
Change Impact Analysis for Hardware Designs
From Natural Language to System Level

Martin Ring1 Jannis Stoppe1,2 Christoph Lüth1,2 Rolf Drechsler1,2
1 Research Dept. Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
2 Dept. of Computer Science, University of Bremen, 28359 Bremen, Germany

Abstract—Design processes are increasingly moving to more
abstract description levels; no single formalism can handle
the complexities of modern designs. However, keeping designs
consistent across different abstraction levels, in particular in the
presence of changes, has up to now been an arduous manual
task.

This paper presents a framework which provides a uniform,
interconnected representation of the descriptions across the
abstraction levels, starting from natural language requirement
specifications over SysML design specifications down to ex-
ecutable SystemC models, allowing to track changes on all
levels of abstraction, and ensuring consistency throughout the
development process.

The framework has been implemented in a tool, CHIMPANC,
to show its viability. It assists the developer by highlighting
inconsistencies and proof obligations across various descriptions
levels in order to simplify the development process.

I. INTRODUCTION

The increasing complexity of hardware has long become
the core issue of the underlying design and development
processes. Traditional hardware design languages (HDLs) such
as Verilog or VHDL which are supposed to be synthesised
into hardware are increasingly unable to handle large designs,
because they require designers to specify systems to the point
where they can be synthesised automatically. The resulting
designs need to be built from the bottom up and can only
be verified by thorough testing once complete. This approach
cannot cope with the shorter design cycles and reduced time
to required in today’s marketplace.

The remedy suggested in this paper is to provide designers
with more abstract languages that allow systems to be designed
top-down, starting with an abstract model of the system and
its requirements. Several of these languages are being used
today. Natural language specifications are the most abstract
form of describing a system, allowing the designers to use
arbitrary language to explain how the system is supposed
to behave and be structured. Formal modelling languages
such as the UML or SysML build on a formal definition to
avoid the issue of ambiguities in the description. System-level
modelling language such as SystemC are the last step before
synthesizable HDLs, allowing to build virtual prototypes that
can be simulated without actually implementing in the final
hardware design.

These languages form a hierarchy, and are supposed to be
used subsequently: providing a natural language description
first, then formalising it, providing a system level model
and finally implementing the design at the register transfer
level gradually leads designers through the process. However,
when following this approach, several new challenges arise:
firstly, we have to keep the models in the different levels
of abstraction consistent across the different languages and

formalisms involved, secondly, we need a uniform notion of
refinement, and thirdly, we want to be able to track changes
and their impacts across the different levels of abstraction.

The contribution of this paper is a framework which aims
at meeting these challenges. The framework provides a uni-
form management of specifications in these languages at a
syntactic level, a semantics to relate their meaning (as far
as possible) by a notion of refinement, and a comprehensive
change management across all levels. We have implemented
the framework in a prototype of the Change Impact Analysis
and Control Tool (CHIMPANC) to demonstrate its principal
applicability. It is particularly the change management which
makes this approach viable, because we need to be able to
handle changing specifications effectively; changes are the
norm, rather than the exception, as the design will rarely be
correct the first time, and moreover the tool supported afforded
at the more abstract levels will help us to find errors earlier
in the design process, necessitating these changes.

This paper is structured as follows: we first give an overview
of the different abstraction levels in Sect. II, then outline the
various steps it performs to map levels, locate changes and
check for consistency in Sect. III, and finally give an overview
of the front end in Sect. IV.

II. HARDWARE DESIGN ABSTRACTIONS

This section gives a short overview over different abstrac-
tion levels in system design, starting with the most abstract
description and successively approaching traditional HDLs.

A. The Informal Specification Level (ISL)
The most abstract way to describe a system is natural

language. When designing a system, specifying its properties
without having to worry about details of mathematical notation
and simply using the language one is familiar with instead is
a straightforward way to start the design process.

Natural language does not restrict the designer in any
way. This openness means that this description cannot be
formalised: while natural languages come with grammars that
restrict the available constructs, these rules do not mean that
the result is an unambiguous description of the system. While
natural language processing (NLP) techniques can address
some issues, an automatic formalisation of arbitrary text is
neither possible nor desired, meaning that these specifications
need to be processed manually.

B. The Formal Specification Level (FSL)
The next step to describe a system in a more exact way are

formal languages. Standardised languages such as the Systems

P1: The model is
composed of people
and buildings.

