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Abstract—Augmented Reality (AR) introduces vast oppor-
tunities to the industry in terms of time and therefore cost
reduction when utilized in various tasks. The biggest obstacle for
a comprehensive deployment of mobile AR is that current devices
still leave much to be desired concerning computational and
graphical performance. To improve this situation in this paper we
introduce an AR Edge Computing architecture with the aim to
offload the demanding AR algorithms over the local network to a
high-end PC considering the real-time requirements of AR. As an
example use case we implemented an AR Remote Live Support
application. Applications like this on the one hand are strongly
demanded in the industry at present, on the other hand by now
mostly do not implement a satisfying tracking algorithm lacking
computational resources. In our work we lay the focus on both,
the possibilities our architecture offers regarding improvements
of tracking and the challenges it implies in respect of real-time.
We found that offloading AR algorithms in real-time is possible
with available WiFi making use of standard compression techni-
ques like JPEG. However it can be improved by future radio
solutions offering higher bandwidth to avoid additional latency
contributed by the coding.

Index Terms—Augmented reality, Industrial WLAN, Wireless
Networking, Maintenance engineering, Tracking, Sensor fusion,
Edge computing, Distributed computing, Smart industry

I. INTRODUCTION

The huge potential of Augmented Reality primarily reveals
in industrial applications. A myriad of prototypes has been
implemented in the last few years covering diverse use cases
like training [1], marketing [2], assembly [3] and many others.

In defiance of this enourmous market volume most of the
AR prototypes were not able to evolve into merchantable
products [4]. At least two reasons for this circumstance are
evident: First, the availabe AR hardware still lacks computa-
tional performance for delivering convincing AR experiences
to the user. The google glass introduced in 2012 suffered from
overheating and an unacceptably short battery life running the
demanding AR algorithms. But even more modern devices
like the Microsoft HoloLens continue to have restrictions,
for example regarding the quantity of renderable polygons,
which applies to smartphones and tablets as well. Second,
putting AR applications into operation and keeping them up-
to-date locally on different mobile devices (meaning different

hardware, OS, platform etc.) is very costly. Traditional (non-
AR) applications therefore often draw on a client-server ar-
chitecture, where only one central unit (the server) has to be
configured and maintained.

To adress these two issues we propose a revolutionary
approach for the real-time offloading of AR computations
to a high performance server using Edge Computing in a
wireless network. Edge Computing is an upcoming technology
which brings computational resources and services closer to
the end-user. The main advantage over Cloud Computing is the
reduced latency, so that real-time applications are facilitated
[5]. For AR applications the edge server can be used for pro-
viding the service of executing CPU- and GPU-intensive AR
algorithms remotely. This architecture puts high requirements
on the data transmission path between the client device and
the edge server because high data rates are to be sent in a
short period of time.

One well known use case for Augmented Reality in
industries is the so-called Remote Live Support, where a
machine operator confronted with an insoluble machine error
gets assistance by a remote expert through video transmission
and AR. One main point of criticism on current solutions is
that due to the limited resources of AR devices no tracking is
performed for placing and retaining the expert’s annotations
in the proper place. To demonstrate the benefits of AR Edge
Computing we implemented an AR Remote Live Support
application using the proposed architecture, which enables a
powerful tracking algorithm, described in chapter III-C.

II. RELATED WORK
A. AR Remote Assistance Systems

For manufacturing companies it is essential that the down
time of their machines is reduced as much as possible.
Admittedly a machine operator is able to fix most of the
occuring errors, but it happens not uncommonly that further
advice is needed from a machine or component manufacturer.
In some cases telephone support is not enough to get the
machine running again and a service engineer will have to
attend to it, which implies high expense through longer down
time and travel cost [6].



In the given situation a video conference system is of high
value. The machine operator puts on some AR glasses and
contacts a remote expert via Voice over IP (VoIP). Additionally
a live video stream is recorded by the glasses integrated camera
and sent to the remote expert, who thereby is in a position to
assess the situation on site. Augmented Reality can now extend
such an application by providing the facility for the expert to
draw assistant virtual overlays into the video stream, which are
then shown in the AR glasses of the operator. By this means
potential ambiguities, e.g. which button to press, which cable
to check etc. can be excluded and the operator is enabled to
solve the problem quickly and thus to reduce costs.

