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Abstract

Knowing the location of a user is im-
portant for several use cases, such as lo-
cation specific recommendations, demo-
graphic analysis, or monitoring of dis-
aster outbreaks. We present a bottom
up study on the impact of text- and
metadata-derived contextual features for
Twitter geolocation prediction. The fi-
nal model incorporates individual types of
tweet information and achieves state-of-
the-art performance on a publicly available
test set. The source code of our imple-
mentation, together with individual mod-
els, is freely available at github-url.
blinded.for.review.

1 Introduction

Data from social media platforms is an attractive
real-time resource for data analysts. It can be used
for a wide range of use cases, such as monitoring of
fire- (Paul et al., 2014) and flue-outbreaks (Power
et al., 2013), provide location-based recommen-
dations (Ye et al., 2010), or is utilized in demo-
graphic analyses (Sloan et al., 2013). Although
some platforms, such as Twitter, allow users to ge-
olocate posts, Jurgens et al. (2015) reported that
less than 3 % of all Twitter posts are geotagged.
This severely impacts the use of social media data
for such location-specific applications.

The location prediction task can be either tack-
led as classification problem, or alternatively as a
multi-target regression problem. In the former case
the goal is to predict city labels for a specific tweet,
whereas the latter case predicts latitude and longi-
tude coordinates for a given tweet. Previous stud-
ies showed that text in combination with metadata
can be used to predict user locations (Han et al.,
2014). Liu and Inkpen (2015) presented a system
based on stacked denoising auto-encoders (Vincent

et al., 2008) for location prediction. State-of-the-
art approaches, however, often make use of very
specific, non-generalizing features based on web
site scraping, IP resolutions, or external resources
such as GeoNames. In contrast, we present an ap-
proach for geographical location prediction that
achieves state-of-the-art results using neural net-
works trained solely on Twitter text and metadata.
It does not require external knowledge sources, and
hence generalizes more easily to new domains and
languages.

The remainder of this publication is organized as
follows: First, we provide an overview of related
work for Twitter location prediction. In Section 3
we describe the details of our neural network ar-
chitecture. Results on the test set are shown in
Section 4. Finally, we conclude the paper with
some future directions in Section 5.

2 Related Work

For a better comparability of our approach,
we focus on the shared task presented at the
2nd Workshop on Noisy User-generated Text
(WNUT’16) (Han et al., 2016). The organiz-
ers introduced a dataset to evaluate individual ap-
proaches for tweet- and user-level location predic-
tion. For tweet-level prediction the goal is to pre-
dict the location of one specific message, while for
user-level prediction the goal is to predict the user
location based on a variable number of user mes-
sages. In the following, we focus on tweet-level
prediction as it is more practical in real world appli-
cations (Han et al., 2016). The organizers evaluate
team submissions based on accuracy and distance
in kilometers. The latter metric allows to account
for wrong, but geographically close predictions, for
example, when the model predicts Vienna instead
of Budapest.

We focus on the five teams who participated
in the WNUT shared task. Official team results
for tweet- and user-level predictions are shown in



Table 1. Unfortunately, only three participants pro-
vided systems descriptions, which we will briefly
summarize:

Team FujiXerox (Miura et al., 2016) built a neu-
ral network using text, user declared locations,
timezone values, and user self-descriptions. For
feature preprocessing the authors build several map-
ping services using external resources, such as
GeoNames and time zone boundaries. Finally, they
train a neural network using the fastText n-gram
model (Joulin et al., 2016) on post text, user loca-
tion, user description, and user timezone.

Team csiro (Jayasinghe et al., 2016) used an
ensemble learning method built on several infor-
mation resources. First, the authors use post texts,
user location text, user time zone information, mes-
senger source (e.g., Android or iPhone) and re-
verse country lookups for URL mentions to build
a list of candidate cities contained in GeoNames.
Furthermore, URL mentions were scraped and the
website metadata was screened for geographic coor-
dinates. The authors implemented custom scrapers
for websites which are frequently used in Twitter
and sometimes provide latitude and longitude in
their metadata. Second, a relationship network is
built from tweets mentioning another user. Third,
posts are used to find similar texts in the training
data to calculate a class-label probability for the
most similar tweets. Fourth, text is classified us-
ing the geotagging tool pigeo (Rahimi et al., 2016).
The output of individual stages is then used in an
ensemble learner.

