SIA: Scalable Interoperable Annotation Server

Johannes Kirschnick and Philippe Thomas

DFKI Language Technology Lab
DFKI Intelligent Analytics for Massive Data Lab
Alt-Moabit 91c, 10559 Berlin, Germany

Abstract. Recent years showed a strong increase in biomedical sci-
ences and an inherent increase in publication volume. Extraction of spe-
cific information from these sources requires highly sophisticated text
mining- and information extraction-tools. However, the integration of
freely available tools into customized workflows is often cumbersome
and difficult. We describe SIA, our contribution to the BeCalm-TIPS
task, a scalable, extensible, and robust annotation service. The sys-
tem currently covers three named entity types (i.e., Mutations, Dis-
eases, and miRNA) and is freely available under Apache 2.0 license at
https://github.com/Erechtheus/sia.

Key words: Annotation service, Robustness, Scalability, Extensibility

1 Introduction

A vast amount of information on biomedical processes is scattered over millions
of scientific publications. Manual curation of this information is expensive and
cannot keep up with the ever increasing volume of biomedical literature [7]. To
this end, several sophisticated natural language processing tools have been pro-
posed to assist professionals in finding specific information from texts. Many of
these highly specialized tools are provided as open source projects to the com-
munity. However, the integration of state-of-the-art open source tools into cus-
tomized text-mining workflows is often difficult and cumbersome [10,12]. Stan-
dardized interchange formats, such as BioC [5], enable the exchange of text min-
ing results but the initial set-up of these tools is still an unsolved issue. Exposing
tools via public web services implementing common specifications bypasses this
problem and allows a code-agnostic integration of specific tools by providing an
interoperable interface to third parties. This enables simple integration, compar-
ison, and aggregation of different state-of-the-art tools. In this publication we
present SIA, our contribution to the BeCalm TIPS task [9], a robust, scalable,
extensible, and generic framework to combine multiple named entity recognition
tools into a single system.

The publication is organized as follows: First, we provide a general description
of the system architecture, followed by details concerning the implementation
and failure handling, and end with a summary and future work section.

https://github.com/Erechtheus/sia

2 Proceedings of the BeCalm challenge evaluation workshop

2 General Architecture

Design Goals: SIA is designed around the following three main concepts:

1. Scalability Ability to handle a large amount of concurrent requests, toler-
ating bursts of high request rates over short periods of time.

2. Robustness Temporary failures (e.g., networking problems or server fail-
ure) should be handled transparently and not lead to dropped requests.

3. Extensibility Enable simple integration of arbitrary NLP tools to reduce
initial burden for providing an annotation service.

Figure 1 shows a high level overview of the general architecture. Overall,
STA consists of three logical parts, the front end, back end as well as a result
handling component. A message based architecture and route handling based on
Enterprise Integration Patterns specifies how requests are handled by different
components and flow through the system. While a complete discussion of the
integration patterns is out of scope of this publication, interested readers can
refer to [6] for a detailed description.

REST BeCalm
Sy Front End Result Handler Handler
T
New request Relrievle result
Back End
roe—

- 5 (]} _/_ 0 -
= O— O ¢ C= poe—o | O > U
) O -— O [—

>oe—0
. . route to
splitinto retrieve source perform aggregate
. requested -
document ids text annotation results
annotator

Fig.1: General Architecture of SIA. The front end handles new requests and
forwards them to the back end over a message bus. Each message is transformed
through a series of components, which in turn are connected via named queues.
The result handler collects the annotation responses and returns them to the
calling client.

The front end is the user facing component, handling incoming annotation
requests. Received requests are forwarded to the back end, which downloads
individual documents and feeds them through a chain of annotators. The results
are made available to the result handler, which sends the annotations back to
the requester.

STA: Scalable Interoperable Annotation Server 3

All components are connected to a message bus over which they exchange
messages. This loosely coupled design allows to easily scale, replace and augment
each participant in the message flow independently. Persistent named queues
are defined as input and output for all components. These queues are stored
for the entirety of the systems lifetime. This architecture provides fault tolerant
and scalable processing. Fault tolerance is enabled through component wise ac-
knowledgment of each successful message processing, which allows replaying all
unacknowledged messages during system recovery.

Messages carry information through the system and consist of a HEADER
and PAYLOAD part. The HEADER contains meta information, such as expiry
date, global ids or requested annotation types and is used by the system to
route messages to the respective consumers. The PAYLOAD contains the actual
data to be processed. Each requests is translated into a new message that flows
through the system, is enhanced, transformed and aggregated by parts of the
message flow to derive a annotation result.

