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Abstract— Since early in robotics the performance of
odometry techniques has been of constant research for mobile
robots. This is due to its direct influence on localization. The
pose error grows unbounded in dead-reckoning systems and its
uncertainty has negative impacts in localization and mapping
(i.e. SLAM). The dead-reckoning performance in terms of
residuals, i.e. the difference between the expected and the real
pose state, is related to the statistical error or uncertainty
in probabilistic motion models. A novel approach to model
odometry errors using Gaussian processes (GPs) is presented.
The methodology trains a GP on the residual between the
non-linear parametric motion model and the ground truth
training data. The result is a GP over odometry residuals
which provides an expected value and its uncertainty in order
to enhance the belief with respect to the parametric model.
The localization and mapping benefits from a comprehensive
GP-odometry residuals model. The approach is applied to a
planetary rover in an unstructured environment. We show that
our approach enhances visual SLAM by efficiently computing
image frames and effectively distributing keyframes.

I. INTRODUCTION

The use of proprioceptive and stereoceptive sensors to
localize a robot and map its surrounding is a common
practice in robotics. The technique is well established in
robotics and has special attention in GPS-denied environ-
ments as planetary rovers. Measuring and counting the joints
displacement of a robot chassis gives an initial guess to
derive the robot pose. Understanding the contribution of
each contact point is of use in a dead-reckoning process [1],
[2]. SLAM uses optimization methods in combination with
landmarks in order to correct the robot state initially pre-
dicted by odometry. Three techniques are typically applied:
filtering, fixed-lag smoothing and full smoothing [3]. They
slightly diverse in the methodology but all use some degree
of odometry in order to estimate at initial guess of the
robot pose. The importance of having a good guess of the
odometry estimation is necessary to establish the selection of
keyframes. This can be a difficult task since wheel odometry
performance is not deterministic due to its uncertainty from
the interaction with the ground. Wheel odometry may per-
form well (i.e. 1.2 % error per distance traveled) in flat terrain
but it can rapidly degrade in slippery terrains.

This work explains the methodology of training a Gaussian
process on the odometry residuals and the application to
robot localization and mapping. A Gaussian process on
the residuals estimates the quality of wheel odometry. The
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Fig. 1: The ExoMars Test Rover (ExoTeR) during the test at
the Planetary Robotics laboratory at ESA.

difference between the parametric model and ground truth
serves to train a Gaussian process regression model. The
model is used in a state-of-the-art SLAM approach and
applied in a challenging environment. The main contributions
of this study are:
• To train a Gaussian process on odometry residuals to

model poor traction performance.
• To assess the kernel for the Gaussian process regression.
• To efficiently query the computation of image features

and effectively select keyframes based on traction per-
formance.

First, we present a review of related work in the context of
odometry, localization and mapping and Gaussian processes
applied in robotics. Section III describes the parametric
model for computing a fully 3d-odometry model. The Gaus-
sian process is explained in Section IV. Afterward, prediction
quality of the learned process is presented in Section V
in order to address the feasibility of the approach. The
Gaussian process is used in a visual simultaneous localization
and mapping (e.g. ORB-SLAM [4]) to estimate the robot
pose. Experiments with a planetary rover in a representative
environment are presented. Section VI includes a conclusion
and a final discussion for future work.

II. RELATED WORK

The simplest manner to localize a robot is wheel odometry
which involves the calculation of the robot’s body dis-
placement from encoders readings. Odometry is commonly
enhanced with inertial sensors to estimate the robot’s attitude
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which the heading is the less observable angle. Odometry and
inertial sensors are combined together in a dead-reckoning
process to integrate accumulative displacements as an initial
guess of the robot’s pose. The estimation is perturbed by sys-
tematic [5], [6] or non-systematic errors due to poor traction
performance [7]. Systematic errors are well characterized
in the literature [8], [9]. However, non-systematic errors
are complex, difficult to predict and not possible to fully
correct unless other perception means are present. Visual
odometry [10] has gained robustness in the last decade with
excellent results.

