
Experimental Evaluation of Various Machine Learning Regression
Methods for Model Identification of Autonomous Underwater Vehicles

Bilal Wehbe, Marc Hildebrandt and Frank Kirchner1

Abstract— In this work we investigate the identification of
a motion model for an autonomous underwater vehicle by
applying different machine learning (ML) regression meth-
ods. By using the data collected from the robot’s on-board
navigation sensors, we train the regression models to learn
the damping term which is regarded as one of the most
uncertain components of the motion model. Four regression
techniques are investigated namely, artificial neural networks,
support vector machines, kernel ridge regression, and Gaussian
processes regression. The performance of the identified models
is tested through real experimental scenarios performed with
the AUV Leng. The novelty of this work is the identification
of an underwater vehicle’s motion model, for the first time,
through machine learning methods by using the robot’s on-
board sensory data. Results show that the damping model
learned with nonlinear methods yield better estimates than the
simplified linear and quadratic model which is identified with
least-squares technique.

I. INTRODUCTION
Building reliable motion models for autonomous under-

water vehicles (AUVs) is an essential procedure in the aim
for improved navigation, guidance and control techniques
as well as localization and mapping purposes. Although
underwater vehicles are nowadays used extensively in many
commercial and scientific applications, methods for control-
ling these vehicles in an optimal fashion are still a big area of
research. Classically, motion model parameter identification
for AUVs is done by implementing towing tank experiments
of the vehicle itself or of a down-sized prototype, but this
comes at cost of time consuming and expensive procedures.
Furthermore this does only give a one-shot measurement and
does not take into account any changes of the system which
may happen in the future. Throughout the past two decades,
underwater roboticists investigated alternative methods for
motion model identification which involved basin or sea trials
experimentation, by which the vehicle’s dynamical behavior
is observed using its on-board navigation sensors.

The necessity of accurate vehicle models in the light of
improving sensor equipment of such vehicles is still apparent
when employing AUVs in the field: sensors malfunction,
create drop-outs (especially the Doppler velocity log (DVL)
is prone to up to 20 % of drop-outs depending on the envi-
ronment, see [1]), consume too much energy, or lose bottom-
lock during long descents into large depths. In addition
there is a number of situations where sensor information is
severely limited by the environment, e.g. changes in salinity
between the robot’s deployment point and the location of

All authors are with DFKI RIC, Germany, 28359 Bremen. 1 Department
of Mathematics and Informatics, University of Bremen
{bilal}.{wehbe}@dfki.de

Lateral Thrusters

Rear Thruster

Length = 403 cm

DVL

Fig. 1. The AUV Leng during testing with thrusters positions identified.

the desired mission. The advent of long-term missions such
as a mission to Jupiter’s icy moon Europa [2] stress the
requirement of a very reliable localization and navigation
system, and thus result in renewed research activities with
respect to improving mathematical vehicle modeling.

Identification methods are normally categorized into off-
line and on-line methods. For off-line methods data sets
are collected by the vehicle’s sensors and then filtered and
processed after. One of the most common off-line techniques
that can be found in literature is the widely used least-squares
(LS) identification method in [3], [4], [5]. Tiano et al. [6] pro-
posed an observer Kalman filter to cope with measurements
noise and mild nonlinearities. On the other hand, on-line
identification methods collect data and estimate the system
dynamics while the vehicle is in real-time operation. This
allows for automatic update of the model parameters and
adapting the vehicle’s behavior on the run, which is more
reliable in cases where the geometrical or physical character-
istics of the vehicle can change or environmental conditions
are not steady. An on-line adaptive identification method was
proposed by Smallwood [7] that is independent of acceler-
ation measurements and associates a Lyapunov function to
assure the convergence of the identified parameters. Karras et
al. [8] described the augmentation of an Unscented Kalman
Filter (UKF) for an on-line parameter estimation algorithm
of an underwater vehicle. In a comparative study, Britto et
al.[9] showed that least-squares method performed slightly
better than the adaptive identification method.

Generally, most of the techniques mentioned earlier tend
to over-simplify the identified model, assuming only low
speed models and thus neglecting the effects of high or-
der nonlinearities and coupled motion. To cope with such
nonlinearities, machine learning (ML) was first used in
underwater robotic control with the work of Yuh [10] where
he described a self adapting control system based on neural

networks. Van den Ven et al. [11] identified the damping
terms of a simulated underwater robot using neural networks.
Identification of a model underwater vehicle with support
vector machines was presented by Xu et al. [12] by using
towing tank tests. So far in literature there are no reports of
implementing ML methods for motion model identification
of underwater vehicles relying on real data for on-board
navigation sensors.