P5: Any person in a
given building is au-
thorised to be there.

Waiting

Refusing

refuse(p : Person)

off_red()

Accepting

pass_thru()

off_grn()

accept(p : Person)

Building

Person

pass(b : Building)

0..*

building

0..*

gate
0..*aut 1sit

context Person
inv P5: self.aut→includes(self.sit)

SC MODULE(Door)
{

. . .
LED grn ;
LED r e d ;
T u r n s t i l e t s ;
Gate gc ;

}

SC MODULE(Gate)
{

. . .
void o p e r a t e ()
{
. . .
}

} ;

Informal Specification Level Formal Specification Level Electronic System Level

Fig. 1. Example Development of an Access Control System (excerpt): from Informal Specification Level to Electronic System Level.

Modeling Language (SysML) give designers a way to describe
the system readily but at the same time force them to adhere to
a formal grammar that makes these descriptions unambiguous
[1]. SysML thus offers a way to add precision to the system
description.

Still, this formalised notation does not specify all aspects
of the system; e.g. the SysML lacks the ability to express
non-functional requirements such as timing properties. In other
words, FSL models formalise the constraints inherent in the
design; e.g. structural diagrams enriched with OCL limit what
actions may be performed by the system and how the output
values may then be structured. However, while these models
may be used to locate potential errors early on in the design
process, they are neither complete nor actually executable.

C. The Electronic System Level (ESL)

The next step in refining the system is to create a work-
ing prototype without going into the implementation details
required by HDLs. System level modelling languages such as
SystemC can describe the behaviour of systems without spec-
ifying how this functionality is supposed to be implemented.

SystemC, as the current de-facto ESL standard language [2],
allows systems to be described using the C++ programming
language while at the same time offering designers the means
to describe the structural features of a hardware design. The
result is a virtual prototype that can be simulated: parts that
are meant to represent hardware are managed by a dedicated
simulation kernel which invokes the relevant software parts.
This means that the ESL design is much less abstract than
at the FSL, representing a model of the system that can be
executed, while still being too abstract to be translated into
hardware.

From the ESL, we can map the system design further down
to dedicated HDLs which may be translated into hardware [3];
this is called the Register Transfer Level (RTL), but as the
connections here are fairly well-known we will not explore it
further in this paper.

D. Different Levels of Abstraction

These different abstraction levels all have particular pur-
poses and use cases:

• natural language offers a way to quickly come up with an
initial description of a given system that is well-readable
without prior training and not restricted concerning the
described properties;

• FSL models specify system properties in a precise way
amenable to formal analysis and reasoning;

• ESL models offer virtual prototypes to be run and tested;
• RTL implementations (not considered here) would allow

the design to be translated into hardware.
All the different levels describe the same system, yet

they are written in different and at first sight unconnected
languages. Thus, we need to ensure that the models at the
different abstraction levels are consistent: the natural language
requirements need to be represented as formal properties at the
FSL, the classes modelled at the FSL need to appear at the
ESL in corresponding form etc. Further, one abstraction level
may contain several models of the system at different degrees
of abstraction: at first, an FSL model should be no more than
a translation of the natural language requirements, while a
more detailed FSL model should be detailed enough such that
we can translate it into SystemC at the ESL. This is called
refinement: gradually adding more details which constrain the
model of the system. Keeping the models throughout the
development consistent with each other is called functional
change management.

E. Example: an Access Control System
As an example, consider the design of an access control

system (appropriated from [4]). It should control the access
of people to buildings by controlling the doors. Initial natural
language requirements state facts about their relations (Fig. 1,
on the left).

To formalise requirements such as these, we introduce
SysML blocks, with added OCL constraints. Here, classes ini-
tially include people and buildings; associations include AUT
and SIT, which point to the buildings someone is authorized
to enter, or is currently in, respectively. There is one OCL
constraint which states that every person can only be in a
room she or he is authorized for, i.e. SIT ∈ AUT, written
in OCL as self.aut→includes(self.sit) (Fig. 1, middle-left).
These formalized but very loose constraints can now be re-
fined further. For example, we introduce doors which connect
buildings, and people are authorized to access certain doors.
To make this into an ESL specification, we then describe the

actual mechanics of operating the door in more detail: when
a person is approaching the door, a green or red light should
indicate whether access is granted or denied, and a turnstile
should open (or not). This can be expressed by a state machine
diagram in SysML (Fig. 1, middle-right).