A couple of those AR Remote Live Support applications
have already been implemented, but most of them do not make
use of a proper tracking method, so the annotations made by
the remote expert are not registered correctly in 3D according
to Azumas initial definition of AR [7]. Instead these solutions
are either solely able to present data sheets and manuals in the
operator’s glasses [8] or they use outdated methods like marker
tracking [9]. One reason for that are the above-mentioned
insufficient computational resources of mobile AR devices.

B. Camera Pose Tracking for Augmented Reality

Camera pose tracking is a fundamental technology for Aug-
mented Reality applications [10]. It enables realistic rendering
of 3D augmentations and seamless integration into the real
world. To this extent a six Degree of Freedom (6DoF) pose
consisting of the camera position and orientation in a reference
coordinate system is estimated [11].

The camera pose is commonly tracked using the images
captured by the camera itself and locating landmarks such as
markers or natural features such as edges or lines [12], [13],
[14]. These vision-based approaches perform well in general
but face challenges when the image quality is compromised,
e.g. because of blurring due to fast motion, illumination chan-
ges or occlusions. For this reason Sensor Fusion approaches
for camera tracking that use additional sensors like inertial
measurement units (IMUs) apart from the camera images are
often deployed and have been shown to achieve robust tracking
especially under fast motion. Such fusion systems are typically
based on Statistical Filtering (e.g. Extended Kalman Filter
(EKF), Particle Filter (PF)) or learning approaches [15], [16],
[17].

C. Wearable AR devices

AR head-mounted displays (HMD) based on see-through
optics have been around for a few decades now, although
being dedicated solely to defense applications until recently
[10]. Nowadays, AR headsets are applied to various markets,
such as firefighting, police, engineering, logistics, medicine,
education, and more, with emphasis on sensors, specific digital
imaging, and strong connectivity [18], [19], [20]. Consumer
applications are also emerging rapidly, focused on connecti-
vity and digital imaging capabilities, in an attractive and
minimalistic package. Such segmentation has been possible,
thanks to recent technological leaps in the smartphone industry

(connectivity, on-board CPU power with miniaturization of
ICs, development of complex sensors, novel micro-displays,
novel digital imaging techniques and battery technology).

Current head-mounted display device manufacturers
consider two types of pose tracking methods: inside-out and
outside-in tracking. In outside-in tracking, the users head
is observed by an external sensor. This is done usually by
adding some sort of markers to the head-worn device, and
using a camera as an external sensor. One major problem
of outside-in tracking is that the range of movements of the
user is limited to the field of view of the external camera. In
inside-out tracking, the sensor is placed on the device and
its pose is computed from the observations. Inside-out pose
tracking has several advantages compared to outside-in. The
range of movements is not limited by the field of view of
an external sensor, but merely by the ability to recognize
the surrounding. Fusion with an inertial sensor for more
robust pose estimation also becomes possible. However,
pose tracking using the visual input from the camera can be
computationally very intensive, especially when there is no
existing information on the environment and Simultaneous
Localization and Mapping (SLAM) approaches have to be
deployed [21]. Because of this computational load which can
be overwhelming for a real-time application on an embedded
processor of an HMD, it is often considered to outsource
part of the processing through the network to a powerful
cluster of processing units [22], [23]. The delay caused by
the network is of crucial importance in this case.

III. REMOTE ASSISTANCE SYSTEM
ARCHITECTURE

A. Overview

Our proposed AR Edge Computing architecture consists of
two main actors: The client (here: the machine operator), who
wants to get some augmented reality information superimpo-
sed on his perception of the physical world, and the edge
server, which has the task to bring the AR experience to the
user and therefore to run the computationally challenging AR
algorithms. While the client device can be any mobile device
having an integrated camera, the edge server should be a high-
performance PC with an appropriate graphics card.

As we can see in figure 1 in the actual use case additionally
a third party is involved, namely the remote expert. As he has
to be capable of drawing annotations into the video stream
coming from the operator, he should be equipped with a laptop
or a tablet PC.

The activity diagram in figure 2 shows how the overall
Remote Live Support process looks like. We assume that the
connection between the operator and the remote expert has
been established beforehand.

First, the operator’s mobile AR device camera grabs frames
at a configured frame rate and sends them together with
some IMU data to the edge server. It is important to under-
stand that the process there is divided into two asynchronous
subprocesses. On the one hand the server accomplishes the



Fig. 1. Remote Support System Architecture Overview.

tracking process, which is introduced in detail in III-C. The
estimated camera pose of each frame is saved on the edge
server. On the other hand it forwards the video stream over
a gateway (gIntMUnt in figure 1) to the remote expert using
available WAN infrastracture as the expert can sit thousands
of kilometres away.