The contributions in this work are as follow: first is using
the data collected from an underwater vehicle’s navigation
sensors and actuators to train four different ML regres-
sion models along side with least squares identification. In
addition to neural networks (NN) and support vector ma-
chines (SVM), we implement two other regression learning
methods to identify our vehicle’s motion model, that were
not addressed in literature before, namely Gaussian process
regression (GPR) and Kernel Ridge regression (KRR). For
every case, the models are trained off-line with data sets
collected in a basin trial, and then performance of the
identified models is evaluated through cross validation by
using data sets from several testing experiments, and thus
ensuring the separation of the training data from the testing
data. Second, we show that using the learning methods to
identify the damping of an underwater vehicle outperforms
the least-squares identification with the simplification of the
damping to only linear and quadratic terms. In the conclusion
we give an insight about the extendability of the ML methods
for learning the damping term on-line.

II. MOTION MODEL IDENTIFICATION

The classical nonlinear dynamic equations of motion of a
six degrees of freedom underwater vehicle is expressed as
the following [13]:

η̇ = J(η)ν , (1)

Mν̇ + C(ν)ν + d(ν) + g(η) = τ , (2)

where η = [x y z φ θ ψ]T is the position and orientation
vector expressed in the earth-fixed or inertial frame, ν =
[u v w p q r]T is the linear and angular vector in the
body-fixed frame. M = MRB + MA is the combination
of the rigid body and added mass inertia matrix. C(ν) is
a matrix representing the Coriolis and centripetal terms.
d(ν) is the damping term, g(η) is a vector representing
the restoring terms due to gravity and buoyancy. τ is the
control forces and moments vector. In general, the damping
terms are considered to be the parts of motion model that are
most uncertain, as Fossen describes the damping matrix to
be the effect resulting from potential damping, linear and
quadratic skin friction, wave drift damping, and damping
due to vortex shedding combined. Modeling these terms
accurately is considered to be a hard task. In this work we
will express the damping term as a combination of a coupled
and decoupled part,

d(ν) = dcoupled(ν) + ddecoupled(ν) . (3)

The decoupled term maps separately the velocity in a
certain DOF onto a resistive force/moment in the same

DOF, whereas the coupled term accounts for the interaction
between velocities from several DOFs. In this work, we focus
on identifying the decoupled terms of the damping function,
but being fully aware that the decoupled terms are not enough
to predict coupled or complex motion. The identification of
coupled dynamics is to be addressed by the authors in future
work. The decoupled damping is then expressed as follows

ddecoupled(ν) = di(νi), (4)

where i = 1...6. di(νi) are nonlinear functions, each map-
ping a linear or angular velocity into a damping force or
moment in a single DOF. We assume the following properties
of the model:

• The states of the system (ν, ν̇, η, and η̇) are bounded,
and can be measured.

• The inertia matrix M ∈ R6×6 is positive, symmetric,
and known.

• The Coriolis matrix C(ν) ∈ R6×6 is skew-symmetric
(C(ν) = −C(ν)T), and known.

• The restoring forces and moments g(η) ∈ R6×1 are
known and constant.

• The applied input forces and moments τ ∈ R6×1 are
bounded and can be measured.

Given these assumptions the damping output can then be
calculated by rearranging Eq. (2) as follows:

d(ν) = τ −Mν̇ − C(ν)ν − g(η) . (5)

A. Least-Squares Identification

Least-squares identification as introduced by [3], [4] was
implemented on simplified 1-DOF dynamic equation, using
the decoupled damping. Assuming the vehicle operate at
small velocities and geometrically symmetrical in all three
planes, the damping was simplified into linear and quadratic
skin friction, expressed as follows:

ddecoupled(ν) = di(νi) = dliνi + dqiνi|νi|, (6)

where dli , dqi are constant damping coefficients. The least
squares method is then applied to estimate those two
coefficients for every DOF. Assuming a data set D =
{(xk, yk)|k = 1, ..., n} where xk represents a velocity
sample and yk a damping force/moment sample in a given
DOF. Let P = [xk, xk|xk|] be a matrix of combined linear
and quadratic velocities, and Θi = [dl, dq] is the vector of
unknown parameters. The solution of Θ is then calculated
by the pseudo-inverse of matrix P as,