The error propagates unbounded unless a SLAM back-end
is available to close the loop by revisiting the place. SLAM
was initially developed using filtering techniques [11], [12]
while full-smoothing methods [13], [14] guarantee highest
accuracy. However, real-time computation become infeasible
since the map and associated graph grow over time. Carlone
et al [15] defines a set of target variables to deal with smaller
graphs. The solution enhances computational efficiency and
robustness in the back-end. The relation with the perception
front-end and robot navigation demands is still desirable in
robotics.

The combination of visual and wheel odometry methods
are of interest to provide informative inputs to the path
planning and assess the entrapment risk. Angelova et al [16]
present a learning method to predict slippage based on
camera images and an adaptive mixture of local experts.
Fuzzy-logic is applied in [17] to provide a motor current-
compensated odometry. The results keep the error to 2 %
of the total travel distance without using a SLAM solution.
Gaussian processes provide a probabilistic approach of learn-
ing kernel machines with promising results to probabilistic
robotics. Ko et al [18] apply a Gaussian process to learn the
residuals of the dynamic model of a robotic blimp. The work
was afterward applied to dynamic state estimation and con-
trol the blimp with an Unscented Kalman Filter (GP-UKF).
In general, Gaussian processes have several advantages for
robotics since they are a practical tool for solving a diverse
set of problems as motion planning [19] and occupancy
maps [20].

Though Gaussian processes have been used for non-linear
regression, to the best of our knowledge, its application to
model the odometry error as residual between the parametric
model and a realistic odometry output has not yet been
addressed in the literature.

III. PARAMETRIC 3D-ODOMETRY MODEL

Motion models together with attitude kinematics from
Inertial Navigation Systems (INS) is the traditional approach
for conventional vehicle odometry. We use an Enhanced 3d-
odometry to fully model the chassis kinematics of outdoor
robots. The model is described in [2] and requires the
definition of points in contact with the terrain and its relative
angle. One single contact angle is necessary for wheeled
mobile robots, which is perpendicular to the direction of
motion (i.e. y-axis). A transformation matrix computes the

Fig. 2: Illustration of the ExoTeR rover kinematics model.
B is the body frame located at chassis’s geometric center, Ai
is the wheel frame and Cil the contact point frame. 3d-delta-
poses are computed using a weighted solution (5) among the
contact-points.

localization of each contact point frame with respect to the
body frame.

Mobile robots are commanded by target velocities.
Velocity kinematics is deduced by derivation of the trans-
formation matrix. The transformation of the rover body at
time step k− 1 (B̄) to the rover body at time step k (B) is
defined as TB̄,B = TB̄,C̄il

TC̄il ,Cil
TCil ,B. The mapping between the

body frame Cartesian rate vector u̇uu =
[
ẋB ẏB żB φ̇B θ̇B ψ̇B

]
and the joint space rate vector with the contact rate angle and
slip rate vector is solved by a Jacobian matrix. The resulting
Jacobian matrix Jil related to the contact point il has the
form: [

ẋB ẏB żB φ̇B θ̇B ψ̇B
]T

= Jil

[
q̇qq ε̇εε il δ̇δδ il

]T
(1)

Equation (1) defines the contribution of each kinematic
chain to the resulting body motion in u̇uu. The Jil matrix
is of size 6× (n+ 4) where n corresponds to the DoF of
the mechanical chassis. The composite rover equations are
obtained by combining the Jacobian matrices for all kine-
matics chains into a sparse matrix equation of appropriate
dimensions where i is the number of wheels (e.g. i = 0, ...,5)
and l corresponds to contact points per each wheel (e.g.
l = 0).