The remote expert now sees the incoming video stream and
is able to pause it at any time to draw some helpful hints into
it. Those annotations are sent back to the edge server together
with the corresponding picture ID. In this manner the edge
server is able to match the annotated picture with the saved
camera pose and the annotations can be registered properly
in 3D. As soon as new annotations are registered the server
can render them into the camera feed, which is sent back to
the client permanently, regardless of whether annotations are
available or not.

Attention should be paid to the fact that the cycle time
between the grabbing of a camera frame to its augmented
visualization (red background in figure 2) has to be kept as
small as possible. Experts estimate the maximum end-to-end
latency a user wearing a HMD can perceive at 10ms [24],
where in some non-HMD applications considerably higher
latencies are tolerable [25].

Furthermore a bidirectional audio link is established bet-

Fig. 2. Remote Live Support activity diagram

ween both human actors, on which we do not elaborate in
this paper.

B. User side - Mobile device

As mentioned before the client device can be any mobile
device running an operating system and posessing an integra-
ted camera and a IMU. The only task of this device is to
grab live data from these two components, send it to the edge
server and then to display the incoming video data. For faster
devices it would also be possible only to offload the tracking
process and to do the rendering on the client device itself.
Due to this option in the current system we decided upon a
Unity 3D application as client front-end, because of the strong
rendering capabilities and usability of Unity. Nevertheless any
other technology, e.g. a web application with WebGL, could
do this job equally well.

C. Server side - Edge Cloud

The image processing server (cIntMUnt in figure 1) is
responsible for all operations that are computationally too
demanding for the mobile device at the user side, namely the
camera pose tracking and possibly the rendering of augmen-
tations.

The cIntMUnt constantly receives the stream of captured
video and inertial data (if applicable) from the user. For the
task of pose tracking an initialization step is required. This is
achieved by extracting visual edge features (e.g ORB) [26])



from the received images and matching to a preregistered
database of features previously collected from the application
environment. This procedure can be challenging and prone to
failure if repeating patterns occur in the environment. These
issues can be overcome by using an additional source of
positional information such as a network wireless signal based
localization (received from cLocSrv) to reduce the set of
possible feature matches from the database.

After successful initialization a robust frame-to-frame
tracking approach can be initiated. The proposed approach
considers tightly coupled visual-inertial fusion using an EKF
with inertial measurements as control inputs for the prediction
step similarly to [15]. The tracking procedure outline is as
follows:

• The appearance of the visual features to be tracked is
rendered based on the prediction step of the EKF done
using the inertial measurements.

• The predicted features are matched to the visible ones in
the current video frame. This requires only a fast search
in the neighbourhood of each predicted feature position.

• The matched 2D feature positions in the image together
with their known 3D positions are used for the correction
step of the EKF. The current pose can then be read from
the filter state.

In case inertial measurements are not available the features
are matched from the previous frame to the next and the
camera pose is calculated from the matches within an outlier
rejection framework (e.g. RANSAC [13]). The use of an EKF
and inertial measurements however benefits the system in
that it increases the robustness of the tracking and reduces
the number of features that is required to be tracked, thus
significantly decreasing the processing time per frame needed.

The recent history of camera poses corresponding to IDs
of images are saved in the cIntMUnt. When an annotation
drawn by the remote expert is received, the server cIntMUnt
uses the pose information and the existing 3D environment
information to define a plane in the real world that the
annotation is attached to. This is done by a simple calculation
of the highest overlap of the annotation in the image to the
real environment planes. Subsequently, the annotation can be
rendered to every incoming frame from the mobile device after
performing localization. For the rendering, a framework like
Unity or any other rendering engine can be used. The rendered
image is then transmitted back to the end user to be overlaid
on the live view.

D. Remote Expert

The application for the remote expert has to provide at least
the following functionalities:

• Display the received video stream from the machine
operator

• Pause the video stream
• Provide tools for drawing annotations into the video

stream (and for deleting them again)
• Send the annotations back to the edge server

Since a Unity 3D application was deployed on both the client
and the edge server, we also use Unity 3D for the remote
expert’s application in order not to run into compatibility
conflicts of the exchanged data.