Θ = (PTP)−1PT yk . (7)

B. Nonlinear Regression

An evident advantage of nonlinear regression, when ap-
plied to underwater robots model identification, is that only
the input and output information of the system are taken into
account, without the necessity of explicitly expressing the
complex hydrodynamic effects. Therefore, assumptions done
with the least-squares method are avoided. As mentioned
earlier, determining the damping term d(ν) is considered
to be the hardest task because of its high uncertainties. In

this section, we describe the identification of the decoupled
damping term d(ν) assuming no simplifications, and with ac-
cess to its inputs and outputs. We assume that the decoupled
damping term is a vector of unknown nonlinear functions
with the vehicle’s velocities as inputs, and the outputs are
resistive forces and moments which are bounded and can be
calculated using Eq. (5).

In the following paragraph a brief background of the
methods mentioned above is presented.

1) Neural Network Regression: A neural network (NN)
or also called a multilayer perceptron (MLP) is a learning
algorithm that learn a nonlinear function y = f(x,w), where
x is an feature input, y is a target output, and w is a
weight vector. The simplest element of a neural network
is a neuron which is a function itself that computes the
weighted sum in its inputs and then apply an activation
function to generate an output. Neurons can be connected
to form a layer and so consecutive layers can be connected
forming a so-called multilayer perceptron. The output is
calculated through forward propagation where the output of
every neuron is fed into the neurons connected ahead of it,
the output of the last layer is then the generated output of
the perceptron. For regression purposes, the weights w are
adjusted through a training process which is an optimization
algorithm that minimizes an error function.
A NN requires tuning a number of hyperparameters such as
the number of hidden neurons, layers, and a regularization
parameter α. For our application, the design of the neural
network follows the advice of [14], where the architecture
of the network is kept as simple as possible. We use a single
layer perceptron and tune the number of neurons and the
regularization with a grid search cross-validation algorithm.
Since we are dealing with a regression problems, a tanh
as activation function for the hidden layers, and a linear
activation for the output layer.

2) Kernel Ridge Regression: The kernel ridge regression
is comprised of a combination of a ridge regression (least
squares with an L2 norm regularization) with a kernel
trick [15]. A kernel function κ(x, z) is defined as a real-
valued, symmetric, and non-negative function mapping two
arguments x and z into real space R. The regression method
is realized by applying a kernel trick to the primal linear
ridge regression problem, which is simply replacing all inner
product operations by the kernel mapping. For our problem
we use a Gaussian radial basis function (RBF) kernel defined
as follows:

κ(x, z) = exp(−γ||x− z||2). (8)

The γ parameter determines how far is the influence of a
single training example. For small γ the model is too con-
strained and cannot capture the complexity of the function,
but a very large gamma means a bigger area of influence of
a single training sample. The regularization hyperparameter
α is a parameter that prevents over-fitting of the function.
KRR uses squared error loss function to optimize the samples
weights (for detailed explanation refer to [15]), where the

regression function can be expressed as

f(x) =

n∑
i=1

βiκ(xi, x) . (9)

3) Support Vector Regression: The goal of support vector
regression (SVR) is to fit a function f(x) onto a data
set (xi, yi) without caring about errors that are less than
a value ε [16]. Like KRR, SVR uses a kernel function
to map the data in the input space to a high-dimensional
space where the regression problem can then be processed
in a linear form, but optimizes with a quadratic ε-intensive
loss function. In addition to the hyperparameters γ of the
RBF kernel, a regularization hyperparameter C is introduced
which is a trade off between smoothness and over-fitting of
the function. The hyperparameter ε represents the width of
a tube {xi/ |f(xi) − yi| < ε}, by which the corresponding
weights of samples lying inside are zero and have no effect
on the regression function.

f(x) =

n∑
j=1

(αj − βj)κ(xj , x) , (10)

where dual variables α and β represent the weights of the
support vectors. A more detailed explanation of SVRs can
be found in [16].

4) Gaussian Processes Regression: In Gaussian processes
the data are regarded as noisy observations. A GPR uses
also a kernel but rather to determine the covariance of a
prior Gaussian distribution over the target function, and uses
the training data to define a likelihood function [15]. A
prediction is then calculated as the mean of the (Gaussian)
posterior distribution over the target function, based on Bayes
theorem. One advantage of GPR is that hyperparameters of
the kernel are optimized during fitting. Furthermore, since
the GPR learns a probabilistic model of the target function,
it can provide confidence intervals along with the predictions.
The noise level in the data is learned explicitly by the GPR
by adding a WhiteKernel to the original kernel [17].