In our refinement steps, we have replaced modelling classes
such as people and buildings by implementation classes like
doors. The final refinement step translates a state machine
diagram into a SystemC implementation, with doors (but
not people) becoming components (called SC MODULE in
SystemC), comprised of a card reader, a turnstile, and green
and red LEDs. The turnstile has a method operate which
implements the state machine diagram above (Fig. 1, right).

III. A FRAMEWORK FOR CHANGE IMPACT ANALYSIS

Functional change management calculates the impact of
syntactical changes using the semantics of the documents. In
order to implement it across the different levels of abstraction,
we need a unifying semantics for the different levels.

Note that the methods proposed in this paper and the tool
introduced are indeed focusing on change management. The
use case is not to generate a formal description of a system
from a natural language specification, but to detect which parts
of specifications are related to parts of other specifications, and
how changes in one of them affect the other, i.e. how changes
propagate within and across the different levels of abstraction.

A. Related Work
Change impact analysis offers more than the currently

used source code management (SCM) tools (Git, Subversion,
Mercurial, etc.); our work does not compete with any of these
but augments them with functional change management, and
the proposed solution could be easily integrated into any of
these existing SCM solutions.

There are several isolated approaches to functional change
management for some of the individual specification levels
we described. EMF itself for example offers a toolset to
analyse differences between two models [5], there exists a
change management systems for UML diagrams [6], and there
is a wealth of techniques on traceability and requirements
management [7], [8]. However, these systems share several
limitations, the foremost being that there are no semantic
connections to external models which could be taken into
consideration, leaving the user without knowledge about im-
pacts to other specification layers. Furthermore, we are not
aware of any other change management tool available which
is able to calculate the impact of changes on the correctness
of SysML/OCL refinements. In addition, CHIMPANC supports
impact analysis between different abstraction levels.

The analysis of SystemC designs is a complex task that is a
research field on its own. Embedding SystemC into a change
managed workflow is thus a non-trivial task as a various C++
dialects need to be supported, each tied to compilers that
generate an optimized binary version of the design to be run
that is stripped of all non-essential meta information. Different
approaches to extract the given information include parsing the
source code [9]–[13] (which results in the support of only a
subset of SystemC, as no existing parser supports all given
dialects) or using modified compilation workflows in order to
modify the executable design to trace and store the required
data itself [14]–[16] (which results in the support of all designs

that are built using the compiler being used). In order to keep
our approach as applicable as possible, the approach given
in [17] was used: instead of relying on the source code, the
compiler-generated debug symbols are used. While the format
itself differs between compiler architectures, it is always
standardized and/or accessible, resulting in a reliable interface
to retrieve structural descriptions from SystemC designs.

The OCL approach to specification with preconditions,
postconditions and invariants is called design by contract and
goes back to [18]. More recently, this approach can be found in
component-based design (rich components [19]), or so-called
light-weight specification languages based on a programming
language, such as JML [20] for Java or ACSL [21] for
C. The latter two focus on what corresponds to the lowest
abstraction layer in our setting, the ESL. Existing tools for
the whole workflow across all abstraction layers are rare;
most closely related are so-called wide-spectrum languages
[22] which cover the whole of the design flow. For example,
our running example was originally conceived for the B
language [23]. Atelier B, the tool supporting B, covers the
whole design flow, similar to Event-B, an extension of B
with events, which is supported by the Rodin tool chain [24].
Another prominent example is SCADE [25], which supports
seamless and rigorous development from abstract specification
down to executable software or RTL code by code generation
techniques. The drawback of all these languages and tools is
that they tie the user into one language and methodology for
the whole design flow, whereas our approach offers designers
a best-of-breed approach, and integrates into existing design
flows. Moreover, we are not aware of any attempts to apply
impact analysis on any of these wide-spectrum languages.

B. Underlying Semantics
In our case, the semantics is based on Kripke structures.

Without going into the details here, a Kripke structure consists
of a set of states, a transition relation between states, and a
set of propositions which hold at each state. Thus, Kripke
structures allow us to capture the key notions of state transition
and state-dependent predicates.