IV. EVALUATION

To evaluate the real-time capabilities of our developed sy-
stem we analyzed the emerging latencies for the transmission
and the tracking process seperately.

A. Network Real-Time capability

As mentioned in section III-A the requirements of AR appli-
cations regarding end-to-end latency are very demanding. Our
proposed architecture unfortunately introduces a new source
for delay, namely the transmission path between the client
and the edge server. Disregarding all other advantages the
AR Edge Computing entails, the time saved by processing the
algorithms remotely should exceed the additional transmission
time overhead.

Basically there are two possibilities how to transfer the
video data. We can either send them as raw data or encode
them using a intraframe or interframe compression technique,
where in our implementation we only were intent on using
the second-mentioned. If no compression technique was used,
a 752 × 480 video stream (24Bit per pixel) at 30fps would
produce an application data rate of ≈ 260Mbps.

Whereas compression means strongly economizing the pro-
duced data rate the process itself contributes some delay at the
same time. In figure 3 we measured the average time needed
for coding and decoding several test pictures with different
JPEG compression levels and resolutions and compared it to
the calculated time needed for transmitting raw data. Here
we only took the data rate produced by the application
into account, applied protocols like TCP will add up some
overhead.
As we can see in figure 3 for an adopted bandwidth of
150Mbps it takes around 14.5ms in total to encode a 752×480
frame with JPEG75 on the client-side, transmit it to and
decode it on the server for further processing while sending
the raw data would involve a theoretical latency of 57, 75ms.
Considering the way back from server to client we can assume
similar prequisites, but no decoding has to be performed on
the client, since the returning JPEG images are to be displayed
immediately (corresponds to approximately 10.5ms).

B. Camera Tracking Resources

In this section we present measurements of the runtime
of the proposed tracking and rendering approaches from
section III-C on a regular PC processor. With these results
we demonstrate the need for a processing unit more powerful
than the end-user devices such as smartphones or AR-glasses.
Furthermore, by combining the processing time calculated here
with the estimated network delays from section IV-A we obtain
an estimate of the total delay that the end-user is affected by.



Fig. 3. Comparison of transferring coded and uncoded video data.

Fig. 4. Camera view from the tracking experiment with 3D augmentations

We performed our experiment in a room environment with
a 3D model of the walls (figure 4) and registered ORB
features for initialization and KLT features for the tracking.
An EKF as described in section III-C is used to fuse visual
feature matches from a uEye camera with synchronized
inertial measurements from an XSens IMU. The camera
provides images at a resolution of 752 × 480 pixels and the
CPU used was an Intel Xeon 3.07GHz, 12GB RAM. The
measured average time required for the different operations
during pose tracking and rendering of a 3D augmentation
is given in figure 5: From our runtime measurements we
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Fig. 5. Runtime measurements of tracking algorithm

observe that the filter prediction and update operations are
executed very fast (less than 0.2ms), and that the matching
of the features and the rendering are the most expensive
operations. In particular, the rendering of the expected scene
based on the predicted pose and the final rendering of a 3D
augmentation that is presented to the end user require about



10ms each. The feature matching also requires a significant
amount of time of about 6ms even though it is done by a
local search for each feature instead of a full image search
taking advantage of the pose prediction. Furthermore, a
sparse feature set is used since the EKF only requires a few
good feature matches to perform its correction step. The total
time required for all server operations adds up to 25.78ms,
which leads to an overall end-to-end delay of roughly 50ms
(14.5ms + 25.78ms + 10.5ms) for a single frame using a
resolution of 752× 480.

V. CONCLUSION

In this paper we presented an AR application using Edge
Computing. Referring to this innovative combination of the
given technologies we pointed out that using the architecture
mentioned, existing difficulties regarding the performance of
mobile AR devices like smartphones, tablets and glasses can
be overcome. Additionally it brings advantages like simplifi-
cation of update rollouts or platform independence on client
side. The crucial factor is the end-to-end latency, which is
elevated by the video transmission between client and server.
For sending, tracking, annotating and receiving a 752 × 480
compressed video frame we measured an end-to-end latency
of around 50ms, which is acceptable for handheld AR systems
but too high for most HMD solutions.

To achieve better results, communication technologies
with higher bit rates and smaller latencies are needed to
relinquish the coding and decoding step and permit the
transmission of raw video data. One project which attends
to these requirements as well as to any others warranted by
industry 4.0 applications is proWiLAN.
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