III. EXPERIMENTAL SETUP AND DATA ACQUISITION

A. Experimental Setup

Experiments were done with an autonomous underwater
vehicle (AUV) called “Leng” Fig. 1, that was designed as
a prototype vehicle during the project “Europa Explorer”
[2] which is a pilot survey for future missions to Jupiter’s
moon Europa. The main purpose of the vehicle is under-
ice autonomous exploration, which is also applicable for
terrestrial missions such as Arctic environments. The vehicle
design consists of a torpedo-shaped hydrodynamic hull with
a length of 4.03 m, a diameter of 21 cm and a dry mass of
76.2 kg. It is equipped with numerous localization sensors,
of which the DVL and 3-Axis-FOG (Fiber-Optic-Gyroscope)
have been used in the experiments described here. Two lateral
thrusters allow sway and yaw movements. In this paper, we
describe experiments conducted in a 23 × 19 × 8m3 salty
water basin without any waves or perturbation disturbances.

As mentioned in II the focus of this study is the iden-
tification of decoupled damping, thus the experiments were
carried out by actuating a single degree of freedom at a time.
The dynamics in sway/heave, and pitch/yaw are considered
to be identical due to the robot’s symmetry, whereas the
roll is considered to be passively stable. In this work the
vehicle was actuated in the sway and yaw DOF separately,
by applying a sinusoidal open-loop command to the side-
way thrusters. Motion in the sway DOF was achieved by
applying identical commands to both thrusters, whereas the
yaw motion was performed by applying commands of same
magnitude but opposite direction to the same thrusters. The
thrusters where actuated given their maximum achievable
speed as amplitude with a periodicity enough to ensure that
the full velocity range of the vehicle was covered.

B. Data Acquisition

Data from the on-board navigation sensors mentioned
earlier as well as the thrusters rotational speed are logged
with their corresponding time-stamp. The DVL sensor with
a precision of +/-2 × 10−3m/s is used to measure linear
velocities, whereas the 3-Axis-FOG with precision of +/-
2×10−4deg/s is used for angular velocities, both measured
in the robot or body frame. Accelerations are computed
through numerical differentiation of the velocity data, which
are both for smoothing purpose filtered with a low pass filter
Gaussian smoothing filter. Thrust is calculated as a function
of the propeller’s rotational velocity ω, and the torque is
calculated as a thrust force multiplied by the distance from
the thrusters to the center of the vehicle (dc), which are given
by [13] as follows

Thrust = Kω|ω| ,
T orque = Thrust × dc .

(11)

For each DOF two data sets were collected, one set for
hyperparameter optimization and training and another set for
testing.

IV. TRAINING AND EVALUATION

Evaluating the learned models with the same data used
for training is a major mistake, the model in this case would
have a very good score since it is tested with the samples it
used for fitting. To avoid that, the training and testing data
has to be separated. A common method when using machine
learning is cross-validation (CV), where a test set is always
left out for evaluation. In this work we use the k-fold CV
approach by which the data set is split into k sets randomly,
then the model is trained with (k-1) sets and evaluated with
the one set remaining. This procedure is repeated for every
fold, and the overall performance is then computed by the
average of the testing scores computed at every step. To
optimize the hyperparameters of the learning methods we
apply a exhaustive grid-search with a 5 fold cross-validation
and a mean absolute error (MAE) as scoring for each method.
The model is trained with 4 folds of the data every time then
the resulting model is tested with the remaining fold which
was not used for training, then the average of the values

TABLE I
CROSS-VALIDATION RESULTS FOR HYPERPARAMETER OPTIMIZATION.

regressor DOF best params best score (MAE)
SVR Sway gamma: 10, epsilon: 1, C: 103 2.361 (N)

Yaw gamma: 30, epsilon: 1, C: 103 2.853 (N.m)
KRR Sway gamma: 10, alpha: 10−2 2.617 (N)

Yaw gamma: 102, alpha: 10−3 2.412 (N.m)
NN Sway num. of nodes: 5, alpha: 10−5 2.725 (N)

Yaw num. of nodes: 5, alpha: 10−2 2.338 (N.m)
GPR Sway l-s: 0.276, n-l: 1.74 (N) 2.256 (N)

Yaw l-s: 0.087, n-l: 1.76 (N.m) 2.749 (N.m)
LS Sway N/A 4.401 (N)

Yaw N/A 3.221 (N.m)

computed. The parameter grid for each method is given as
follows

• SVR: {kernel: [rbf], gamma: [1,5,10,20,30], epsilon:
[10−3, 10−2,..., 101], C: 100, 101, ... , 104]}.