The following sections describe each individual system component in details.

2.1 Front end

The front end encapsulates the annotation processing from the clients and serves
as the entry point to the system. Currently it provides a REST endpoint accord-
ing to the Becalm-TIPS task specification'. Incoming requests are translated into
messages and forwarded to the input queue. This way, the overall processing in
the front end is very lightweight and new requests can be handled irrespectively
of any ongoing annotation processing.

To handle multiple concurrent requests with varying deadlines, we make use
of the fact that the input queue is a priority queue, and prioritize messages with
an earlier expiry date?. The message expiry date, as provided by the calling
clients, is translated into a message priority. Using the currently processed mes-
sages and their deadlines as well as past elapsed processing time statistics are
used to estimate the individual message urgency.

The front end also handles validation and authorization, which moves this
logic into a central place. To monitor the system, statistics are served about
average requests rate, document types as well as back end processing counters.

2.2 Back end

The back end is concerned with fetching documents from the supported re-
sources, calling the requested annotators for each resulting text fragment, ag-
gregating the results and feeding them to a result handler.

The back end process is modeled using a sequence of message transforma-
tions, which subsequently read from message queues and post back to new ones.
The message flow starts by reading new requests from an input queue. As a

1 Other entry points can easily be added
2 Already running requests will not be canceled, the priority is just used as a fast path

4 Proceedings of the BeCalm challenge evaluation workshop

single annotation request consists of multiple document ids, incoming messages
are first split. Splitting takes one message as input and generates as many indi-
vidual messages as there are document ids specified. Each document id is then
retrieved by passing it through a corpus adapter, which fetches the raw text
from the respective endpoint. The outcome is the retrieved text separated into
abstract and title.

Texts are delivered to registered annotators using a recipient list. As an-
notators have a dedicated input queue in the system, each message header is
inspected for any requested annotation types, forwarding the message to all
matching queues. This design allows to easily add new annotation components
by registering a new input queue and adding it to the routing endpoint can-
didates. All annotators forward their results to the same result queue, where
they are collected and aggregated. Aggregation is the reverse of splitting and
combines all annotation results into a single message. The aggregation key is a
unique request id, set by the front end and stored in the message header. Finally,
the aggregated message is forwarded to an output queue.

While the processing flow is specified in a sequential manner, this does not
entail single threaded execution. Each individual transformer, such as a download
adapter or an annotator, works independently and can be further scaled out.
For example, having more than one annotator of the same type (potentially
spread across multiple machines) can be used to increase document throughput.
Furthermore, multiple requests can be handled in parallel at different stages
of the pipeline. Fault tolerance is achieved by transacting the message delivery
to each transformer and retrying on failure. Overall, the back end specifies an
ordered execution flow and provides two injection points where users can add
new functionality with additional corpus adapters or new annotation handlers.

It is noteworthy to point out, that annotation handlers can be hosted inside
of SIA, or externally, which enables to integrate annotation tools cross program-
ming languages and operating systems.

2.3 Result handler

Aggregated annotation results from the back end are committed to the message
bus and picked up for further processing. In the current design only one result
handler is specified. We implemented a REST handler according to the TIPS
task definition, which posts annotation results back to the requester. Additional
consumers, such as statistics gatherer or result archival processes can easily be
added.

3 Implementation

SIA is implemented in Java and uses RabbitMQ? as message bus implementa-
tion. To exemplify the extensibility of our approach, we integrated NER, com-
ponents for three different entity types: Mutation names are extracted using

3 https://www.rabbitmq.com/

https://www.rabbitmq.com/

STA: Scalable Interoperable Annotation Server 5

Listing 1.1: Extension interface definition for annotators

public interface Annotator {
Set<PredictionResult> annotate (ParsedInputText payload);
}

Listing 1.2: Extension interface definition for corpus adapter

public interface DocumentFetcher {
List <ParsedInputText> load (IdList idList);
}

SETH [11]. For micro-RNA mentions we implement a set of regular expres-
sions*, which follow the recommendations for micro-RNA nomenclature [3]. Dis-
ease names are recognized using a dictionary lookup [1], generated from UMLS
disease terms [4].

The messaging abstraction provides a clean separation of message routing
and the actual message processing. Listing 1.1 shows the general interface con-
tract SIA is expecting for each annotator, which does not expose the messaging
infrastructure. Thus integrating the aforementioned annotators is as simple as
implementing three wrappers and registering them as routing endpoints.

