Learning Coupled Dynamic Models of Underwater
Vehicles using Support Vector Regression

Bilal Wehbe! and Mario Michael Krell?
IDFKI - Robotic Innovation Center Bremen, Germany
2International Computer Science Institute, University of California, Berkeley, California, USA.
bilal.wehbe @dfki.de, krell @icsi.berkeley.edu

Abstract—This work addresses a data driven approach which
employs a machine learning technique known as Support Vector
Regression (SVR), to identify the coupled dynamical model of an
autonomous underwater vehicle. To train the regressor, we use
a dataset collected from the robot’s on-board navigation sensors
and actuators. To achieve a better fit to the experimental data, a
variant of a radial-basis-function kernel is used in combination
with the SVR which accounts for the different complexities of
each of the contributing input features of the model. We compare
our method to other explicit hydrodynamic damping models that
were identified using the total least squares method and with
less complex SVR methods. To analyze the transferability, we
clearly separate training and testing data obtained in real-world
experiments. Our presented method shows much better results
especially compared to classical approaches.

I. INTRODUCTION

The need of accurate motion models for autonomous un-
derwater vehicles (AUVs) is evident for implementations of
model-based control schemes, improved numerical simulation,
and robust navigation purposes. When deployed in the field,
AUVs do not usually acquire continuous pose updates, and
therefore rely in some cases completely on their inertial
navigation system, which is prone to drift with time. Most
systems nowadays are equipped with a doppler velocity log
(DVL) to aid the navigation system by providing ground
relative velocity. Nevertheless due to its acoustic nature, such
sensor suffers from measurements drop-outs when it loses
the bottom lock. One way to remedy that situation is to use
a mathematical model to aid the navigation system of the
vehicle. In [1] for example, it was shown how the accuracy and
robustness of the inertial navigation system of an AUV can be
significantly improved by incorporating a motion model as an
alternative velocity source.

Accurate modeling of rigid body submersibles can be
achieved by infinite-dimensional analysis of the dynamics of
the surrounding fluid, nevertheless, this comes at the cost of a
huge computational complexity which renders such methodol-
ogy infeasible for most practical applications [2]. Accordingly,
various finite-dimensional approaches to model such vehicles
were generically established in literature [3]-[5]. Generally,
most of the afore mentioned modeling approaches tend to
simplify the dynamics of the vehicle by making assumptions
about the flow regimes and/or the geometrical symmetries of
its body and thus neglecting the effects of high order nonlin-
earities. Challenges therefore arise when fitting mathematical

Fig. 1. AUV DAGON during experimentation.

model to actual data collected by the robot’s sensors. In this
manner, machine learning appeals as a promising technique
for learning complex nonlinear models provided their inputs
and outputs, and can therefore account for unmodeled aspects
of the vehicle’s hydrodynamics.

This paper presents an alternative method that learns a
nonlinear function directly from a training dataset, without the
need to predefine an explicit mathematical model and identify
its parameters. The dynamic model of an AUV is viewed as a
multi-input multi-output nonlinear function. Therefore without
assuming any simplifications, a support vector regression
(SVR) is used to estimate the underlying model. In this work
the AUV DAGON (Fig. 1) is used as a study subject, where
the proposed methodology is applied and the performance
is evaluated using real data collected by its sensors. Finally,
the methodology proposed is compared to the hydrodynamic
models presented in [3], [5] that were identified using the total
least squares method.

The rest of the paper is organized as the following: the
mathematical models for UUVs in Section II after a brief re-
view of the literature. In Section III, we introduce our machine
learning approach used for identifying the dynamic model.
In Section IV, we present the AUV DAGON and describe
the experimental setup that was used for data acquisition.
Section V evaluates the performance of the model being
learned, followed finally by the conclusion.