• KRR: {kernel: [rbf], alpha: [10−3, 10−2, ... , 100],
gamma: [10−3, 10−2, ... ,102]}.

• NN: {num. of nodes: [1,5,10,20,50], alpha: [10−3,
10−2, ... , 100]}.

The GPR does not require a grid-search to optimize its hyper-
parameters but rather relies on a gradient-based optimization
of the parameters during the training process. The kernel for
the GPR was specified as a combination of an RBF and a
WhiteKernel to learn the noise level in the data and prevent
overfitting, therefore two hyperparameters were optimized,
namely the length scale (l-s) of the RBF and the noise level
(n-l) of the WhiteKernel. The least squares method has no
parameters to optimize, but will only be evaluated with the
5-fold CV. Results of the for best performing parameters are
reported in Table I. From the scoring metric in Table I we can
observe in both sway and yaw DOFs a better performance of
the nonlinear regression models over the least-squares model.

For a more generalized evaluation of the models, we need
to check if the learned models are under-fitting or over-fitting
the data. Under-fitting is when the training model is not
complex enough to fit the training data, while over-fitting
is when the model learns the noise in the data instead of
the real function. One method is to calculate the training
and the validation scores (or errors) of every estimator. If
both the training and validation scores are low (low score
means high error), then the estimator under-fits the data. If
the training score is high but the validation score is low
then the model is over-fitting. If both scores converge to
a good value, then the estimator can generalize better. In
Fig. 2 we show the variation of the training and testing scores
of each method with increasing size of training samples,
where the significance of these plots is to determine the
sufficient number of samples needed for each estimator to
converge as well as the comparing generalizing performance
of each. If the validation and training scores converge to a
low score (high error) with increasing size of training data,
then the estimator will not benefit from adding more training
data. Practically an estimator that doesn’t require too much
training samples yet can still achieve good performance
is preferred, since it can save memory and computational

0 50 100 150 200 250

Train size

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
e
a
n
 A

b
so

lu
te

 E
rr

o
r

(N
)

Learning curves
SVR CV score

SVR training score

KRR CV score

KRR training score

NN CV score

NN training score

GPR CV score

GPR training score

LS CV score

LS training score

(Sway Data)

(a) Learning curves for sway data

102 103 104

Train size

2.0

2.2

2.4

2.6

2.8

3.0

3.2

M
e
a
n
 A

b
so

lu
te

 E
rr

o
r

(N
.m

)

Learning curves (Yaw Data)
SVR CV score

SVR training score

KRR CV score

KRR training score

NN CV score

NN training score

GPR CV score

GPR training score

LS CV score

LS training score

(b) Learning curves for yaw data

Fig. 2. Learning curves: validation vs. training scores with varying number of training samples.

resources. Both Fig. 2a,2b show consistent results, where in
both cases the nonlinear estimators outperforms the least-
squares one. For a low number of samples, the least-squares
estimator gives higher training and validation errors, where
it under-fits the trained model. The NN tends to over-fit the
data for low sample size since it has the biggest difference
between the training and validation scores, while the other
three kernel-based methods (KRR, SVR, GPR) still perform
better even with small training samples sizes. Adding more
samples does not improve the performance of the least-
squares estimator a lot, whereas for the nonlinear estimators
we can notice an improved performance as the training and
validation scores converge to better values. We can also
notice clearly that the NN estimator converges slower than
(needs more samples) the other kernel-based estimators. The
performance of the kernel-based estimators looks relatively
close but nevertheless to further compare these methods,
we list some of their advantages and disadvantages. The
KRR and SVR employ different loss functions, where the
KRR uses a squared error loss while the SVR uses an ε-
sensitive loss. The KRR learns a function faster than the
SVR for medium sized data sets (<10K), but the learned
model is not sparse which means that the whole set is used
to give a new prediction. The SVR on the other-hand learns
a sparse model, since it only uses the support vectors for
producing a prediction and thus becomes faster than the KRR
for bigger data sets. The advantages of GPR is that it gives a
probabilistic prediction by which therefore one can compute
a confidence interval around it. With a very small dataset
GPR can also be used to predict interpolation between the
observations, as well as dealing with noisy data. The main
disadvantages of this method is that training time grows
exponentially with the training samples size which renders
it not very efficient for on-line learning. Fig. 3 shows a
comparison of learning and prediction time for the estimators
using the same processor (core-i7 CPU). For a more robust
evaluation, another two experiments for in the sway and
yaw DOFs were conducted, where the trained models are
used as feed-forward prediction of the damping term in
the plant model of the vehicle. Fig. 4 shows a graphical
comparison between the identified models and the measured

