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ABSTRACT
Real-time sensor data enables diverse applications such as smart
metering, traffic monitoring, and sport analysis. In the Internet of
Things, billions of sensor nodes form a sensor cloud and offer data
streams to analysis systems. However, it is impossible to transfer all
available data with maximal frequencies to all applications. There-
fore, we need to tailor data streams to the demand of applications.

We contribute a technique that optimizes communication costs
while maintaining the desired accuracy. Our technique schedules
reads across huge amounts of sensors based on the data-demands
of a huge amount of concurrent queries. We introduce user-defined
sampling functions that define the data-demand of queries and
facilitate various adaptive sampling techniques, which decrease
the amount of transferred data. Moreover, we share sensor reads
and data transfers among queries. Our experiments with real-world
data show that our approach saves up to 87% in data transmissions.
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1 INTRODUCTION
Billions of devices are equipped with sensors to supply data analysis
applications with real-time data [43]. The resulting vast amount
of data streams causes heavy network utilization and scalability
challenges, which incur increased financial costs. Currenly, sensor
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data analysis follows a monolith architecture with a tight coupling
of applications to sensors. However, the Internet of Things (IoT)
works as a sensor cloud which is shared among applications. This
requires us to break away from monolith architectures and to in-
troduce a new architecture which decouples sensor management
from introducing new applications.

Data requirements differ significantly among use-cases. For ex-
ample, outlier detection requires high sampling frequencies and
has low selectivity in local filters at the sensor node. The opposite
is true for monitoring a long term trend in time series, which has a
low sampling frequency and does not apply local filters. Real-time
analysis engines (e.g., Apache Flink [1] or Storm [39]) require data
at high frequencies to serve all possible use-cases. This is subopti-
mal because it forces to read and transfer sensor values beyond the
data demand of queries. We call this oversampling. More formally,
the data demand of a query is the minimum number of data points
which allows for answering the query with the desired precision.
Oversampling is reading or transferring additional data points that
are not required to achieve the desired result precision.

The massive growth in the amount of sensors is a game changer,
which makes oversampling a critical problem: as the number of
available sources increases rapidly, it is unaffordable to process
all available inputs with maximal frequencies. Thus, we need to
trade-off sampling rates against system scale-out costs and data
transfer charges.

It is challenging to prevent oversampling. Periodic sampling
reads and transfers data with a fixed frequency. This is insufficient
due to missing adaptivity: adaptive sampling techniques dynami-
cally adjust sampling rates depending on the variance within recent
samples [17, 19, 41]. With adaptive sampling, we retrieve detailed
data (high sampling rate) from sensors which experience anomalies.
However, most sensors do not experience anomalies at the moment
and reduce their sampling rates. Thus, at any time, we process high
frequency data from a few sensors but we reduce sensor reads, data
transmissions, and processing effort for the majority of sensors.

Adaptive sampling techniques provide good approximations
of time series with significantly reduced average sampling rates
compared to periodic sampling. However, adaptive sampling is im-
practical for other use-cases such as outlier or failure detection.
There is no one-for-all sampling technique, which at the same time
serves all queries and prevents oversampling. The naive approach
to set up a smart sampling technique for each query independently
is not satisfying either. It might avoid oversampling for one query,
but it disregards commonalities between multiple queries, which
from a global point of view, again causes oversampling and redun-
dant data transmissions. Current real-time analysis platforms do
not take control of the production of their input streams [7, 39].
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Figure 1: Multi-query read scheduling provides tailored data
streams based on the data demand of queries.

Instead, they rely on techniques such as load shedding [37] and
back pressure handling, to avoid system crashes when data rates
increase. Both techniques run centrally, after transferring the data
from sensor nodes to a stream analysis system. Thus, they neither
prevent oversampling nor redundant data transmissions.

Common sensor networks such as TinyDB [26] and Cougar [14]
compile queries locally at a base station and then disseminate them
to sensor nodes. Thereby, they focus on the optimization of a sin-
gle query. This paper complements existing sensor networks by
enabling the sharing of sensor reads and traffic costs among queries.

In this paper, we introduce on-demand streaming from sensor
nodes. While we make all data accessible, ideally, the amount of read
and transferred data should solely depend on the demand of executed
queries instead of the amount of theoretically available data.

Our solution consists of two components:
First, we solve the oversampling problem using user-defined sam-

pling functions (UDSFs). UDSFs allow for publishing the data de-
mand of queries to data gathering components, which can then
provide well orchestrated data streams. UDSFs are highly flexi-
ble, easy to implement, and keep the complexity of multi-query
optimization transparent to the user.

Second, we solve the redundant transmission problem with an
algorithm for multi-query read scheduling, which is executed at
the sensor nodes. Our algorithm executes the minimum possible
number of sensor reads only. Therefore, it shares sensor reads and
traffic among queries and optimizes the times when sensor reads
are performed. Summarizing, our contributions are as follows:

(1) We introduce user-defined sampling functions (UDSFs) to
overcome the missing adaptivity of periodic sampling and
to avoid oversampling.

(2) We contribute amulti-query read scheduling algorithm, which
enables frequent read and traffic sharing among queries to
avoid redundant data transmissions.