A. Literature Review

The usual procedure followed for explicit model represen-
tations, is to identify the so-called hydrodynamic derivatives



which quantify the forces and moments acting on the vehicle
with respect to its motion states (i.e., position, velocity, accel-
eration). For such purpose, the least squares (LS) method is
regarded as the most common technique to estimate the model
parameters. An Early study [6] used the LS method to identify
experimentally a 1-degree-of-freedom (DOF) decoupled model
of an underwater vehicle, followed later by the work of [7]
that used the same methodology but included more DOFs. An
on-line adaptive identification method for a 1-DOF decoupled
model was proposed by [8] which did not require acceleration
measurements. In a comparative study [9], it was shown that
the LS method performed slightly better than the adaptive
identification method. In [10] a sensor fusion approach was
used with LS to estimate the dynamics of a model decoupled
into three simplified slightly interacting subsystems (speed,
steering and diving), where the steering and diving subsystems
are linearly coupled. In [2], the identification of a 3 DOF
coupled model was presented, where the authors considered
the hydrodynamic damping as three terms: a linear and tur-
bulent skin friction. A fully coupled 6-DOF second-order
model consisting of 241 parameters was presented in [5]
where total least squares and an adaptive method were used
to identify this model for a low speed open frame vehicle.
In [11], a study showed that the Mcfarland-Whitcomb model
[5] with 241 parameters performed very close to the model of
Gertler and Hagen [3] with only 88 parameters. All literature
mentioned so far consider techniques to identify parameters
of an explicitly defined motion model, where the damping
effect is approximated as a first or second order function.
Fewer studies report data-driven methodologies to model the
motion of underwater vehicles. In [12], a neural network was
used to identify only the damping term of the model, where a
simulation of an AUV was used to train the network and no
real sensory data was considered. In [13] least squares support
vector regression (LS-SVR) was used to identify the Coriolis
and centripetal acceleration term combined with the damping
terms of a model underwater vehicle by using a dataset from
a towing tank experiments. Validation of the model was only
done with simulated experiments. In [14], the locally weighted
projection regression algorithm was used as an augmented
term to correct the mismatch between the hydrodynamic model
and the sensory data. So far, no studies have yet reported an
estimation of a coupled model of an underwater vehicle solely
based on a data-driven approach.

II. UNDERWATER VEHICLE MODELING

The motion of an underwater vehicle in general is described
in 6 DOF defined as, three translations: surge, sway, and heave
and three rotations: roll, pitch, and yaw. Respectively, the posi-
tion and orientation with respect to an inertial coordinate frame
are denoted as a vector = [z y z ¢ 0 1|7 € R6*!, The linear
and angular velocities are decomposed in the robot’s body-
frame and denoted as the vector v = [u v w p ¢ 7|7 € R®*L.
The kinematic equation of motion maps the robot’s body frame
velocities v onto the inertial-frame velocities 7), namely the

first order derivative of the robot’s position and orientation
vector 7, and is given as the following:

n= J(U)V» 1)

where J(n) € R%%6 is a nonlinear transformation matrix. The
dynamic equation relates the robot’s acceleration vector » in
the body-frame to the robot’s velocity, orientation and external
forces applied to its body. Following the notation of [4] the
dynamic equation is expressed as follows:

My + Cw)v+dv)+g(n) =T, 2

where M is a matrix representing the combination of the
vehicle’s rigid body inertia and added mass. C'(v) summarizes
the Coriolis and centripetal forces as function of the rigid
body and added mass. d(v) is the hydrodynamic damping
term which is defined by [4] to be a combination of potential
damping, skin friction, wave drift, and vortex shedding. The
term g(7) accounts for the buoyant and gravitational forces.
T is a vector representing the actuators forces and moments.
In this work we aim to estimate a data-driven model that
represents the model given by (2) without the need of explicitly
defining the governing mathematical equations behind it. Thus,
a further detailed description of the components of (2) is not
discussed in this paper. The reader may refer to [3]-[5].
By rearranging (2) as the following:

v=M'r—Cy—dv)—gn), 3)

we can view the dynamic model as a nonlinear multivariate
function that takes instances of the pose, velocity and control
signal (n,v,7) as input, and predicts an acceleration instance
U as output. We express the right hand side of (2) as F. Thus
the dynamic model can be written as:

v=Fnv,1). )

The system states v, ©, 1, and 7 € Rgx1 of the model (4)
are assumed to be bounded, and can be measured directly or
inferred from other measurements.

In this work, we consider 3-DOF motion in the horizontal
plane (surge, sway, and yaw). Thus, the velocity and accelera-
tion vectors can be written as v = [u v r]T and ¥ = [u v 7]7,
respectively. Furthermore, we will not model the dynamics
of actuators separately but rather account for it in the model
directly by considering the actuators readings as direct inputs
to the vehicle’s model. For our case, the actuators available on
DAGON are thrusters and therefore the rotational speeds (n;)
of each thrusters are given as input to the model. The model
(4) can thus be rewritten as follows

v=T[a07T" = Flu,v,rn;). 5)
III. LEARNING THE MODEL

An evident advantage of nonlinear regression, is that only
the input and output information of the system are taken
into account, without the necessity of explicitly expressing
the equations underlying the model function. Therefore, we
account for unmodeled dynamics and reduce the assumptions



and simplifications being done in previous studies. In this
Section, we describe the identification methodology and the
regression algorithm being used.