102 103 104

Train size

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

T
im

e
 (

se
co

n
d

s)

Execution Time

KRR (train)
KRR (pred.)

SVR (train)

SVR (pred.)

LS (train)

LS (pred.)

NN (train)

NN (pred.)

GPR (train)

GPR (pred.)

Fig. 3. Learning and prediction time of different estimators

sway and yaw velocities. By computing the mean absolute
error between the model prediction and the measured linear
and angular velocities in Fig. 4, we can observe that the
mean absolute error of the kernel based methods is smaller
than that of the LS and the NN estimators.

We conclude as follows, the kernel based nonlinear es-
timators (SVR, KRR, GPR) yield better estimations for
hydrodynamic damping of underwater vehicles than NN and
least squares estimators. Between the three kernel methods,
first, GPR is a good candidate when training with small data
set since it produces probabilistic predictions, can interpolate
between samples and is capable to deal with noisy data.
Second, KKR has a good performance with medium sized
datasets when fast learning and prediction times are of
concern. Third, SVR shows very good performance as well
as effectiveness with high number of samples since it uses a
subset of the samples for predictions which helps in saving
memory resources. This sparseness feature of SVR renders
it as an attractive for on-line implementation.

V. CONCLUSIONS

The main contribution of this work is the novel application
of four machine learning regression methods (NN, SVR,
KRR, and GPR) for the identification of the motion model of
an underwater vehicle by using on-board navigation sensory
data, which concludes that nonlinear regression methods

0 50 100 150 200 250 300 350 400 450

t (s)

0.2

0.1

0.0

0.1

0.2
v
 (

m
/s

)

Measurement
SVR, mae: 0.009 m/s
KRR, mae: 0.010 m/s
NN, mae: 0.013 m/s
GPR, mae: 0.011 m/s
LS, mae: 0.023 m/s

(a) Sway experiment.

0 50 100 150 200 250

t (s)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

r
(r

d
/s

)

Measurement
SVR, mae: 0.0049 rd/s
KRR, mae: 0.0062 rd/s
NN, mae: 0.0087 rd/s
GPR, mae: 0.0058 rd/s
LS, mae: 0.0084 rd/s

(b) Yaw experiment

Fig. 4. Measured velocity compared to model predicted velocity in sway and yaw DOFs.

show better capabilities to learn the hydrodynamical prop-
erties of underwater vehicles. The least-squares method was
applied estimate the parameters of the simplified form of
the damping term which takes into account only the linear
and quadratic skin friction. On the other hand, the nonlinear
methods assumed an unknown form of the damping term
and the model was estimated accordingly. The identified
models were tested with two experimental scenarios for each
degree of freedom, where results shows better performance
of the nonlinear methods over the classical least-squares
method. This work concludes that the simplified linear and
quadratic model identified with least squares method is not
enough to describe the hydrodynamic damping properties
of underwater vehicles and that nonlinear machine learning
regression methods are better alternatives to capture the
unmodeled dynamics of such vehicles. With a comparative
study the following can be summarized. For small data
sets, Gaussian process regression learn a probabilistic model
where it can provide a meaningful confidence interval around
every prediction but can be computationally inefficient as
the number of samples increase. Kernel ridge method is best
suited for medium sized datasets where it can learn the model
fast and give accurate predictions. Sparse methods such as
SVRs are best suited for bigger number of samples but
nevertheless produce very good results with smaller sample
sizes, and can be also extended for on-line identification
of motion models. As future work the learning of coupled
motion dynamics has to be considered as well as optimizing
the performance and reducing computational effort of such
learning methods for on-line implementation.