(3) We further optimize read times based on given read time
preferences while still executing only theminimum number
of reads in total.

(4) We experimentally validate our approach and show its ef-
fectiveness in a practical setting.

UDSFs and read scheduling aid various use-cases such as traffic
monitoring (Section 2), sport analysis [31], and smart metering [4].
Our evaluation shows that our approach reduces data transmissions
and sensor reads by up to 87% and scales to hundreds of queries.
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Figure 2: Sensor reads and transferred tuples for our intro-
ductory use-case on Formula 1 data.

2 A MOTIVATING EXAMPLE
We show our solution with an example in Figure 1. We use floating
car data to provide alerts to drivers ahead of dangerous locations,
which often cause heavy braking (e.g., tight curves or animal cross-
ings). Similar assistance systems use floating car data for green
light optimal speed control [32] and online traffic estimation [34].

Three queries are required in our example: Query 1 retrieves data
to train a driver profile with a machine learning technique. Query 2
retrieves data to train a route profile. Query 3 combines route and
driver profiles with current telemetry data to detect exceptional
situations, which then leads to alerts.

Each query has a different data demand: Query 1 observes the
aggressiveness of drivers (intensity of breaking and acceleration).
Therefore, it adaptively increases sampling rates when accelerating
or braking. Query 2 requires a sample at least every 20 meters to
profile the road and, therefore, computes the next sensor read time
as t = 20m

current speed . Query 3 requires a sample at least every 0.3s.
We simulate our example with telemetry data from Formula 1

cars. Therefore, we replay sensor data from the fastest qualifying
laps of 32 Formula 1 races in 2015 and 2016 with a 30Hz sampling
rate. We utilize tolerances in sensor read times: Query 1 uses adap-
tive sampling with ±0.2s read time tolerance. Query 2 and 3 enforce
minimum sampling rates, but allow higher rates.

Each query defines its data demand and read time tolerances in a
UDSF. UDSFs empower domain experts to specify the data demand
without specifying details of the query execution. For example, we
use domain knowledge to determine proper tolerance intervals for
read times. We found that ±0.2s read time tolerance in Query 1
provide the best trade-off between result accuracy and savings
achieved through sensor read sharing.

We show the number of sensor reads and data transfers in Fig-
ure 2. Periodic sampling falls back to the highest sampling rate
which is requested by any UDSF at any time. This results in more
than 100 thousand sensor reads. On-Demand scheduling saves 57%
in sensor reads compared to periodic sampling because it can adapt
sampling rates at runtime. Adaptive sampling can reduce sampling
rates most of the time. However, when executing queries indepen-
dently, adaptivity does not make up for the missed opportunity to
share sensor reads among the queries. Respectively, On-Demand
scheduling saves 72% of the sensor reads compared to executing
queries independently.
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We combine values from three sensors (speed, position, and rpm)
in each tuple. Thus, the number of transferred tuples is about 1/3 of
the number of sensor reads. Additionally, adaptive sampling avoids
transfers with adaptive filtering. We discuss adaptive filtering in
detail in Section 5.5.

The reduction in data transmissions would cut charges for mobile
network usage when monitoring a fleet of cars. Additionally, the
reduced inbound traffic at a central analysis cluster prevents scale-
out fees of cloud providers.

3 BACKGROUND
Before we discuss UDSFs and our multi-query read scheduling al-
gorithm, we provide an overview of sensor data transfer, adaptive
sampling, and usage scenarios.

3.1 Pull- and Push-Based Data Transfer
A major difference between batch processing (analysis of data at
rest) and stream processing (real-time analysis) is the way data
transfers are initiated. MapReduce [13] systems and relational
databases process previously stored data when they execute a query.
Thus, they can pull data from disk as needed, for example, using
the iterator model. In contrast, stream processing systems have
no control over incoming streams, which can push data into the
system at an arbitrary rate.

We combine push- and pull-based data transfer: on the one hand,
we pull data from sensors1 based on the data demand of queries. On
the other hand, we asynchronously push data through the stream
processing pipeline, which enables low latency processing.

UDSFs and our read scheduling algorithm are applicable wherever
data is pulled from a source. This, for example, also holds for service
APIs such as Twitter Streaming or Google Cloud Prediction. Avoiding
oversampling on these APIs directly results in financial savings
because charges apply per API call [20].

3.2 Adaptive Sampling
Adaptive sampling techniques such as AdaM [41], FAST [17], and
L-SIP [19] reduce oversampling compared to periodic sampling.
They reduce sampling rates on the fly whenever values evolve
predictably or remain constant. At the same time, they increase
sampling rates as required, to not exceed failure tolerances.

Different use cases require different adaptive sampling tech-
niques: for example, AdaM [41] is robust against abrupt value fluctu-
ations and provides good approximations of time series. FAST [17],
on the other hand, incorporates concepts of differential privacy
for real-time aggregate monitoring. Our read scheduler allows for
multiplexing different adaptive sampling algorithms in parallel on
shared sensors to enable reduced average sampling rates.

We implement AdaM and FAST as examples for adaptive sam-
pling techniques. Both combine adaptive sampling with adaptive
filtering. However, the algorithms differ fundamentally from each
other: AdaM uses Probabilistic Exponential Moving Averages [9] for
value estimations. In contrast, FAST adopts a Proportianal Integral
Derivate controller [28].