To increase the throughput of the back end, multiple instances of SIA can be
started on different machines, where each instance would process requests in a
round robin fashion. If this scaling is coupled with an input queue monitoring, the
back end can be automatically scaled up or down to respond to changes in load
pattern. Instead of scaling the complete back end, individual components can
also be duplicated in a similar fashion, if they present a processing bottleneck.

3.1 Corpus Adapters

SIA contains corpus adapters for PubMed, PMC, Patent server and the Be-
Calm abstract server. These components are represented as transformers, which
process document ids and return retrieved source texts. They are implemented
following the interface definition shown in Listing 1.2, which similarly does not
expose the messaging infrastructure. If an adapter supports bulk fetching of
multiple documents, we feed a configurable number of ids in one invocation.
Since connecting to these endpoints is effectively calling a potentially unre-
liable remote service over an unreliable channel, retry on failure is used. This
is backed up by the observation, that the most commonly observed error was a
temporarily unavailable endpoint. To spread retries we use exponential backoff
on continuous failures with an exponentially increasing time interval, capped at
a maximum (initial wait 1s, multiplier 2, max wait 60s). If an endpoint fails

4 https://github.com/Erechtheus/mirNer

https://github.com/Erechtheus/mirNer

6 Proceedings of the BeCalm challenge evaluation workshop

to respond after a configurable number of retries, we mark that document as
unavailable and continue the processing. This allows a trade-off between never
processing any results and giving up too early.

4 Failure Handling

In the following we describe the strategies implemented in SIA for dealing with
erTors.

Invalid requests Invalid requests represent client calls with wrong or missing
information. These are handled in the front end using request validation and are
communicated back to the caller with detailed error descriptions.
Backpressure To avoid that a large number of simultaneous requests can tem-
porarily overload the processing system, SIA buffers all accepted requests in the
input queue - using priorities to represent deadlines. Processing components can
be scaled up or down by attaching more back end instances.

Front end fails If the front end stops, new requests are simply not accepted,
irrespective of any ongoing processing in the back end.

Back end unavailable Messages are still accepted and buffered when there
is enough storage space, otherwise the front end denies any new annotation
requests.

Back end fails If the back end stops while there are still messages being pro-
cessed, these are not lost but retried upon restart. This is enabled by acknowl-
edging each message only upon successful processing per component.

Corpus adapter fails Each adapter retries, using exponential backoff, to fetch
a document before it is marked as unavailable. As the BeCalm-TIPS task does
not specify how to signal unavailable documents, these are just internally logged.
Any subsequent processing treats a missing document as one with no content.
Annotator fails If an annotator fails on a particular message, this can poten-
tially harm the entire back end when annotators are embedded in the system.
As annotators are software components not under the control of the processing
pipeline, we catch all recoverable errors and return zero found annotations in
these cases - logging the errors for later analysis.

Result Handling fails The TIPS task description expects the result of an
annotation request to be delivered to a known endpoint. If this fails, it is retired
in a similar manner to the corpus adapter failure handling.

Message expired Clients can define a time until when a processing has to be
finished. This is mapped to a time-to-live attribute of each message. This results
in automatically dropping any expired message from the message bus.

5 Runtime

SIA is very lightweight and runs anywhere there is a Java environment and
a connection to RabbitMQ available. Annotators can be directly embedded or
configured to run externally, exchanging messages through the bus. We deployed

STA: Scalable Interoperable Annotation Server 7

R n n 800 = T
equests ..
- ® Request timing -
14,000 0 Annotation timing
12,000 600 |- B
10,000 B
8,000 £ 400 - a
6,000
4,000 200 - % o f
2,000
= =
H = 1 1 =
5.02. 02.03. 07.03. 1203 17.03. 22.03. Patent Server Abstract Server ~PubMed
(a) Daily request rates (b) Requests processing times for different
endpoints

Fig. 2: Processing statistics over a four week period and request times per corpus,
reporting complete processing and annotation timings separately.

STA into Cloud Foundry, a platform as a service provider, which enables deploy-
ments of cloud components [8]. The front end and back end are deployed as two
separate application containers. To ease development and running the service, we
used a continuous integration workflow. Any code changes automatically trigger
a redeployment of the service upon successful test runs.

Figure 2 shows that our system is capable of sustaining a high number of
daily requests. Furthermore we observed that the request handling is dominated
by corpus downloading times, which make up about 50% of the overall request
time. This validates our decision to support bulk downloading of requests, as this
amortizes the networking overhead over a number of documents. PubMed articles
tend to be longer and thus incur higher annotation times. We also estimated
the message bus overhead to about 10%, stemming from individual message
serialization and persistence.