ACKNOWLEDGMENT
This work was supported by the Marie Curie ITN program

Robocademy FP7-PEOPLE-2013-ITN-608096. This work is
part of the Europa-Explorer project (grant No. 50NA1217)
which is funded by the German Federal Ministry of Eco-
nomics and Technology (BMWi).

REFERENCES

[1] R. M. Eustice, H. Singh, J. J. Leonard, and M. R. Walter, “Visually
Mapping the RMS Titanic: Conservative Covariance Estimates for
SLAM Information Filters,” The International Journal of Robotics
Research, vol. 25, no. 12, pp. 1223–1242, Dec. 2006. [Online].
Available: http://ijr.sagepub.com/cgi/doi/10.1177/0278364906072512

[2] M. Hildebrandt, J. Albiez, M. Wirtz, P. Kloss, J. Hilljegerdes, and
F. Kirchner, “Design of an Autonomous Under-Ice Exploration Sys-
tem,” in In MTS/IEEE Oceans 2013 San Diego, (OCEANS-2013).
IEEE, 2013, pp. 1–6.

[3] M. Caccia, G. Indiveri, and G. Veruggio, “Modeling and identification
of open-frame variable configuration unmanned underwater vehicles,”
Oceanic Engineering, IEEE Journal of, vol. 25, no. 2, pp. 227–240,
2000.

[4] J. P. J. Avila, J. C. Adamowski, N. Maruyama, F. K. Takase, and
M. Saito, “Modeling and identification of an open-frame underwater
vehicle: The yaw motion dynamics,” Journal of Intelligent & Robotic
Systems, vol. 66, no. 1-2, pp. 37–56, 2012.

[5] S. Natarajan, C. Gaudig, and M. Hildebrandt, “Offline experimental
parameter identification using on-board sensors for an autonomous
underwater vehicle,” in Oceans, 2012. IEEE, 2012, pp. 1–8.

[6] A. Tiano, R. Sutton, A. Lozowicki, and W. Naeem, “Observer kalman
filter identification of an autonomous underwater vehicle,” Control
engineering practice, vol. 15, no. 6, pp. 727–739, 2007.

[7] D. A. Smallwood and L. L. Whitcomb, “Adaptive identification of dy-
namically positioned underwater robotic vehicles,” IEEE Transactions
on Control Systems Technology, vol. 11, no. 4, pp. 505–515, 2003.

[8] G. C. Karras, C. P. Bechlioulis, M. Leonetti, N. Palomeras, P. Kormu-
shev, K. J. Kyriakopoulos, and D. G. Caldwell, “On-line identification
of autonomous underwater vehicles through global derivative-free op-
timization,” in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on. IEEE, 2013, pp. 3859–3864.

[9] J. Britto, D. Cesar, R. Saback, S. Arnold, C. Gaudig, and J. Albiez,
“Model identification of an unmanned underwater vehicle via an
adaptive technique and artificial fiducial markers,” in OCEANS’15
MTS/IEEE Washington, Oct 2015, pp. 1–6.

[10] J. Yuh, “A neural net controller for underwater robotic vehicles,”
Oceanic Engineering, IEEE Journal of, vol. 15, no. 3, pp. 161–166,
1990.

[11] P. W. Van De Ven, T. A. Johansen, A. J. Sørensen, C. Flanagan,
and D. Toal, “Neural network augmented identification of underwater
vehicle models,” Control Engineering Practice, vol. 15, no. 6, pp.
715–725, 2007.

[12] F. Xu, Z.-J. Zou, J.-C. Yin, and J. Cao, “Identification modeling
of underwater vehicles’ nonlinear dynamics based on support vector
machines,” Ocean Engineering, vol. 67, pp. 68–76, 2013.

[13] T. I. Fossen, Marine Control Systems - Guidance, Navigation and
Control of Ships, Rigs and Underwater Vehicles. Trondheim, Norway:
Marine Cybernetics, 2002.

[14] A. Fabisch, Y. Kassahun, H. Wöhrle, and F. Kirchner, “Learning in
compressed space,” Neural Networks, vol. 42, pp. 83–93, 2013.

[15] K. P. Murphy, Machine learning: a probabilistic perspective. MIT
press, 2012.

[16] A. J. Smola and B. Schölkopf, “A tutorial on support vector regres-
sion,” Statistics and computing, vol. 14, no. 3, pp. 199–222, 2004.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