1We refer to physical sensors, such as photo cells or accelerometers, as sensors,
and call the devices which host sensors sensor nodes.

1. SENSOR IDENTIFIERS︷ ︸︸ ︷
SELECT t, speed, position, rpm

FROM car-fleet WITH ADAM() ON speed︸ ︷︷ ︸ ︸ ︷︷ ︸
2. SENSOR NODES 3. SAMPLING FUNCTION

Figure 3: An example query with user-defined sampling and
its corresponding processing pipeline.

3.3 The User’s Perspective
It is important to highlight that the complexity of multi-query read
scheduling is transparent to users. Users can still define streaming
queries in declarative languages such as CQL [3] or SPL [21].

From the perspective of a user, a query is executed over a data
stream consisting of tuples (t ,s1,s2, ...,sn ) where t is the timestamp
of a tuple and s1 to sn are the values from all available sensors at
time t . This is a common data model in stream processing systems.

We show an example query with its corresponding processing
pipeline in Figure 3. The query acquires data to compute a driver
profile in accordance to our introductory example (Figure 1). We
omit a more complex profiling algorithm for the sake of simplicity.

The query consists of three parts: (i) Sensors are referenced by
identifiers similar to column names in SQL. (ii) Instead of tables,
we refer to sensor nodes as data sources in the FROM clause. (iii) We
add a WITH clause to specify a UDSF and the sensor it is applied to.
The user specifies the data demand of the query by implementing a
UDSF or choosing a pre-defined one. This empowers domain experts
to express their data demand flexibly and also enables adaptive
sampling techniques. We will explain UDSFs in detail in Section 5.

The processing pipeline of the query starts with the read sched-
uler, which uses AdaM to sample the speed sensor. It then fetches
the position and the revolutions per minute (rpm) in an ad-hoc
fashion in order to construct the output tuples. This is regularly
beneficial because we reduce sampling rates in comparison to peri-
odic sampling with a constant rate.

4 SYSTEM ARCHITECTURE
In this section, we present how on-demand streaming from sensor
nodes eliminates unneccessary sensor reads and thus, data trans-
missions. In Figure 4a, we illustrate how on-demand streaming
integrates with streaming systems.

First, users submit their queries and their data demand (expressed
by UDSFs) to a stream analysis cluster 1 . We then propagate the
UDSFs to the sensor nodes 2 .

For each sensor, we perform read scheduling in four phases (Fig-
ure 4b): read time suggestion, read fusion, read execution, and local
filtering. First, during read time suggestion 1 , each UDSF (provided
with each query) proposes a read time with a tolerance interval.
Second, during read fusion 2 , we fuse proposed read times to a
single sensor read, if the tolerance intervals overlap. Third, during
read execution 3 , we perform the actual read on the sensor. Finally,
during local filtering 4 , we determine if we need to transmit the
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(a) Overall on-demand streaming architecture.
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(b) Read scheduler internals.

Figure 4: On-demand streaming architecture.

obtained sensor value. We can, e.g., avoid transmitting values which
are similar to previous ones or follow an expected trend.

Read time suggestion allows for adaptive sampling to avoid over-
sampling. This is especially important whenever charges apply per
read (e.g., service API calls). Read fusion avoids redundant data
transmissions and enables sensor read sharing among queries. It
thereby reduces network charges. Local filtering further reduces
data transmissions, which reduces the inbound traffic at the analysis
cluster and prevents scalability challenges.

Complementary Techniques. Our scheduler works comple-
mentary to the succeeding push-based processing pipeline (Fig-
ure 4a 3 ), which can consist of arbitrary stream transformations
such as aggregations, filters, or stream joins [2, 11, 27]. It thereby
goes hand-in-hand with techniques such as query fusion on sen-
sor nodes [30, 44, 45], operator push-down, and acquisitional query
processing (ACQP) [26]. The combination with ACQP is of special
interest: we first apply read scheduling on a subset of sensors to
avoid oversampling.We then further reduce the data with filters and
aggregations. Finally, we fetch values from additional sensors for
the remaining tuples only. We will discuss all mentioned techniques
in more detail when presenting related work in Section 8.

Alternative Architectures. In this paper, we study a setting
were we execute read scheduling on sensor nodes. We tested our al-
gorithms using Raspberry Pis and Android smart phones as sensor
nodes and did not experience any performance problems. How-
ever, our read scheduler also works as a middleware layer which
aggregates UDSFs (i.e. queries) at a more powerful machine close
by the sensor nodes (i.e. a base station server or a router). Our read
scheduler pulls values from sensors (i.e. it samples the sensor) on
the fly based on the data demand expressed in UDSFs. This enables
adaptive sampling but required a low latency connection between
the read scheduler and the sensor we sample.

5 USER-DEFINED SAMPLING
Different applications have contradicting sampling requirements.
They vary in sampling rates, transfer different fractions of sensor
values, and have different requirements for read time precision and
data freshness (maximum age of values arriving at the cluster).

User-defined sampling functions (UDSFs) allow for the precise def-
inition of each query’s data demand and facilitate adaptive sampling
techniques. This makes them the basis for avoiding oversampling.
They further model read time tolerances and preferences, which
enables read fusion to solve the redundant transmission problem.