We now sketch the semantics of our abstraction levels. The
ISL cannot have a mathematically precise semantics, as such
would counteract our motivation to use natural language in
the first place (we want users to be able to express initial
specifications without having to worry about mathematical
rigour at the same time). Instead, we use NLP techniques
to decompose the natural language requirements into single
semantically meaningful requirements, which form the seman-
tic entities at the ISL. Additionally, if NLP does not offer
satisfying results, connections between elements of the FSL
and the ISL can be drawn manually in order to properly detect
the impact of changes across the different abstraction levels.

At the FSL, the class and object diagrams give us a notion
of state (see [26] for details): classes describe the system state
(via an object model), and object diagrams describe particular
system states (in particular, initial states). State transitions
are given by the OCL constraints: there is a transition with
operation o from S1 to S2 iff.

(i) all invariants hold in S1 and S2,
(ii) the preconditions of o are satisfied in S1, and

(iii) the postconditions of o are satisfied in S2.
Additionally, transitions can be specified using a restricted
form of state diagrams. Thus, the semantic entities at the FSL

<package name=’acs’>

<block name=’Person’>

<attribute name=’age’>
<reference name=’home’

eType=’Building’>

<block name=’Building’>

Block

name: Person
status: added

Block

name: Building
status: added

Attribute
name: age
status: added

Reference

name: home
status: added

ha
sA

hasA typ
e

origin

origin

origin

origin

(a) after initial extraction

<package name=’acs’>

<block name=’Person’>

<attribute name=’age’>

<block name=’Building’>

<reference name=’neighbours’

eType=’Building’>

Block

name: Person
status: deleted

Block

name: Building
status: deleted

Attribute
name: age
status: deleted

Reference

name: home
status: deleted

ha
sA

hasA typ
e

or
ig

in

or
ig

in

or
ig

in
(b) after application of syntactic diff

<package name=’acs’>

<block name=’Person’>

<attribute name=’age’>

<block name=’Building’>

<reference name=’neighbours’

eType=’Building’>

Block

name: Person
status: preserved

Block

name: Building
status: preserved

Attribute
name: age
status: preserved

Reference

name: home
status: deleted

Reference

name: neighbours
status: added

ha
sA

hasA typ
e type

hasA

or
ig

in

or
ig

in

or
ig

in origin

(c) after second extraction

Fig. 2. Change management via explicit semantics

are classes, invariants, pre- and postconditions, objects, and
state diagrams.

At the ESL, the semantics are given by the SystemC
semantics. States are given by the instances of the SystemC
modelling classes (SC MODULE etc.), and transitions are
given by the simulation (see [27] for details; however, we use
a reasonable abstraction from the concrete SystemC imple-
mentation instead of a mathematically precise model of the
implementation). Thus, the semantic entities at the ESL are
classes, attributes, and methods.

The semantic entities on the respective abstraction levels
give rise to notions of mapping between them. From the
ISL to FSL and ESL, we map each requirement to one or
more specification elements which implement them. Within
the FSL, we define a notion of refinement based on the
underlying Kripke structures; a concrete specification C is a
refinement of an abstract specification A if each state transition
in C can be mapped back to a state transition in A, i.e. C
restricts the possible state transitions of A. This refinement
can be realised by refining the state (data refinement) or
the operations (operational refinement). An example of data
refinement is the introduction of new classes or attributes; an
example of operational refinement is the implementation of
a single operation by a state diagram. From the FSL to the
ESL, we have the usual implementation of SysML diagrams,
except that we may map blocks in the FSL to instances of the
sc_module class (corresponding to the fact that in hardware,
objects exist more or less a priori). Within the ESL (i.e.
between two SystemC models) we do not consider refinement,
as this would require a more sophisticated semantic modelling
of SystemC to consider e.g. timing requirements.

A system development consists of several layers
L1, . . . , Ln, which group specifications from one abstraction
level. The first layer typically contains the natural language
specifications, and the last layer Ln ESL specifications.
Between layers, specifications are related via refinement: a
specification SP from layer Li is mapped to a specification
SP ′ of layer Li+1 if SP ′ is a semantic refinement. This
mapping allows us to keep track of properties; for example, if
all initial ISL requirements are mapped to formal properties
which are later proven we can be confident that the
implementation satisfies the original specifications.

The mappings are mostly constructed automatically (see

Sect. III-F below), but some have to be constructed by the
user (in particular, the mapping of ISL requirements).