I6×6
I6×6

...
I6×6




ẋB
ẏB
żB
φ̇B
θ̇B
ψ̇B

= J

q̇qq
ε̇εε

δ̇δδ

≡ Su̇uu = J ṗpp (2)

The kinematics relates the rover pose rate to joints and
inertial sensor rate quantities. Equation (2) defines the para-
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metric motion model. Robot’s sensor availability determines
sensed and non-sensed quantities and (2) separates into the
following form:[

Ss Sn
][u̇uus

u̇uun

]
=
[
Js Jn

][ ṗpps
ṗppn

]
(3)

Rearranging into non-sensed (left-side) and sensed (right-
side) quantities, the resulting equation is obtained:[

Sn −Jn
][u̇uun

ṗppn

]
=
[
−Ss Js

][u̇uus
ṗpps

]
≡Ωννν = bbb (4)

where Ω is the matrix which dimensions depend on the
sensing capabilities of the rover and directly influence the
existence of a solution. The solution to the overdetermined
system above is based on minimizing the error vector E =
eeeTCeee, where C encodes the individual contribution of each
kinematics chain to the estimated solution:

E = eeeTCeee = (bbb−Ωννν)TC(bbb−Ωννν) (5)

IV. GAUSSIAN PROCESSES FOR 3D-ODOMETRY

The correctness of odometry is highly influenced by the
amount of wheel slippage, which in turn depends on the
maximum usable tractive force between ground and the
wheel. This Section describes the application of Gaussian
processes to model a non-linear regression function between
the parametric model and the real odometry output.

A. Gaussian Processes

Gaussian processes (GPs) are a powerful, non-parametric
tool for learning regression functions from sample data. GPs
are flexible, work nice with poor and noisy data and therefore
are very practical to solve a real-world scenario. A Gaussian
process is a probability distribution over functions. Think a
Gaussian process as a Gaussian distributing over an infinite
long vector of data. However, an infinite vector is impractical
and the marginalization function allows to work with a finite
subset without losing generality.

Assume we have a training set of data, D=<X ,yyy>, where
X = [xxx1,xxx2, ...xxxn] is a matrix containing d-dimensional input
examples xxxiii and yyy = [yyy1,yyy2, ...,yyyn] is a matrix containing o-
dimensional training set yyyi (i.e. multioutput GP). The GP
assumes that data is illustrated with a noisy function such
as:

yyyi = f xxxi + εεε (6)

where εεε is a zero-mean Gaussian noise with variance σ2,
i.e. N(0,σ2). The prediction over the noisy output yyy is a
multivariable Gaussian of the input matrix X .

p(yyy) =N(y|0,K(X ,X)+Σ) (7)

where K ≡ K(X ,X) is the kernel matrix with elements
Ki j = k(xxxi,xxx j) defined by the kernel function k and Σ =
diag(σ2

1 I, ...,σ2
n I). We select a training set of data xxx∗ and

the GP defines a predictive distribution over the output yyy
with mean

GPµ(xxx∗,D) = kT
∗ [K +Σ]−1yyy (8)

and variance

GPΣ(xxx∗,D) = k(xxx∗,xxx∗)− kkkT
∗ [K +Σ]kkk∗ (9)

kkk∗ is the vector defined by the kernel values between xxx∗
and the training input X and K is the n× n kernel matrix
of the training input values. The prediction uncertainty,
captured by the variance GPΣ, depends on the process noise
and the correlation between the test input and the training
data. Covariance function are semi-positive defined functions
where all the modeling occurs. The covariance function has
a set of free parameters Θ and the learning process optimizes
the values given a training set of data. The most widely used
kernel function is the squared exponential

krb f (xxx,xxx′) = σ
2
f e−

1
2 (xxx−xxx′)W(xxx−xxx′)T

(10)

and hyperparameters Θ= [W,σ2
f ,Σ] characterize the kernel

function (10) and the process noise (7).

B. GP Modeling of Discrete Time Dynamic Processes

A discrete-time dynamic process can be understood as a
series of states at a certain time-stamp which evolve over
time as:

sss(k+1) = sss(k)+g(sss(k), ŭuu(k)) (11)

where k is is the time index and g is the function which
described the dynamics of the system (e.g. rover pose rates)
given a certain state s and the input vector ŭuu = [u̇uus, ṗpps]. A
Gaussian process can be used to learn the dynamic process
described by the function g. The result will be a GP which
predicts the delta between two consecutively states yk = sss(k+
1)−sss(k) given a vector of inputs. To perform such prediction
the output for the parametric model should be part of the
training data. This is because the Gaussian process assumes
a zero-mean function (7) and robot odometry is clearly not
a zero-mean. This is related to the modeling which appears
to be in the covariance function. In this work we use the
GP to learn the residual between the parametric model and
the expected data. However, it would be also interesting to
entirely model the wheel odometry using GPs.