Team cogeo (Chi et al., 2016) employ multino-
mial naı̈ve Bayes and focus on the use of textual
features (i.e., location indicative words, GeoNames
gazetteers, user mentions, and hashtags).

3 Methods

We used the WNUT’16 shared task data consisting
of 12,827,165 tweet IDs, which have been assigned
to a metropolitan city center from the GeoNames
database1, using the strategy described in Han et
al. (2012). As Twitter does not allow to share indi-
vidual tweets, posts need to be retrieved using the
Twitter API, of which we were able to retrieve
9,127,900 (71.2 %). The remaining tweets are
no longer available, usually because users deleted
these messages. In comparison, the winner of the
WNUT’16 task (Miura et al., 2016) reported that
they were able to successfully retrieve 9,472,450

1http://www.geonames.org/

(73.8 %) tweets. The overall training data consists
of 3,362 individual class labels (i.e., GeoNames
cities). In our subset of approximately 9 million
tweets we only observed 3,315 different classes.

For text preprocessing, we use a simple whites-
pace tokenizer with lower casing, without any do-
main specific processing, such as unicode normal-
ization (Davis et al., 2001) or any lexical text
normalization (see for instance Han and Baldwin
(2011)). The text of tweets, and metadata fields
containing texts (user description, user location,
user name, timezone) are converted to word em-
beddings (Mikolov et al., 2013), which are then
forwarded to a Long Short-Term Memory (LSTM)
unit (Hochreiter and Schmidhuber, 1997). In our
experiments we randomly initialized embedding
vectors. We use batch normalization (Ioffe and
Szegedy, 2015) for normalizing inputs in order to
reduce internal covariate shift. The risk of over-
fitting by co-adapting units is reduced by imple-
menting dropout (Srivastava et al., 2014) between
individual neural network layers. An example ar-
chitecture for textual data is shown in Figure 1.
Mentions of links in the post are handled slightly
differently by building character embeddings and
feeding them into a LSTM layer. Metadata fields
with a finite set of elements (UTC time and source
type) are directly represented as one-hot encodings.

We connect all eight individual neural architec-
tures with a dense layer for classification using
a softmax activation function. We use stochastic
gradient descent over shuffled mini-batches with
Adam (Kingma and Ba, 2014) and cross-entropy
loss as objective function for classification. For
parameter tuning we tested different properties on
a randomly selected validation set consisting of
50,000 tweets. The final parameters of our model
are shown in Table 3.

The WNUT’16 task requires the model to predict
class labels and longitude/latiude pairs. To account
for this, we predict the mean city longitude/latitude
location given the class label. For user-level pre-
diction, we classify all messages individually and
predict the city label with the highest probability
over all messages.

3.1 Model combination

The internal representations for all eight different
resources (i.e., text, user-description, user-location,
user-name, user-timezone, links, UTC, and source)
are concatenated to build a final tweet represen-



Submission Tweet User

Acc Median Mean Acc Median Mean

FujiXerox.2 0.409 69.5 1,792.5 0.476 16.1 1,122.3
csiro.1 0.436 74.7 2,538.2 0.526 21.7 1,928.8
FujiXerox.1 0.381 92.0 1,895.4 0.464 21.0 963.8
csiro.2 0.422 183.7 2,976.7 0.520 23.1 2,071.5
csiro.3 0.420 226.3 3,051.3 0.501 30.6 2,242.4
Drexel.3 0.298 445.8 3,428.2 0.352 262.7 3,124.4
aist.1 0.078 3,092.7 4,702.4 0.098 1,711.1 4,002.4
cogeo.1 0.146 3,424.6 5,338.9 0.225 630.2 2,860.2
Drexel.2 0.082 4,911.2 6,144.3 0.079 4,000.2 6,161.4
Drexel.1 0.085 5,848.3 6,175.3 0.080 5,714.9 6,053.3

Table 1: Official WNUT’16 tweet- and user-level results ranked by tweet median error distance (in
kilometers). Individual best results for all three criteria are highlighted in bold face.