C. Syntactic Representation

The specifications on the different levels are written in
different formalisms, each in their own syntax. Since we
aim to extensibly support a wide variety of file types in the
future, it would be inflexible to implement a parser for every
concrete input syntax. Hence we decided to employ the widely
adopted, generic Eclipse Modelling Framework (EMF) [28],
which serves as a common basis for other file types. This
means that any format is supported as soon as there is a
translation into EMF. At the ISL, specifications are represented
as a list of SysML requirements. At the FSL, we use the
SysML tools provided by the Papyrus Framework [29], as well
as the EMF OCL representation. For the ESL, we make use of
the fact that SystemC models are valid C++ source files, and
employ the debug output of the clang compiler to generate
an EMF model. The files contain DWARF debug information
that can be extracted using the libdwarf/dwarfdump tools. The
resulting data is translated to the EMF format using a custom
parser/translator. The final result includes namespace and class
structures with type hierarchies, operations and attributes.

D. Syntactic Difference Analysis

The architecture of the functional change management has
been derived from previous work in the generic GMoC system
[30]. A generic diff algorithm for hierarchical annotated data
serves as a basis [31], and provides support for syntactic
difference analysis. We adapted this algorithm to operate on
generic EMF objects (EObjects). This way we can obtain a
minimal set of changes between two EMF files. The GMoC
diff algorithm allows us to specify equivalence between the
objects; in our case, which attributes identify an object, which
orderings have a meaning and which do not. The example in
Fig. 3 states that a SysML block is identified by its name,
and that the order of the contained attributes and operations is
irrelevant, while on the other hand the order of the parameters
of an operation has a semantic meaning.

element Block {
annotations {

name!
}
constituents {
unordered { _ }

}
}

element Operation {
annotations {

name!
}
constituents {

ordered { _ }
}

}

Fig. 3. Example ecore.equivspec file

E. Semantic Difference Analysis

The distinctive feature of the diff algorithm is that it takes
the intended semantics of the documents into account. This
is achieved by representing the semantics as a graph (explicit
semantics). The semantic graph is extracted from the syntactic
graph by graph rewrite rules, which can be efficiently imple-
mented in Neo4j; after extraction, the nodes of this semantic
graph are connected to the origin nodes of the syntactic tree
(Fig. 2(a)).

When a change in an input file occurs, a diff is applied to the
syntactic tree. Then, we mark the nodes of the semantic graph
as “deleted” (Fig. 2(b)) and extract the graph again (Fig. 2(c)).
Nodes that are already present in the graph are marked as
“preserved”, nodes that do not exist are marked as “added”,
and all other nodes remain marked as “deleted”. During this
process additional semantic knowledge can be used to handle
individual nodes as required.

Thus, we have the syntactic graph which consists of the
abstract syntax trees, and the semantic graph extracted from
them. We store both graphs uniformly in the Neo4j graph
database, because it allows us to efficiently traverse and
transform them while providing superb scalability. On top of
this we implemented an interface from EMF to Neo4j which
allows us to analyse differences between files on disk and the
persisted syntactic tree in the database.

F. Change Impact Analysis

The semantic graphs of specifications from adjacent layers
can be mapped semi-automatically by inspecting naming,
types and structure of models. Users are always in control
of these mappings and can alter or complement them where
required to reflect their intentions.

Change propagation follows syntactic changes across the
origins along the mappings of the semantic graph. That is, if
a syntactic change occurs we find which parts of the semantic
graph have their origins in that part of the syntactic graph
which has changed, and then check which mappings either
point into, or originate from, this part of the semantic graph.
To illustrate, consider our example (Fig. 1): ISL requirement
P5 (left) gets mapped to OCL invariant P5 (middle-left); if
either the requirement or the OCL invariant is changed, the
other is impacted by the change, as inconsistencies between
the two might arise. If the user changes the state diagram in
the ESL, this change might impact the ESL implementation,
or on the other hand the OCL invariants of the class diagram.

For data or operation refinements, we can calculate the
impact of changes more accurately. If we add additional oper-
ations to the class Building in Fig. 1, all data refinements
of Building will remain valid. The situation gets more
complex when we consider the proof obligations that arise
from refined OCL constraints. These proof obligations are of
the form c1 ∧ ...∧ cn =⇒ d, where c1 to cn are constraints on

the refined level and d is a constraint in the abstract level. If
this is proven externally (our tool does no OCL reasoning), we
can discharge the obligation and insert additional dependency
edges between the constraints c1 . . . , cn and d. If one of
these constraints changes the proof will be invalidated and
the proof obligation pops up again. Impact rules such as these
are described directly as Neo4j queries; this makes them fast
to execute and keeps the impact system extensible.