In the following section, we first discuss how we enable read
fusion and optimize sensor read times. This leads to our model for
the read times proposed by UDSFs (in short read requests). We
then show how we can cover example applications with UDSFs.
Finally, we introduce local filter functions to further reduce data
transmissions.

5.1 Enabling Read and Traffic Sharing
Sampling techniques define exact times where values shall be read
from sensors. The probability that we can fuse two requested reads
(share sensor reads among queries) decreases with the read time
precision and vice versa. In order to enable frequent read fusion,
applications have to specify their precision requirement for read
times. We thus represent requested sensor reads (in short: read
requests) as tolerance intervals instead of exact times. We share
sensor reads as well as the corresponding traffic among queries
whenever tolerance intervals overlap.

For many use cases, a certain deviation from the desired read
times (read time slack) is possible without harming the result quality.
For example, consider a query which requires the current temper-
ature every hour. This query does not require a nanosecond read
time precision but can offer a tolerance, e.g., one minute. We found
that sophisticated adaptive sampling techniques such as AdaM [41]
and FAST [17] are robust against a certain slack in read times as
we show in our experiments in Section 7.2.3. We further argue that
reading before the desired time is regularly harmless as it improves
the data quality upon a given minimum sampling rate.

5.2 Global Read Time Optimization
Our scheduling algorithm not only minimizes the number of sensor
reads, it also optimizes the exact sensor read times. We provide
semantics to model read time preferences by introducing penalty
functions (p (t )). Each read request can thereby define its individual
penalty function.

For example, consider our introductory use case in Figure 1:
Query 2 (Route Profile) requires a sample at least every 20 driven
meters. Reading earlier is harmless and we can thus define our
penalty function as p (t ) = 0 (i.e., we do not apply any penalty for
read time deviations). At the same time, we execute Query 1 (Driver
Profile), which uses AdaM. In this case, read time slack might affect
the result quality and thus we set p (t ) = t2. In general, we can set
any penalty function which describes our read time preferences. In
case of Query 1, we choose the quadratic function t2 to avoid large
deviations by penalizing them much more than smaller deviations.

In our example, the read time optimizer freely decides for a read
time within the tolerance intervals of Query 2, because no penalty
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Figure 5: Read request with desired read time, tolerance in-
terval, and a convex penalty function.

applies for deviating from the desired read time. At the same time,
the optimizer minimizes the deviation from the desired read time
for Query 1 to avoid the penalty of t2.

Our optimizer minimizes the sum of the penalty functions for
overlapping tolerance intervals. Thereby, it determines the next
sensor read time. In order to enable the minimization at low compu-
tational costs, we require all penalty functions to be convex and to
have their minimum at the desired read time (tD = 0). We further
shift penalty functions along the y-axis such that p (tD ) = 0. We
present the optimization process in detail in Section 6.

5.3 Modelling Read Requests
As a result of the considerations from the previous sections, we
model read requests as illustrated in Figure 5:
• Each requested read is described by a tolerance interval
[tmin ,tmax ], which covers the desired read time tD .
• The distance between tmin and tD is the tolerance for reading
ahead of tD . Respectively, the distance from tD to tmax is the
tolerance to delay the read.
• Within each interval, read time preferences are modelled with a
penalty function p (t ).
Our scheduling algorithm first minimizes the total number of

executed sensor reads based on interval overlaps. It then optimizes
the exact read times based on the given penalty functions. UDSFs
can adjust read time tolerances and penalty functions individually
for each read request.

5.4 User-Defined Sampling Functions
Syntax. Formula 1 shows the structure of a user-defined sampling
function (UDSF). Upon a sensor read, the function receives the
current timestamp t and the current sensor value v . In exchange, it
returns a tuple ⟨tmin ,tD ,tmax ,p (t )⟩. The output tuple corresponds
to our model for read requests and consists of the next desired
read time tD , the tolerance interval [tmin ,tmax ], and the penalty
function p (t ).

s : ⟨t ,v⟩ → ⟨tmin ,tD ,tmax ,p (t )⟩
Formula 1: User-defined sampling function.

At any time, we only require the next read request from a sam-
pling function. This allows for adapting sampling rates, read time
tolerances, and penalty functions flexibly after each sensor read. We
allow sampling functions to keep a state because many sampling
techniques need to remember previous sensor values or variables.

Examples. The presented sampling function is easy to imple-
ment and facilitates various use-cases. Let us first consider our

1: upon sensor read ⟨t ime,value⟩ do
2: tD ← AdaM (t ime,value ) // get next read time
3: tmin ←max (t ime, tD − 0.2s ) // get ahead limit
4: tmax ← tD + 0.2s // get delay limit
5: p (t ) ← abs (t − tD ) // set penalty function
6: return ⟨tmin, tD , tmax , p (t )⟩
7: end

Example 1: AdaM with 0.2s read time tolerance.

introductory example (Figure 1). Example 1 shows the sampling
function serving Query 1 (Driver Profile). It also shows how the
AdaM algorithm, as a representative for adaptive sampling func-
tions, can be integrated in a UDSF. The call to the AdaM algorithm
in Line 2 can be replaced with any other adaptive sampling algo-
rithm. The shown implementation constantly applies a read time
tolerance of ±0.2s and a linear penalty function p (t ) = |t |.