A. Support Vector Regression

SVR is a supervised learning method effective for model-
ing and interpolating nonlinear functions. One of the main
advantages of this method is that it uses only a subset of
the training data to represent the fitted model. This fact
makes it also attractive for online implementations on mobile
robots that suffer usually from limited computational and
memory resources. We consider a dataset of n instances
D = {(z,y:)|i = 1,...,n}, where x; denotes a feature vector
(vector of descriptive variables) that characterizes the velocity
and actuators variables, and y; denotes a target vector that
characterizes the robot’s acceleration. The basic idea of SVR
is to fit a function f(z) = (w, z)+b onto a training dataset D,
without penalizing errors that lie below some margin €. The
hyperparameter e defines a region known as the e-tube where
errors are allowed. Data samples lying at the border or outside
of this tube are referred to as support vectors. The weights
w are then determined by solving the convex optimization
problem:

: 1 2 C S . *
min  Slwl+CY (& +€)
= 6)
st. e+ &> (wa)+b—y > —e—&
&, >0 Vi:1<i<n.

& and £* are slack variables that represent the deviation from
the e-tube. The hyperparameter C' weights between having
a more generalizing model with low weights and having
too large deviations. To solve this problem, [15] proposed
the application of the Lagrangian multiplier technique, which
transforms the convex problem (6) to the following dual
optimization problem:

1 n
3 > (i = Bi)(ay = By)r(ws, ;)

ij=1

+ey (ai+p)— Zyi(@i - Bi)
=1 i=1

st. 0<Z Oéi,ﬂi < C Vi :

min
a,B

Y

(7N
1<i:<n

©
Il
A

where o and [ are called the dual variables, and x(z;, z;) is
the kernel function which is explained in Section III-B in more
detail. The reader may refer to [15] for detailed explanation
of the derivation of (7). Several methods can be used to solve
the optimization problem (7) [16]. In this work, the sequential
minimal optimization as implemented in the LibSVM interface
of scikit-learn [17], [18] is used. The resulting regression
function is finally written as

flx) = (a; = Bj)r(w;,x) +, ®)

j=1

where the index j represents the support vectors.

B. The Kernel

In nonlinear regression, the kernel corresponds to mapping
the feature vectors in the input space to a higher-dimensional
space where the regression problem is solved in linear form.
This is done by replacing the inner product operations in the
primal optimization problem (6), which is known as the kernel
trick. One of the most commonly used kernels for modeling
nonlinear data is the Gaussian radial-basis-function (RBF)
defined as:

Kz, a’) = exp(—llz — /||, ©)

where ~y is a hyperparameters inversely proportional to the
width of the kernel, and modeling the smoothness of the
function. We recall from the equations of the dynamic model
(5), that each of the feature inputs contributes with a different
complexity to the outputs. An effective way to model functions
having more than one input is to multiply several RBF kernels
with different values of ~ for each individual dimension
[19]. In other words, different weights can be assigned for
each feature of the input vector, which therefore accounts for
the difference in complexity of each of the input features.
We denote the resulting kernel as weighted-distance-squared-
exponential (WDSE) kernel, given as:

rla,a') = exp(= Y villzi — 2i]*).

K2

(10)

where z; is one input feature and ~; is its corresponding
weight.

In addition to the RBF and WDSE kernels mentioned above,
we use a third kernel variant that is similar in sense to the
WDSE kernel but uses only two hyperparameters instead. One
hyperparameter is used for the velocity inputs whereas the
second is used for the thrusters input. We denote this type of
kernel as “2-weights-RBF”.

C. Cross-validation and tuning the hyperparameters

The hyperparameters of a SVR can be summarized as the
following: the loss margin parameter ¢ which determines the
thickness of the e-tube and therefore determines the number
of support vectors used to learn the model. The regularization
parameter C' which acts as an overall trade of between smooth-
ness and over-fitting of the regression function. Additional
hyperparameters are introduced with the kernel. The WDSE
kernel assigns a different weight « for every dimension of
the input space, thus the total set of hyperparameters are thus
given as (€, C,Yu, Yos Vrs Vnyy ---)- With the “2-weights-RBF”
kernel the hyperparameters are given as (€, C, 7., ¥, ), whereas
with the RBF kernel we have only (¢, C, 7).