IV. THE CHIMPANC TOOL

Automation notwithstanding functional change management
needs user interaction, and hence an intuitive and visual user
interface. Existing tools that encompass this workflow are rare
and usually focus on a single, specific aspect such as natural
language processing [32] or SystemC code generation [33].
In contrast, CHIMPANC is a sophisticated cross-layer change
management tool. It implements the basic concepts of Sect. III,
and allows the user to easily inspect, modify and augment the
refinement mappings. On top of this it visualises how changes
in one layer affect the other layers.

A. Proposed Workflow
We envision a design workflow which is compatible with

existing hardware design process models established in the
industry. Since in practice there exists a heterogeneous tool in-
frastructure ranging from word processors down to specialised
tools for circuit design, all used by a diversity of people with
different levels of understanding, it would be impractical to
integrate our change management into all of these tools, or to
combine all of these tools into a new IDE. Hence, we propose
the CHIMPANC tool as an independent augmentation of the
process. Designers keep using their accustomed tools to edit
specifications, but additionally get the possibility to define and
inspect relations between the layers and gain a new, richer
perspective on the design.

To relate refinement layers users have to provide a project
definition file, which declares the refinement structure by a list
of layers, each with a type indicator (isl, fsl or esl) for
the respective abstraction level and a list of files belonging to
this layer.

B. The User Interface
CHIMPANC is realised as a web interface and can ei-

ther run locally or on a team server. When users open the
application in a browser they get presented a multi-column
layout representing the different specification layers (Fig. 4).
The leftmost column is the most abstract one — typically
natural language — while every additional column to the
right represents a refinement step. There are usually more
refinement steps involved than would fit into the user interface,
so there is a navigation bar on the top where one can select
the layer in focus.

All extracted model elements are represented as bold identi-
fiers. Mapped model elements appear green. When a user hov-
ers the mouse over such a mapped element, the corresponding
refinement is visually emphasised (Fig. 5).

Inconsistencies are highlighted with red wavy underlines.
These include elements (abstract models, attributes, references,
operations or parameters) which are unmapped in a refinement
(Fig. 6), as well as mismatching mapped types and inconsistent

Fig. 4. The CHIMPANC user interface.

Fig. 5. Highlighting of mappings

Fig. 6. Highlighting of inconsistencies

multiplicities of references. In addition, unproven OCL refine-
ments are displayed as a red number next to the respective
class definition which indicates the number of open proof
obligations. Conversely, discharged proof obligations appear as
a green number (Fig. 7). When the user moves the mouse over
a marked element, a tooltip will appear containing information
about the inconsistency.

Content warnings are highlighted with orange wavy under-
lines. These are currently only present in natural language
where we automatically rate the quality of refinements, using
the techniques from [34]. Again, a detailed description of
the warning can be obtained by hovering the mouse over the
marked element (Fig. 8).

Finally, change management support is implemented by
impacts. An impact can either indicate that a refinement has
changed or that the abstraction has been changed or removed;
impacts warnings are the default fallback when there is no
automatic solution to propagate a change across layers. It still
offers a high value to developers because the possibly affected

Fig. 7. Inline display of proof obligations

Fig. 8. A content warning in natural language

portions of refinements and abstractions can be narrowed down
to small fractions of the specification and inconsistencies can
easily be identified. Removed refinements do not trigger an
impact warning because they already result in an inconsistent
model, and thus an inconsistency error. Impact warnings
appear as orange elements indicating that user attention is
required (Fig. 9).

V. CONCLUSION

This paper presented CHIMPANC, a tool which supports
a comprehensive system design flow across different levels
of abstraction levels, from natural language down to system-
level models. CHIMPANC manages the models of the systems
at the different abstraction levels, keeps track of dependencies,
and calculates the impact of changes. Moreover, it can warn
about inter layer inconsistencies that would previously be left
unnoticed by the established tool chain.

We believe that our tool is easy to integrate into existing
workflows since it is independent of the utilised tools and can

Fig. 9. An impact warning

be extended to support all kinds of formats using EMF as a
simple and well documented interface. Users can provide rules
for refinement and automatic impact propagation as graph
rewriting rules in the form of Neo4j queries. Even if not all
designers in a team use the tool, it offers added value, since
it provides a way to detect and communicate the impact of
changes across different layers.