One major advantage of user-defined sampling is the ability to
adapt sampling rates driven by the values gathered before. Query 2
(Route Profile) from Figure 1 is an example for a case where we need
an application specific data-driven sampling function: we require a
value for at least every 20 meters driven. With periodic sampling,
we would need to always assume the maximum speed of the car
and set the time between two sensor reads to be 20m

max (v ) . However,
cars seldom drive with their maximum speed and periodic sampling
would cause oversampling during all the remaining time.

s20m : ⟨t ,v⟩ → ⟨t + 1,t + 20m
v ,t +

20m
v ,0⟩

Example 2: Sample at least every 20 driven meter.

In contrast to periodic sampling, our user-defined function in
Example 2 can calculate the next read time based on the current
speed upon each sensor read. We further configured tmin as the
current timestamp plus 1, meaning that we subscribe to any sensor
read, which will be executed before we passed 20m. Note that the
added tolerance can only decrease the total number of executed
sensor reads. The scheduler always prefers tD over any other time
in [tmin ,tmax ]. The scheduler will only utilize the tolerance in case
a sensor read must be executed anyways to serve another query.

s0.3s : ⟨t ,v⟩ → ⟨t + 1,t + 0.3s,t + 0.3s,0⟩
Example 3: Read a value at least every 0.3s.

With Example 3, we address Query 3 from Figure 1. This query
samples periodically with the same ahead limit as the previous ex-
ample. This example emphasizes the compatibility of our approach
with common periodic sampling. Our read scheduler seamlessly
combines periodic sampling functions with more advanced sam-
pling functions such as the ones in Example 1 and 2.

5.5 Local Filter Functions
As an additional optimization, we couple our UDSFs with local filter
functions (Formula 2). Local filtering allows for further reducing
data transmissions.

f : ⟨t ,v⟩ → {true, f alse}
Formula 2: Local filter function.



SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA J. Traub, S. Breß, T. Rabl, A. Katsifodimos, and V. Markl

Figure 6: Model-driven data acquisition.

1: upon sensor read ⟨t ime (t ),value (v )⟩ do
2: mv ←model .est imateV alue (t )
3: if abs (mv − v ) > tolerance then
4: model .update (t,v ) // local model update
5: return true // transfer value
6: else
7: return f alse // no transfer required
8: end if
9: end

Example 4: Local filter for model-driven data acquisition.

For example, we do not transfer sensor values if they remain
constant or follow an expected trend.

Similar to the sampling function, the filter function is called upon
a sensor read with the current time and sensor value as parameters.
It returns a boolean value, which indicates if the current measure-
ment shall be transferred upstream. UDSFs and filter functions can
communicate through a shared state.

Model-driven data acquisition (Figure 6) is an example for local
filtering [15, 33]. This technique estimates sensor values using a
model, which is based on previously gathered values (e.g., regres-
sion techniques or pattern learning). As shown in Example 4, the
filter function compares sensor values with the model-based estima-
tion. No data transmission is required if the difference lies within a
failure tolerance i.e. the central model is sufficient.

We refer the reader to the original works for detailed descrip-
tions and throughout evaluations of the diverse adaptive filtering
techniques available [10, 15, 22, 33, 41, 42].

6 MULTI-QUERY READ SCHEDULING
Each query can define its own UDSFs. Accordingly, several different
UDSFs can be present at a single sensor that is shared among queries.
A naive approach would execute each UDSF separately and miss the
opportunity to share sensor reads and data transmissions among
them. We contribute an algorithm that exploits read time tolerances
to share sensor values among multiple queries. Our multi-query
read scheduling algorithm minimizes the number of sensor reads
with respect to query needs. It further optimizes the exact read times
with respect to the given penalty functions, while still performing
the minimum number of sensor reads only.

6.1 Minimizing Sensor Reads
Our primary goal is to minimize the number of performed sensor
reads. To that end, each UDSF suggests a read time in the form of
a read request (Section 5.3). We then apply read fusion to combine
read request with overlapping tolerance intervals. This maximizes
read and traffic sharing among queries and minimizes sensor reads.
Our algorithm is agnostic to the underlying algorithms of UDSFs.
It solely operates based on the provided read requests.

Figure 7: The latest possible time for the next read is the first
interval end. Reading at this time minimizes the total num-
ber of sensor reads because the sharing potential increases
up to this point and reading later is impossible.

Guaranteed minimum of sensor reads. We present a read
scheduling algorithm, which guarantees to perform the minimum
number of sensor reads only.

Initially, during read time suggestion, all present UDSFs provide
their next read request. We then minimize the number of sensor
reads using read fusion. In Figure 7, we show an example for the read
fusion phase, where five UDSFs provide their read requests. Given
the read requests, we can determine the latest possible time for the
next sensor read: it is the first end of any tolerance interval (red
dashed line). Reading later would violate the read time tolerance of
Q4 and is thus impossible. Reading earlier can only decrease the
amount of fused read requests because only interval starts can lie
before the first interval end. This leads to the important observation
that reading at the time of the first interval end minimizes the number
of sensor reads.