C. Odometry Residuals from Gaussian Processes

Because the parametric 3d-odometry model gives reason-
able good estimates under reliable ground-traction condi-
tions. We model a zero-mean function over the odometry
residual. The dynamic system equations for the GP are

sss(k+1) = sss(k)+g(sss(k), ŭuu(k))+ f (sss(k), ŭuu(k)) (12)

where function f is modelled by the GP and describes
the odometry residual and function g describes the change
in state given by the parametric model. The training set D
for the GP is a sequence of observed states and inputs. They
are used to learn the parameters of the non-linear function
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Fig. 3: Ground truth odometry residual and GP estimate for the test data. Traversed trajectory and Digital Elevation Map
(DEM) of the Mars-like testbed is depicted together with the residual (red color-bar).

f . The training data are of the form xxxk = [sss(k), ŭuu(k)] and the
residual yyyk = sss(k+1)− sss(k)−g(sss(k), ŭuu(k))

V. RESULTS

The ExoMars Test Rover (ExoTeR), a laboratory rover
prototype that resembles in scale the ExoMars rover mobility
configuration [21], is the robotic platform for evaluating the
methodology. ExoTeR’s sensor suite includes a stereo camera
pair, an Inertial Measurement Unit (IMU) and actuator
encoders and potentiometers. The experiments are performed
on a Mars-like testbed in the Planetary Robotics Laboratory
(PRL) of the European Space Research and Technology
Centre (ESTEC) - the largest site of the European Space
Agency (ESA) (see Fig. 1). The testbed comprises a 9×9 m
test area with different soil types and a set of 12 Vicon
cameras for the ground truth measurements [22].

A set of reflective markers are located on the ExoTeR
in order to track its position and orientation during the
training experiments. The Vicon system captures the ground
truth data. The accuracy of the system is around 1 cm
in position and 0.2 degree in orientation depending on the
number of cameras tracking the markers. ExoTeR is remotely
driven in the testbed area describing all possible maneuvers
(e.g. forward, backward, turn-on-spot, Ackerman) at widely
different inclinations and terrain characteristics. The absolute
position and heading are eliminated from the training data.
The input vector is composed by pitch and roll orientation
angles, joints position and speed, angular velocities sensed

TABLE I: Error per kernel evaluated with the test data.

Kernel RMSE[m] MAE[m]

rbf: [krb f ] 0.004494 0.002127
rbf + linear: [k̆rb f ] 0.004909 0.002588
matern 5/2: [km52] 0.005562 0.002635
matern 5/2 + linear: [k̆m52] 0.004909 0.002588

by gyroscopes and linear accelerations from the IMU. The
relative delta displacement (body linear velocities) is the
output vector. Rover’s linear velocities are calculated by low-
pass filtering the delta position readings from the Vicon
system. The hyperparameters of the Gaussian process are
optimized using conjugated gradient optimization. The GP
estimates a three dimensional output for the residual in each
direction of motion. A different set of collected data is used
to evaluate the accuracy of the estimated residuals (i.e. test
data).

The Gaussian process is trained off-line using GPy [23].
After the GP kernel is learnt, the prediction is made online on
the rover based on sensed current inputs. The GP prediction
and the localization and mapping are executed on-board the
ExoTeR rover running the Rock real-time framework 1.

A. Comparing Prediction Quality

Three kernels, linear, squared exponential and Matern
5/2, are trained to determine which fits the regression more
accurate. The kernels are separated and combined as k̆rb f =
krb f + klin where

klin(xxx,xxx′) = σ
2
l xxx · xxx′ (13)

The kernels are fitted with normalized training data. This
enforces features scaling, making gradient descent to con-
verge more easily. Test data, not included in the training data,
are used to verify the prediction quality of the Gaussian pro-
cess odometry residuals. Rover’s body velocities are used to
compare the GP non-linear regression model on the estimate.
The squared exponential fits the residuals with lower root
mean square error (RMSE) and mean absolute error (MAE).
The lineal kernel does not improve the estimates. Table I
shows the error metrics for each of the kernels.