In future work, the integration of RTL as well as formal
semantics for SystemC refinements are still required to depict
the entire hardware design workflow.

The mapping from ISL to FSL is currently manual. We are
evaluating NLP techniques to partly automate this process.
Automatic change propagation rules from FSL to natural
language would be very valuable since they would imply
drastically enhanced means of communication between de-
signers and stakeholders and remove a lot of possibility for
misunderstandings.

VI. ACKNOWLEDGEMENTS

The research reported here was supported by the German
Federal Ministry of Education and Research (BMBF) under
grant 01IW13001 (SPECifIC).

REFERENCES

[1] R. Drechsler, M. Soeken, and R. Wille, “Formal specification level,”
in Models, Methods, and Tools for Complex Chip Design, ser. Lecture
Notes in Electrical Engineering, J. Haase, Ed. Springer, 2014, vol. 265,
pp. 37–52.

[2] C. Schulz-Key, M. Winterholer, T. Schweizer, T. Kuhn, and W. Rosentiel,
“Object-Oriented Modeling and Synthesis of SystemC Specifications,”
in Asia and South Pacific Design Automation Conference (ASP-DAC).
IEEE, 2004, pp. 238–243.

[3] L. J. Hafer and A. C. Parker, “A formal method for the specification,
analysis, and design of register-transfer level digital logic,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 2, no. 1, pp. 4–18, 1983.

[4] J.-R. Abrial, “System study: Method and example,”
http://atelierb.eu/ressources/PORTES/Texte/porte.anglais.ps.gz, 1999.

[5] The Eclipse Foundation. (2012) EMF Diff/Merge. [Online]. Available:
http://www.eclipse.org/diffmerge/

[6] L. C. Briand, Y. Labiche, and L. Sullivan, “Impact analysis and change
management of UML models,” in International Conference on Software
Maintenance (ICSM 2003). Proceedings. IEEE, 2003, pp. 256–265.

[7] M. Jarke, “Requirements tracing,” Communication of the ACM, vol. 41,
no. 12, 1998.

[8] IBM, “Rational DOORS,” http://www-
03.ibm.com/software/products/en/ratidoor.

[9] G. Fey, D. Große, T. Cassens, C. Genz, T. Warode,
and R. Drechsler, “ParSyC: an efficient SystemC parser,”
in Workshop on Synthesis And System Integration of Mixed
Information technologies, 2004, pp. 148–154. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.7049

[10] F. Karlsruhe, “KaSCPar - Karlsruhe SystemC Parser Suite,” 2012,
http://www.fzi.de/index.php/de/component/content/article/238-ispe-
sim/4350-kascpar-karlsruhe-systemc-parser-suite.

[11] J. Castillo, P. Huerta, and J. I. Martinez, “An open-source tool for
SystemC to Verilog automatic translation,” Latin American Applied
Research, vol. 37, no. 1, pp. 53–58, 2007. [Online]. Available:
http://www.scielo.org.ar/scielo.php?script=sci arttext&pid=S0327-
07932007000100011

[12] C. Brandolese, P. Di Felice, L. Pomante, and D. Scarpazza, “Parsing
SystemC: an open-source, easy-to-extend parser,” in IADIS International
Conference on Applied Computing, 2006, pp. 706–709.

[13] D. Berner, J.-P. Talpin, H. Patel, D. A. Mathaikutty, and
S. Shukla, “SystemCXML: An extensible SystemC front end
using XML,” in Proceedings of the Forum on Specification and
Design Languages, 2005, pp. 405–409. [Online]. Available: http://i-
tecs.fr/ecsi/libraryV1/uploads/6-CSD21 paper.pdf

[14] C. Genz and R. Drechsler, “Overcoming limitations of the SystemC
data introspection,” in Proceedings of the Conference on Design,
Automation and Test in Europe, 2009, pp. 590–593. [Online].
Available: http://dl.acm.org/citation.cfm?id=1874764

[15] M. Moy, F. Maraninchi, and L. Maillet-Contoz, “Pinapa: An extraction
tool for systemc descriptions of systems-on-a-chip,” in Conference
on Embedded software, 2005, pp. 317–324. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1086286

[16] D. Große, R. Drechsler, L. Linhard, and G. Angst, “Efficient automatic
visualization of systemc designs,” in Forum on Specification & Design
Languages, 2003, pp. 646–658.