When evaluating the performance of a certain regression
function, testing the trained function on the same data used for
the training will not reflect how good the model can generally
fit the data. In such case, the model would repeat the values
of the samples that it has already seen but might fail to give
a good prediction for yet unseen samples. To obtain a model



that can learn a general description of the data, it is important
to hold out a part of the data to be used for testing. This
procedure is called cross-validation (CV). In this work we
use an approach known as k-fold CV, where a dataset is
split into k subsets. Then, the regression function is trained
with k-1 subsets and the left-out set is used for testing. This
procedure is repeated for every split, and the overall score is
then computed as the average of the testing scores for each
split. To find the optimal hyperparameters of the regression
function, an exhaustive grid search algorithm was used where
the parameters are selected every iteration from a grid of
several candidate parameters, and therefore the ones that yield
the best possible performance are chosen. As a scoring metric,
we use the the coefficient of determination (R?) which is a
measure of how good the model can predict samples that were
not seen before. The best possible score is 1, which indicates
that the learned model can predict new output samples without
error. R? is also a unit-less measure which helps providing a
unified metric for both linear and angular DOFs.

Z?:l (y;lnredicted yf”e)

Zz (G —yire

where 7= — Zy”“e

RP=1-

(1)

The following terminologies are used from now on: The
training score is the score resulting from evaluating the model
with the training data, and the testing score is the result of
evaluation with the testing data.

In summary, for the training phase, observations of the
vehicle’s velocity and actuator readings (u,v,r,n1,n2,n3)
are given to the regressor as a set of feature inputs, and
observations of the vehicle’s acceleration (4, 9,7) are given
as targets. Whereas in the prediction phase, the regressor cal-
culates instances of acceleration given samples of velocity and
actuator readings. We use one dataset to tune the regressor’s
hyperparameters and a separate dataset to evaluate how good
it would predict on unseen and independent data samples.

IV. EXPERIMENTAL SETUP

In this Section, we describe the experimental setup and the
data acquisition procedure.

To test the proposed identification methodology, an ex-
periment was setup using the AUV DAGON (Fig. 1) in a
23 x 19 x 8m? salty water basin at the labs of DFKI - RIC in
Bremen, Germany. An overview of the vehicle specifications
and a description of the conducted experiment is presented.

A. Vehicle Specifications

The AUV DAGON was developed in the labs of DFKI-RIC
for the purpose of underwater visual mapping and surveying
near-shore continental shelf. DAGON is relatively a small sized
vehicle with outer dimensions of 150 x 80 x 40c¢m, and
weighing 75 kg in air. The vehicle is passively stable in the
roll DOF, and slightly buoyant due to safety reasons. DAGON
is equipped with five thrusters as shown in Fig. 2. Thrusters

Side View

Th4 — heave/front Th5 — heave/back

-

Fig. 2. Dagon’s thrusters configuration: top and side views.

TABLE 1

LIST OF SENSORS AVAILABLE ON DAGON.
Sensor Variable Precision Rate
XSens MTi AHRS R/P/Y (R/P): 0.5°, (Y): 1° 120Hz
KVH DSP-3000 FOG | yaw rate 1-6°/h 100Hz
Desert Star SSP-1 depth 0.1%RMS 10Hz
pressure sensor
Teledyne RDI ground relative | £0.02m/s 3-4Hz
Explorer DVL velocity

Thy and Thy are used for surge movement whereas when
combined with the lateral thruster T'hs can provide sway and
yaw motion. The two vertical thrusters Thy and Ths are
used for heave as well as pitch movements when actuated
differentially. All thrusters are fitted with Hall sensors to
measure their rotational speeds.

DAGON is equipped with a variety of sensors, where we
only state here the ones that were used for our experiments. An
attitude heading reference system (AHRS) sensor is combined
with a single axis fiber-optic-gyroscope (FOG) to estimate the
vehicle’s orientation (roll, pitch, yaw). A Doppler velocity log
(DVL) is used to measure the vehicle’s linear velocity and a
pressure sensor is used to estimate its depth. The specifications
of the mentioned sensors can be found in TABLE 1.