Once we perform the sensor read at the end of the Q4 interval,
we can share the obtained value among three queries: Q1, Q3, and
Q4. Our scheduling algorithm then acquires the next read requests
from the UDSFs of Q1, Q3, and Q4. It keeps the intervals from Q2
and Q5 because they start in the future. Given all read requests, we
repeat the described process to schedule the next read.

6.2 Optimizing Read Times
Our secondary goal is to optimize the deviation from desired read
times, while still executing the minimum number of sensor reads
only. Hence, we extend the read fusion phase of our algorithm with
read time optimization.

Preliminary Considerations. We divide the time axis in non-
overlapping time intervals, which we call fragments. Each start and
each end of a tolerance interval is thereby considered as fragment
separator. For example, consider Figure 7, where fragments are
separated with dashed lines. The used fragmentation technique is
known as stream slicing [8, 23, 24] and is widely used in streaming
window aggregation. We use Cutty [8] to derive fragments within
a single-pass over the tolerance intervals.

The number of overlapping intervals - and thereby the read
sharing potential - remains constant within fragments. This is the
case because each start or end of a tolerance interval, that changes
the number of overlapping intervals, also marks the start of a new
fragment. We thus perform the minimum number of sensor reads
as long as we perform sensor reads in the last fragment before the
first end of any tolerance interval. For example, consider the red
shaded fragment in Figure 7.

The Optimal Fragment. As a result of our preliminary con-
siderations, we aim to optimize the read time within the latest
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Algorithm 1 Get the optimal fragment for the next read.
Parameter:

r Int [ ]: Array of read requests ⟨tmin, tD , tmax , p (t )⟩.
Output:

The optimal fragment for the next sensor read.
1: function GetOptimalFragment(r Int )
2: tend ←min (tmax ) from r Int
3: tstar t ←max (tmin ) from r Int where tmin ≤ tend
4: return [tstar t , tend ]
5: end function

Algorithm 2 Read time optimization.
Parameter:

r Int [ ]: Array of read requests ⟨tmin, tD , tmax , p (t )⟩.
Output:

The optimized timestamp for the next sensor read.
1: function OptimizeReadTime(r Int )
2: [tstar t , tend ]← GetOptimalFragment(rInt)
3: r Int ← AssignIntervals(r Int ,tstar t ,tend )
4: return MinimizePenalty(rInt,tstar t ,tend )
5: end function

fragment before the first end of any tolerance interval. This guaran-
tees executing the minimum amount of sensor reads, but reduces
the deviations from the desired read times.

Algorithm 1 formalizes how we determine the optimal fragment
in which we can optimize the exact read time. The optimal read
time within the optimal fragment is the time which implies the
smallest penalty.

Read Time Optimization. We summarize the overall process
of the read time optimization in Algorithm 2. We first call Algo-
rithm 1 to get the optimal fragment. We then decide in Line 3 for
which read requests we will use the next sensor value. This, for
example, removes tolerance intervals which start after the selected
optimal fragment (e.g., Q4 and Q5 in Figure 7). We finally minimize
the penalty within the optimal fragment and return the read time.

The penalty at any time is given by the sum of the penalty func-
tions of all tolerance intervals being present at this time. Since
each penalty function is convex, their sum pΣ (t ) is also a convex
function [35], which has a single minimum only. We can find this
minimum (giving the optimal read time) with O (loд( l∆ )) complex-
ity, where l is the length of the optimal fragment [tstar t ,tend ] and
∆ is the length of the confidence interval. We therefore initialize the
confidence interval with [tstar t ,tend ]. We then calculate the deriv-
ative p′Σ (x ) with x being the center of [tstar t ,tend ]. If p′Σ (x ) = 0, x
is the minimum. Otherwise, the sign of p′Σ (x ) denotes if x lies left
or right of the minimum. If x lies left, we assign tstar t ← x , other-
wise tend ← x . While repeating the process, we half the confidence
interval with each iteration until tend − tstar t < ∆.

Assigning Read Requests to Fragments. In order to optimize
read times, we need to assign read requests to the optimal fragment
in which we perform the next sensor read (Line 3 in Algorithm 2).
The read time optimization within the optimal fragment is then
based on the penalty functions of the assigned read requests only.

So far, we just considered the first upcoming read, but not the
succeeding ones. In the remainder of the paper, we call the optimal

Algorithm 3 Assign read requests to selected fragments.
Parameters:

r Int [ ]: Array of read requests ⟨tmin, tD , tmax , p (t )⟩.
[tstar t , tend ]: The optimal interval for the next read.

Output:
r Int [ ]: Read requests assigned to the next read.

