T., and Narayanaswami, C. User
Interfaces for Applications on a Wrist Watch. Personal
Ubiquitous Comput. 6, 1 (Jan. 2002), 17–30.

29. Rekimoto, J. GestureWrist and GesturePad: Unobtrusive
Wearable Interaction Devices. In Proc. ISWC ’01, IEEE
Computer Society (2001), 21–27.

30. Schuler, D., and Namioka, A., Eds. Participatory
Design: Principles and Practices. L. Erlbaum
Associates Inc., 1993.

31. Vatavu, R.-D., and Wobbrock, J. O. Formalizing
Agreement Analysis for Elicitation Studies: New
Measures, Significance Test, and Toolkit. In Proc.
CHI ’15, ACM (2015), 1325–1334.

32. Vatavu, R.-D., and Zaiti, I.-A. Leap Gestures for TV:
Insights from an Elicitation Study. In Proc. TVX ’14,
ACM (2014), 131–138.

33. Ward, J. A., Lukowicz, P., and Tröster, G. Gesture
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