B. Experiment Description

As mentioned earlier, the experiments with DAGON were
carried out in a salty water basin, which is a volume of static
water with no waves or induced disturbances. By using the
feedback of the depth and pitch readings from the vehicle’s
navigation system and the vertical thrusters (T'hy and Ths),
a control loop was setup to stabilize the pitch and depth to
a fixed value throughout the whole experiment. The vehicle
was then driven freely in the horizontal plane by actuating its
three horizontal thrusters (T"h1, Tho and Ths). The thrusters
received separate sinusoidal commands with zero offset and
varying periods. The reason for actuating the vehicle in such
fashion is to cover as much coupling as possible between
different DOFs. The linear and angular velocity of the vehicle
was logged in sync with the thrusters rotational velocities.



hyperparameters optimization training - testing
T T

u (m/s)
o
>

v (m/s)
L

n2 (rps)
|
S o o

—20

n3 (rps)
|
wm o wn

=10

1 (m/s?)
(=]
=

Fig. 3. Data samples: (a) input features samples representing the surge, sway,
and yaw velocities as well as the thrusters rotational speed and (b) output
target samples representing the accelerations in surge, sway and yaw dofs. The
dotted line represents the separation between data used for hyperparameter
optimization and training-testing data.

The vehicle’s acceleration was calculated by numerically dif-
ferentiating the velocity samples and then a mild Gaussian
smoothing was applied to filter the measurement noise. The
full dataset is shown in (Fig. 3), where the input feature
samples are the linear velocities in the surge, sway, and yaw
velocities and the rotational speeds of the 3 thrusters, i.e.,
2 = [u v r ny ng ng), and the target data are the robot’s
surge, sway, and yaw accelerations, i.e., y = [ © 7).

V. RESULTS AND EVALUATION
A. Model Validation Results

In this Section, we test the performance of the model using
the WDSE kernel as described in Section III. We compare the

TABLE II
RESULTS OF HYPERPARAMETER OPTIMIZATION
Regressor Hyperparameter | Surge | Sway Yaw
€ 0.01 0.01 0.01
C 10 10 10
Yu 0.085 0.1 0.1
Yo 0.5 0.01 5
WDSE-SVR o 02 0.1 02
Vn1 105 | 1076 | 1073
Tn2 105 | 1074 | 1073
Yn3 10=% | 10=6 | 10~¢
€ 0.001 | 0.001 | 0.005
. C 1 1 2
2-weights-SVR ™ 0.019 | 0019 | 001
Yn 0.001 | 0.001 0.09
€ 0.001 0.01 0.001
RBF-SVR C 5 10 1
~y 0.01 0.01 0.04

performance of the proposed model to four other modeling
approaches and provide a general scheme for generating
training and testing data to provide a better overall picture. As
mentioned earlier, two explicit dynamic models are identified
by using the total least squares method, namely the Gertler-
Hagen model [3] and the Mcfarland-Whitcomb model [5]. Two
other SVR approaches are also tested, the first is denoted as
“RBF-SVR?”, that uses an RBF kernel as in (9) where only one
hyperparameter of the kernel () is optimized. The second
SVR uses the “2-weights-RBF” mentioned in Section III-B,
assigning one weight to the velocity inputs (u v r) and
one weight to the thrusters inputs (n1 ny n3), and therefore
optimizing only two hyperparameters of the kernel instead of
six. We denote this regressor as “2-weights-SVR”. The idea
behind these two alternatives is to analyze the improvement
in performance due to the additional hyperparameters of the
WDSE kernel. In order to bring the feature inputs to a close
range, the feature inputs for the RBF-SVR and 2-weights-
SVR are normalized to have a zero mean and unit variance.
This procedure is not necessary for the WDSE kernel since
every feature of the input vector has its own weight (v;).
We use first a subset of the data to optimize the hyperpa-
rameters of the SVRs, and the rest of the dataset to train
and evaluate the model as shown in Fig. 3. We note that
the sole purpose of the optimization dataset is to find the
best hyperparameters, this dataset it not used for training or
testing purposes. The hyperparameter optimization was done
on this dataset as described in section III-C using the machine
learning tool pySPACE [20]. A grid of five candidates for each
hyperparameter was given to the algorithm, and the results
yielding the best performance are reported in Table II. The
difference in the values of 4’s of the WDSE kernel indicates
the difference of complexity each input feature contributes to
the model underlying the data. We describe next the training
and testing procedure. As mentioned earlier, a rule of thumb
is to keep the training and testing data separated as well
in order to evaluate how good the regressor can generalize
or predict accurately unseen data. Fixing the hyperparameter
values to the results of the optimization procedure, we run a