6 Summary and Future Work

We described SIA our contribution to the BeCalm-TIPS task which provides
scalability - through component replication, fault tolerance - through mes-
sage acknowledgement, and extensibility - through well defined injection points
— with a particular emphasis on failure handling. The message bus provides a
good design blueprint, which can be augmented with additional components. One
interesting further development path is to port SIA to a distributed streaming
environment such as Flink [2] or Spark [13]. These systems reduce the overhead
of the message bus at the expense of more complex stream handling and aggrega-
tion. While many of the existing components could be reused, most engineering
would need to be spent on implementing a fault tolerant window aggregation.

Proceedings of the BeCalm challenge evaluation workshop

To encourage further discussion, the source of our current solution is freely

available under Apache 2.0 license at https://github.com/Erechtheus/sia
along with detailed descriptions on how to run and deploy the system.

Acknowledgments. This research was partially supported by the German Fed-
eral Ministry of Economics and Energy (BMWi) through the projects MACSS
(01MD16011F), SD4M (01MD15007B) and by the German Federal Ministry of
Education and Research (BMBF) through the project BBDC (01IS14013E).

References

10.

11.

12.

13.

Aho, A.V., Corasick, M.J.: Efficient String Matching: An Aid to Bibliographic
Search. Commun. ACM 18(6), 333-340 (1975)

Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J.C., Hueske, F., Heise, A., Kao,
O., Leich, M., Leser, U., Markl, V., et al.: The Stratosphere platform for big data
analytics. The VLDB Journal 23(6), 939-964 (2014)

Ambros, V., Bartel, B., Bartel, D.P., Burge, C.B., Carrington, J.C., Chen, X.,
Dreyfuss, G., Eddy, S.R., Griffiths-Jones, S., Marshall, M., Matzke, M., Ruvkun,
G., Tuschl, T.: A uniform system for microRNA annotation. RNA 9(3) (2003)
Bodenreider, O.: The Unified Medical Language System (UMLS): integrating
biomedical terminology. Nucleic Acids Res. 32(Database issue), D267-270 (2004)

. Comeau, D.C., Dogan, R.I., Ciccarese, P., Cohen, K.B., Krallinger, M., Leitner,

F., Lu, Z., Peng, Y., Rinaldi, F., Torii, M., et al.: Bioc: a minimalist approach to
interoperability for biomedical text processing. Database 2013 (2013)

Hohpe, G., Woolf, B.: Enterprise integration patterns. In: 9th Conference on Pat-
tern Language of Programs. pp. 1-9 (2002)

Hunter, L., Cohen, K.B.: Biomedical language processing: what’s beyond pubmed?
Mol Cell 21(5), 589-594 (2006)

Kirschnick, J., Alcaraz Calero, J.M., Goldsack, P., Farrell, A., Guijarro, J.,
Loughran, S., Edwards, N., Wilcock, L.: Towards an architecture for deploying
elastic services in the cloud. Softw. Pract. Exper. 42(4), 395-408 (2012)
Pérez-Pérez, M., Pérez-Rodriguez, G., Blanco-Miguez, A., Fdez-Riverola, F., Va-
lencia, A., Krallinger, M., Lourenco, A.: Benchmarking biomedical text mining
web servers at BioCreative V.5: the technical Interoperability and Performance of
annotation Servers - TIPS track. In: Proceedings of the BioCreative V.5 Challenge
Evaluation Workshop. pp. 12-21 (2017)

Rheinléander, A., Lehmann, M., Kunkel, A., Meier, J., Leser, U.: Potential and
pitfalls of domain-specific information extraction at web scale. In: Proceedings of
the 2016 International Conference on Management of Data. pp. 759-771 (2016)
Thomas, P., Rocktéschel, T., Hakenberg, J., Lichtblau, Y., Leser, U.: SETH detects
and normalizes genetic variants in text. Bioinformatics 32(18), 2883-2885 (2016)
Thomas, P., Starlinger, J., Leser, U.: Experiences from Developing the Domain-
Specific Entity Search Engine GeneView. In: Proceedings of Datenbanksysteme fiir
Business, Technologie und Web. pp. 225-239 (2013)

Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster
computing with working sets. In: Proceedings of the 2Nd USENIX Conference on
Hot Topics in Cloud Computing. pp. 10-10. Berkeley, USA (2010)

https://github.com/Erechtheus/sia

	SIA: Scalable Interchangeable Annotation Server
	Johannes Kirschnick and Philippe Thomas
	Introduction
	General Architecture
	Front end
	Back end
	Result handler

	Implementation
	Corpus Adapters

	Failure Handling
	Runtime
	Summary and Future Work