The GP predicted residual is compared with the ground
truth odometry residual computed from the Vicon system

1The Robot Construction Kit (Rock) http://www.rock-robotics.org
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Fig. 4: ExoTeR test experiments and trajectories comparison.

along the track. Fig. 3 shows the GP estimate together
with the elevation map and contours lines of the testbed.
The GP-Odometry residual characterizes the most relevant
zones of odometry poor performance. From the localization
and mapping perspective, the information of poor traction
and therefore odometry estimates, is more valuable than the
absolute quantity. Therefore, such information is used to
select desirable image frames in localization and mapping.

B. Application to Localization and Mapping

Wheel odometry performs as good as visual odometry
when residuals are small. Residuals give provide information
when wheel odometry produces accurate estimates and when
support by visual odometry is needed. The wheel odometry
can equally support features tracking by providing an initial
guess between two consecutive image frames (e.g. constant
velocity model). Then, the loss of camera poses is reduced
and relocalization is not often needed.

The information gained by the GP is used to inform the lo-
calization and mapping in order to compute visual odometry
only when required. It furthermore reduces the keyframes
in the optimization back-end. Our technique applies to any
full SLAM approach. We perform experiments with ORB-
SLAM [4] due to its robustness, accuracy and application
of ORB binary features in Mars analog scenarios. Table II
shows the results of calculating ExoTeR’s pose running three
different SLAM schemes for the test data trajectory. ORB-
SLAM 2.5 fps computes the localization and mapping by
processing a new image frame at a rate of 2.5 fps. ORB-
SLAM with GP is our approach using the GP estimate
into the SLAM and providing an adaptive approach. ORB-
SLAM 0.5fps computes the localization and mapping with
lower frequency of 0.5 fps. Without the GP prediction the
image frames are equally distributed along the trajectory.
Fig. 5 depict the trajectory for the evaluated approaches. The
number of frames can be seen along with the total traverse of
42.35 m. ORB-SLAM with GP adapts to the wheel odometry
reducing the number of image frames in the visual odometry.
The GP approach computes five times less number of frames

(a) ORB-SLAM 2.5fps

(b) ORB-SLAM 0.5fps

(c) ORB-SLAM with GP

Fig. 5: SLAM results: (a) shows the distribution of images
and keyframes without GP, (b) still computes more images
frames with worse performance than (c) which uses the GP
odometry residual.

without a significant penalty in accuracy.

VI. CONCLUSION

This work describes the first insight of using GP to
model odometry residuals and the application in localization
and mapping. The SLAM benefits from selecting desirable
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TABLE II: ExoTeR’s pose results for the different SLAM schemes.

Scheme #Frames #Keyframes RMSE [m] Max E.[m] Final E.[m] Travel Distance E.[%]

ORB-SLAM 2.5fps 2582 182 0.144 0.455 0.204 0.48
ORB-SLAM 0.5fps 500 150 0.204 0.729 0.520 1.22
ORB-SLAM with GP 484 135 0.145 0.468 0.264 0.62

image frames in the frontend. The methodology has been
demonstrated using ORB-SLAM in a planetary rover navi-
gating an unstructured environment on loosely terrain. The
GP information is used to selectively identify the frame
among with to preintegrate the delta displacement given
by the odometry and inertial sensors. It results in efficient
selection of keyframes to be incorporated in a full SLAM
problem.

We presented an offline learning approach, where the
model is learned on training runs and evaluated in a test
environment. The strategy might perform poorly in highly
dynamic terrains where traction performance change signifi-
cantly from one location to another. Future work includes on-
line learning, using visual odometry as target inputs instead
of ground truth data. Initially visual odometry will be queried
frequently, with decreasing model uncertainty the frequency
of visual odometry can be reduced and computational effort
can be saved. Techniques such as Incremental Local Gaus-
sian Regression [24] would allow to online learn and adapt
the localization and mapping schema and the visual odometry
to the dynamics of the environment. Odometry residuals
might also provide a cue to identify the terramechanics of
the terrain and inform the path planning component about
potential hazards.
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