|4
:
[

o
N

Coefficient of Determination - R*

o o
0 >

RBF-SVR/
Normalization

2-weights-SVR/
Normalization

WDSE-SVR LS LS
Gertler-Hagen Whitcomb-Macfarland

Fig. 4. Testing scores of different models evaluated through 5-fold cross-
validation using R? performance metric.

5-fold cross-validation scheme on the training-testing dataset
shown in Fig. 3. Note that the k-fold scheme does not use
any randomization for picking the training and testing subsets.
This operation results in five scores for each model that are
shown as box-plots in Fig. 4. The red line represents the
median value, and the bottom and top edges of the box
represent the interquartile range, and the whiskers represent
the minimum and maximum values. The distances between
the different parts of the box-plot can be seen as a measure of
dispersion in the results, therefore a tight box-plot indicates
a less dispersed data and a wide box-plot indicates a wide
dispersion. Table III shows the mean and standard deviation
of the evaluation scores. The results are discussed next.

B. Discussion

Results from Fig. 4 and Table III show clearly that when
compared to the other models, the SVR using the WDSE
kernel has the highest average and the minimal spread of
the performance scores. This indicates that the WDSE-SVR
keeps consistently a good performance when trained with
different splits of the dataset and thus being able to capture
more accurately the underlying dynamics of the vehicle. By
comparison to the two other SVR variants, the WDSE kernel
demonstrates a good capability of learning the capturing the
complexity of each degree of freedom on the model due to
its additional hyperparameters. Additionally, the WDSE-SVR
avoids over fitting the training data (or learning the noise),
since the training and testing scores yield close values. On the
other hand, the explicit models show a poorer performance,
the Gertler-Hagen model for example shows a wide spread of
the performance scores which indicates that when trained with
different splits of the data, the model’s performance varies
between having a good fit for certain parts of the data and
for other parts not. In summary, the WDSE-SVR outperforms
the other approaches presented, followed by the “2-weights-
SVR” with a reduced number of its kernel hyperparameters.
The RBF-SVR and the Mcfarland-Whitcomb model show rel-
atively close performance, whereas the Gertler-Hagen model
falls last.

TABLE III
MEAN AND STANDARD DEVIATION OF CROSS-VALIDATION TRAINING AND
TESTING SCORE RESULTS (R2).

training score testing score
Model Mean | S.D. Mean | S.D.
RBF-SVR 0.935 | 0.002 | 0.797 | 0.061
2-weights-SVR 0.906 | 0.005 | 0.818 | 0.057
WDSE-SVR 0.909 | 0.005 | 0.849 | 0.026
Gertler-Hagen 0.782 | 0.011 | 0.677 | 0.099
Mcfarland-Whitcomb | 0.861 | 0.003 | 0.778 | 0.039

VI. CONCLUSION

In this work we reported a new methodology to model
coupled dynamic models for underwater vehicles based upon
support vector regression. The dynamic model was assessed
as an unknown nonlinear multivariate function that maps the
vehicle’s body velocities and actuator inputs onto the body
accelerations. A SVR algorithm incorporating a kernel that
associates different weights to the feature inputs of the model
was used to learn the model dynamics with access to its
inputs and outputs. The AUV DAGON was used as a platform
to collect the data necessary for the model identification.
The method presented showed good capabilities fitting unseen
data that was not used in the training process. Furthermore
the proposed method was cross-validated against four other
modeling approaches, where it showed the best performance
among the other candidates.

As for future work, evaluating this methodology on different
types of underwater vehicles with more complex geometrical
structures will be addressed, as well as testing this approach
on-line with the possibility of varying dynamics of the robot
considered.

ACKNOWLEDGMENT

The authors would like to thank all colleagues at DFKI
GmbH, Robotics Innovation Center, Bremen for their support
and feedback. This work was supported by the Marie Curie
ITN program “Robocademy” FP7-PEOPLE-2013-ITN-608096
and by a fellowship within the FITweltweit program of the
German Academic Exchange Service (DAAD).