Parameter Property

Description embedding dim. 100
Link embedding dim. 100
Location embedding dim. 50
Name embedding dim. 100
Text embedding dim. 100
Timezone embedding dim. 50
Batch-Size 256

Table 2: Selected parameter settings

Figure 1: Example architecture used for textual
data. Tokenized text is represented as word em-
beddings, which are then forwarded to a LSTM.
Dropout and batch normalization is applied be-
tween individual layers.

tation. We then evaluate two training strategies:
In the first training regime, we train the combined
model from scratch. The parameters for all word-
and character-level embeddings, as well as all net-
work layers, are initialized randomly. The parame-
ters of the full model including the softmax layer
combining the output of the six individual LSTM
models and the two metadata models are learned
jointly. For the second strategy, we first train each
LSTM model separately, and then keep their pa-
rameters fixed while training only the final softmax
layer.

4 Results

The individual performance of our different mod-
els is shown in Table 4. As simple baseline, we
predict the city label most frequently observed in
the training data (Jakarta in Indonesia). According
to our bottom-up analysis, the user-location meta-
data is the most productive kind of information for
tweet- and user-level location prediction. Using the
text alone, we can correctly predict the location for
19.3 % of all tweets with a median distance of 2,128
kilometers to the correct location. Aggregation of
pretrained models also increases performance for
all three evaluation metrics in comparison to train-
ing a model from scratch.

For tweet-level prediction, our best merged
model outperforms the best submission (FujiXe-
rox.2) in terms of accuracy, median and mean dis-
tance by 1.4 percentage points, 18.4 kilometers,
and 392.1 kilometers respectively. The ensemble
learning method (csiro) outperforms our best mod-
els in terms of accuracy by 1.3 percentage points,



Model Tweet User

Acc Median Mean Acc Median Mean

location 0.362 209.4 4,535.7 0.441 45.9 3,841.8
text 0.193 2,128.4 4,404.3 0.322 266.4 2,595.0
description 0.087 3,806.7 6,048.9 0.097 3,407.9 5,896.8
user-name 0.059 3,942.5 5,990.1 0.058 4,153.4 6,116.0
timezone 0.062 6,504.1 7,144.1 0.062 6,926.3 7,270.9
UTC 0.050 6,610.3 7,191.9 0.050 6,530.9 7,211.7
links 0.033 7,593.4 6,978.6 0.045 6,732.0 6,554.3
source 0.044 8,029.0 7,528.2 0.045 6,950.8 6,938.5

full-scratch 0.417 59.0 1,616.4 0.513 17.8 1,023.9
full-fixed 0.423 51.1 1,400.4 0.524 15.9 916.1

baseline 0.028 11,723.0 10,264.3 0.024 11,771.5 10,584.4

Table 3: Tweet level results ranked by median error distance (in kilometers). Individual best results for
all three criteria are highlighted in bold face. Full-scratch refers to a merged model trained from scratch,
whereas the weights of the full-fixed model are only retrained where applicable. The baseline predicts the
location most frequently observed in the training data (Jakarta).

but our model performs considerably better on me-
dian and mean distance with 23.6 and 1137.8 kilo-
meters respectively. Additionally, the approach of
csiro requires several dedicated services, such as
GeoNames gazetteers, time zone to GeoName map-
pings, IP country resolver and customized scrapers
for social media websites. The authors describe
custom link handling for FourSquare, Swarm, Path,
Facebook, and Instagram. On our training data we
observed that these websites account for 1,941,079
(87.5 %) of all 2,217,267 shared links. It is there-
fore tempting to speculate that a customized scraper
for these websites could further boost our results
for location prediction.

As team cogeo uses only the text of a tweet, the
results of cogeo.1 are comparable with our text-
model. The results show that our text-model out-
performs this approach in terms of accuracy, me-
dian and mean distance to the gold standard by
4.7 percentage points, 1296 kilometers, and 934
kilometers respectively.

For user-level prediction, our method performs
on a par with the individual best results collected
from the three top team submissions (FujiXerox.2,
csiro.1, and FujiXerox.1).

5 Conclusion

We presented our neural network architecture for
the prediction of city labels and geo-coordinates
for tweets. We focus on the classification task and

derive longitude/latitude information from the city
label. We evaluated models for individual Twit-
ter (meta)-data in a bottom up fashion and iden-
tified highly location indicative fields. The pro-
posed combination of individual models requires
no customized text-preprocessing, specific website
crawlers, database lookups or IP to country resolu-
tion while achieving state-of-the-art performance
on a publicly available data set. For better compara-
bility, source code and pretrained models is freely
available to the community.

As future work, we plan to incorporate images
as another type of metadata for location prediction
using the approach presented by Simonyan and
Zisserman (2014).
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