1: function AssignIntervals(r Int, tstar t , tend )
2: r Int ′ ← all r ∈ r Int where r .tmin > tend
3: [t ′star t , t ′end ]← GetOptimalFragment(rInt’)
4: for each r ∈ r Int
5: if [tstar t , tend ] ⊈ r then remove r from r Int
6: else if [t ′star t , t ′end ] ⊈ r then keep r in rInt
7: else if tend > r .tD then keep r in rInt
8: else if t ′star t < r .tD then remove r from rInt
9: else if r .p (t ′end ) < r .p (tend ) then
10: remove r from r Int (Figure 9a)
11: else if r .p (tstar t ) < r .p (t ′star t ) then
12: keep r in rInt (Figure 9b)
13: else remove r from r Int (Figure 9c)
14: end if
15: end for each
16: return r Int
17: end function
Definition: Let r be a read requests ⟨tmin, tD , tmax , p (t )⟩ and i be an interval

[tstar t , tend ]. We then say that r ⊆ i if [r .tmin, r .tmax ] ⊆ i .

fragment for the next sensor readA, and the latest possible fragment
for the second sensor read B.

Assigning read requests to fragments is not always straight for-
ward. We show the trivial case in Figure 7. Each tolerance interval
covers only one selected optimal fragment. Accordingly, we assign
read requests either to the first read (Fragment A) or the second
read (Fragment B). This example changes in Figure 8a. The Q3 tol-
erance interval now covers both, the first (A) and the second (B)
selected fragment. In case we assign Q3 to Fragment A, it will not
affect the read time optimization for Fragment B and vice versa.

We present the assignment process, including the non-trivial
cases, in Algorithm 3. The algorithm first determines the latest
possible fragment for the second read, which is marked blue in
Figures 7 and 8a. Therefore, our algorithm defines rInt ′ as an array
of all read requests, which cannot be assigned to A (Line 2). It
then calls Algorithm 1 as subroutine with rInt ′ as parameter to
determine fragment B (Line 3).

In the special case, that all read requests can be assigned to A,
rInt ′ is empty in Algorithm 3. B is thus undefined and we assign
all read requests to A. In the regular case, where we can compute A
and B, we differentiate between seven cases to decide if we assign a
tolerance interval to Fragment A. Intervals which are not assigned
to A will get assigned to other fragments upon the optimization of
subsequent read times.
Case 1: No overlap with A. We cannot assign tolerance intervals

to A, which do not overlap with A (Line 5). This would violate
the read time tolerance.

Case 2: No overlap with B. Weassign tolerance intervals to A,which
do not overlap with B (Line 6). This ensures that such tolerance
intervals cannot cause additional sensor reads before B. This
retains the guarantee to execute the minimum number of sensor
reads only.
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(a) Tolerance intervals possibly cover several read operations. (b) New read requests may cause earlier read times.

Figure 8: Challenges in the assignment of read read requests to selected fragments in which we perform sensor reads.

(a) max(B) < min(A) ⇒ postpone. (b) max(A) < min(B) ⇒ assign to A. (c) otherwise⇒ postpone.

Figure 9: Deciding for a fragment in case a tolerance interval overlaps with several sensor read times.

Case 3: tD before end of A. Weassign tolerance intervals to A,which
have their desired read time before the end of A (Line 7). This is
sure to be optimal because the penalty can only increase towards
B in this case.

Case 4: tD after start of B. Wedo not assign tolerance intervals to A,
which have their desired read time after the start of B (Line 8),
because the penalty decreases towards B.

The remaining cases are shown in Figure 9. Both, A and B, overlap
with the tolerance interval. A must be before the desired read time,
and B after the desired read time.

Fragment B is the latest possible time for the second read. How-
ever, it is important to highlight that B is subject to change: after
the first read is performed, all UDSFs, whose read requests were
assigned to A, provide their next read requests. The corresponding
new tolerance intervals possibly end before B, which moves B closer
to A. For example, consider Figure 8b. The tolerance interval Q4.2
appears after A and causes B to shift towards A.

Due to our limited knowledge about the second read time - we
only know that it wont be later than B - we cannot guarantee that
our assignment is optimal. Nonetheless, we propose a best effort ap-
proach based on the minimum and maximum values of the penalty
in A and B:
Case 5:max (B) < min(A). We do not assign tolerance intervals

to A for which the penalty in B is always smaller than the penalty
in A (Line 9/Figure 9a). In this case, it is guaranteed that there
will be another read after A with reduced penalty.

Case 6:max (A) < min(B). We assign tolerance intervals to A in
case the penalty is always smaller in A than in B (Line 11/Figure 9b).
This decision is not guaranteed to be optimal because B could
possibly shift closer to A. However, A is regularly quite close to
the desired read time when this condition holds true.

Case 7: otherwise . We do not assign tolerance intervals to A in case
there is an overlap in the penalties of A and B (Line 13/Figure 9c).
The penalty in B can still reducewhen Bmoves towards A. In case
it does not, we can get the same penalty in B as we could in A.

We now have all pieces at hand, which we require for our overall
scheduling algorithm: (i) we can select optimal fragments in which
we perform sensor reads, (ii) we can smartly assign read requests
to the optimal fragments, and (iii) we can minimize the penalty for
the next sensor read time.