[17] J. Stoppe, R. Wille, and R. Drechsler, “Data extraction from SystemC
designs using debug symbols and the SystemC API,” in IEEE Computer
Society Annual Symposium on VLSI (ISVLSI). IEEE, 2013, pp. 26–31.

[18] B. Meyer, “Applying ’design by contract’,” Computer, vol. 25, no. 10,
pp. 40–51, Oct 1992.

[19] L. Benvenuti, A. Ferrari, E. Mazzi, and A. L. S. Vincentelli, Contract-
Based Design for Computation and Verification of a Closed-Loop
Hybrid System. Springer, 2008, pp. 58–71. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-78929-1 5

[20] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll, Beyond
Assertions: Advanced Specification and Verification with JML and
ESC/Java2. Springer, 2006, pp. 342–363. [Online]. Available:
http://dx.doi.org/10.1007/11804192 16

[21] P. Baudin, P. Cuoq, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy,
and V. Prevosto, ACSL: ANSI/ISO C Specification Language Version
1.11, CEA LIST and INRIA. [Online]. Available: http://frama-
c.com/download/acsl.pdf

[22] F. L. Bauer, M. Broy, R. Gnatz, W. Hesse, B. Krieg-Brückner, H. Partsch,
P. Pepper, and H. Wössner, “Towards a wide spectrum language to sup-
port program specification and program development,” ACM SIGPLAN
Notices, vol. 13, no. 12, pp. 15–24, 1978.

[23] J.-R. Abrial, J.-R. Abrial, and A. Hoare, The B-book: assigning programs
to meanings. Cambridge University Press, 2005.

[24] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and
L. Voisin, “Rodin: an open toolset for modelling and reasoning in Event-
B,” International journal on software tools for technology transfer,
vol. 12, no. 6, pp. 447–466, 2010.

[25] B. Dion and J. Gartner, “Efficient development of embedded automotive
software with IEC 61508 objectives using SCADE drive,” in VDI 12th
International Conference: Electronic Systems for Vehicles. VDI, 2005,
pp. 1427–1436.

[26] M. Richters and M. Gogolla, “OCL: Syntax, Semantics, and Tools,” in
Object Modeling with the OCL, ser. Lecture Notes in Computer Science,
T. Clark and J. Warmer, Eds. Springer, 2002, no. 2263, pp. 42–68.

[27] Standard SystemC Language Reference Manual, IEEE, IEEE Standard
1666 – 2011.

[28] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: Eclipse
Modeling Framework. Pearson Education, 2008.

[29] A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard, P. Tessier,
R. Schnekenburger, H. Dubois, and F. Terrier, “Papyrus UML: an open
source toolset for MDA,” in Proc. of the Fifth European Conference on
Model-Driven Architecture Foundations and Applications (ECMDA-FA
2009). Citeseer, 2009, pp. 1–4.

[30] S. Autexier and N. Müller, “Semantics-based change impact analysis for
heterogeneous collections of documents,” in Proceedings of 10th ACM
Symposium on Document Engineering (DocEng2010), M. Gormish and
R. Ingold, Eds., Manchester, UK, september 2010.

[31] S. Autexier, “Similarity-based diff, three-way-diff and merge,” Interna-
tional Journal of Software and Informatics (IJSI), vol. 9, no. 2, august
2015.

[32] O. Keszocze, M. Soeken, E. Kuksa, and R. Drechsler, “Lips: An IDE
for model driven engineering based on natural language processing,” in
1st International Workshop on Natural Language Analysis in Software
Engineering (NaturaLiSE). IEEE, 2013, pp. 31–38.

[33] V. Sinha, F. Doucet, C. Siska, R. Gupta, S. Liao, and A. Ghosh, “YAML:
a tool for hardware design visualization and capture,” in Proceedings of
the 13th International Symposium on System Synthesis. IEEE, 2000,
pp. 9–14.

[34] M. Soeken, N. Abdessaied, A. Allahyari-Abhari, A. Buzo, L. Musat,
G. Pelz, and R. Drechsler, “Quality assessment for requirements based
on natural language processing,” in Forum on Specification and Design
Languages. Proceedings, 2014.