REFERENCES

[11 O. Hegrenas, E. Berglund, and O. Hallingstad, “Model-aided inertial
navigation for underwater vehicles,” in Robotics and Automation, 2008.
ICRA 2008. IEEE International Conference on. 1EEE, 2008, pp. 1069—
1076.

[2] O. Hegrenaes, O. Hallingstad, and B. Jalving, “Comparison of mathe-
matical models for the hugin 4500 auv based on experimental data,” in
2007 Symposium on Underwater Technology and Workshop on Scientific
Use of Submarine Cables and Related Technologies. 1EEE, 2007, pp.
558-567.

[3] M. Gertler and G. R. Hagen, “Standard equations of motion for
submarine simulation,” DTIC Document, Tech. Rep., 1967.

[4] T. I. Fossen, Marine control systems: guidance, navigation and control
of ships, rigs and underwater vehicles, 2002.

[5] C. J. McFarland and L. L. Whitcomb, “Comparative experimental
evaluation of a new adaptive identifier for underwater vehicles,” in ICRA.
IEEE, 2013, pp. 4614-4620.

[6] M. Caccia, G. Indiveri, and G. Veruggio, “Modeling and identification
of open-frame variable configuration unmanned underwater vehicles,”
IEEE J. Ocean. Eng., vol. 25, no. 2, pp. 227-240, 2000.



[7]

[8]

[9]

[10]

[11]

[12]

[13]

J. P. J. Avila, J. C. Adamowski, N. Maruyama, F. K. Takase, and
M. Saito, “Modeling and identification of an open-frame underwater
vehicle: The yaw motion dynamics,” J. Intell. Robot. Syst., vol. 66, no.
1-2, pp. 37-56, 2012.

D. A. Smallwood and L. L. Whitcomb, “Adaptive identification of
dynamically positioned underwater robotic vehicles,” IEEE Trans. Contr.
Syst. Technol., vol. 11, no. 4, pp. 505-515, 2003.

J. Britto, D. Cesar, R. Saback, S. Arnold, C. Gaudig, and J. Albiez,
“Model identification of an unmanned underwater vehicle via an adap-
tive technique and artificial fiducial markers,” in OCEANS, Oct 2015,
pp. 1-6.

K. M. Fauske, F. Gustafsson, and O. Hegrenaes, “Estimation of auv
dynamics for sensor fusion,” in Information Fusion, 2007 10th Interna-
tional Conference on. 1EEE, 2007, pp. 1-6.

S. B. Gibson, B. McCarter, D. J. Stilwell, and W. L. Neu, “A comparison
of hydrodynamic damping models using least-squares and adaptive
identifier methods for autonomous underwater vehicles,” in OCEANS.
IEEE, 2015, pp. 1-7.

P. W. Van De Ven, T. A. Johansen, A. J. Sgrensen, C. Flanagan, and
D. Toal, “Neural network augmented identification of underwater vehicle
models,” Control Eng. Pract., vol. 15, no. 6, pp. 715-725, 2007.

F. Xu, Z.-J. Zou, J.-C. Yin, and J. Cao, “Identification modeling
of underwater vehicles’ nonlinear dynamics based on support vector
machines,” Ocean. Eng., vol. 67, pp. 68-76, 2013.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

G. Fagogenis, D. Flynn, and D. M. Lane, “Improving underwater vehicle
navigation state estimation using locally weighted projection regression,”
in Robotics and Automation (ICRA), 2014 IEEE International Confer-
ence on. 1EEE, 2014, pp. 6549-6554.

A. J. Smola and B. Scholkopf, “A tutorial on support vector regression,”
Statistics and computing, vol. 14, no. 3, pp. 199-222, 2004.

M. M. Krell, “Generalizing, decoding, and optimizing support vector
machine classification,” Ph.D. dissertation, Bremen, Universitit Bremen,
2015.

C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1-27:27, 2011, software available at http://www.csie.ntu.
edu.tw/~cjlin/libsvm.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825-2830, feb 2011.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1953048.2078195
D. Duvenaud, “Automatic model construction with gaussian processes,”
Ph.D. dissertation, University of Cambridge, 2014.

M. M. Krell, S. Straube, A. Seeland, H. Woéhrle, J. Teiwes, J. H. Metzen,
E. A. Kirchner, and F. Kirchner, “pySPACE - a signal processing
and classification environment in Python,” Front. Neuroinform., vol. 7,
no. 40, 2013.