Algorithm 4 The overall scheduling algorithm.
State:

udsf [ ]: Array of user-defined sampling functions.
r Int [ ]: Array with next read requests from all

UDSFs in the form ⟨tmin, tD , tmax , p (t )⟩.
Output:

The timestamp of the next sensor read.
1: upon sensor read ⟨t,v⟩ do
2: [tstar t , tend ]← GetOptimalFragment(rInt)
3: r Intnow ← AssignIntervals(rInt,tstar t ,tend )
4: for i from 0 to udsf .size − 1 do
5: if r Int [i] ∈ r Intnow then
6: // Apply local filter of udsf[i]
7: if udsf [i].f (t,v ) then
8: subscribe udsf [i] to current read ⟨t,v⟩
9: end if
10: // next read request for udsf[i]
11: r Int [i]← udsf [i].s (t,v )
12: end if
13: end for
14: transmit current read ⟨t,v⟩ to subscribers
15: return OptimizeReadTime(rInt)
16: end

6.3 The Overall Scheduling Algorithm
The overall read scheduling algorithm (Algorithm 4) operates based
on the UDSFs present at a sensor. It is called upon each sensor read
and returns the time of the next sensor read. It further applies the
local filter functions and initiates the transfer of the sensor values.

At start-up time, we perform one initial sensor read and pass it
as parameter to all UDSFs to obtain their first read requests. This
initializes the rInt array with read requests from all UDSFs. When
we add a newUDSF, the scheduler requests the next read request
from the new UDSF with the previous sensor value as parameter.
We omit this initialization process in Algorithm 4.
Each subsequent sensor read is processed in four steps:
1. In Line 2 and 3, we assign read requests to the current sensor

read using Algorithms 1 and 3.
2. For each read request, which is assigned to the current sensor

read, we apply the local filter of the corresponding UDSF (Line 5).
In case the value passes the filter, we subscribe the UDSF to the
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Figure 10: Increasing the number of queries. (random
UDSFs; ∅sampling rate 1Hz/UDSF; ∅tolerance ±0.04s)

upcoming data transmission (Line 8). In any case, we acquire the
next read request and store it in the rInt array (Line 11).

3. We initiate the data transmission of the current sensor value to
all subscribers (Line 14). This happens through an asynchronous
function call to not delay the computation of the next read time.

4. Finally, we call OptimizeReadTime(rInt ) (Algorithm 2) and re-
turn the time for the next sensor read.

Note that the calls to GetOptimalFragment(rInt ) and AssignIn-
tervals(rInt ,tstar t ,tend ) within Algorithm 2 are redundant to the
calls in the first step (Line 2 and 3) of Algorithm 4. An efficient
implementation would keep the assignment as state to prevent
doubled computation. We omit this optimization to simplify the
exposition.

7 EXPERIMENTAL EVALUATION
In this section, we evaluate on-demand streaming from sensor
nodes on real-world sensor data. We first present our experimental
setup, then show our results, and close with a discussion.

7.1 Experimental Setup
Data. We replay recorded sensor data from two datasets: First, the
Formula 1 telemetry data which we introduced in our introductory
use-case in Section 2. Second, sensor data from a football match
which was provided with the DEBS’13 Grand Challenge [31]. We
monitor the speed of the ball, which is tracked with a 2000Hz
sampling rate and µm/s precision.
Workloads. Our experiments use three query sets:

Introductory use-case: We presented an initial evaluation of our
introductory use case in Section 2. We use AdaM as adaptive sam-
pling technique in combination with the UDSF from Example 2 and
periodic sampling.

Random UDSFs:We use queries with random UDSFs to study the
scalability of our solution to large numbers of concurrent queries
and users. In our experiments, one UDSF corresponds to one query.
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Figure 11: Increasing the read time tolerance. (20 queries, i.e.,
20 random UDSFs, ∅sampling rate 1Hz/UDSF)

Thus, the number of UDSFs and the number of queries are the same.
In general, queries can define multiple UDSFs to request data from
several sensors. Our scheduling algorithm solely operates based on
the UDSFs and is agnostic to all other query properties.

Our random UDSFs submit read requests in a Poisson process.
Poisson processes [12] are widely used in statistics to model in-
dependent random events such as starts of phone calls [6]. Read
requests are similar to phone calls: they may occur at any time,
have peak times, and periods of low utilization. The lengths of toler-
ance intervals are exponentially distributed. Thus, small read time
tolerances are most frequent. The probability for larger tolerances
decreases exponentially. Whenever we use random UDSFs in our
evaluation, we apply the distributions described above.

AdaM and FAST: We execute AdaM and FAST individually to
examine their robustness against read time slack. This verifies that
read time tolerances do not harm the result quality of adaptive
sampling techniques.

7.2 Detailed Experiments
We analyzed the number of sensor reads and transferred tuples for
our introductory use-case in Section 2. In the following section, we
show that our solution also scales to larger query sets. Therefore,
we compare our on-demand data streaming approach with an in-
dependent execution of multiple queries. Then, we evaluate the
achievements of our read time optimizer. Finally, we investigate
the impact of read time slack on different sampling strategies.

7.2.1 Shared Sensor Reads and Traffic.
Scaling the Query Set. On-demand scheduling scales to larger

query sets. We increase the number of queries up to 200 in Fig-
ure 10a. Increasing the number of queries is equivalent to increasing
the sampling frequency of queries: our read scheduler solely oper-
ates based on submitted read requests. Thus, the number of read
request makes the difference rather than the number of queries.

Periodic sampling is virtually impossible in this experiment:
UDSFs read in a Poisson process, which simulates heavy peaks
in sampling rates. Periodic sampling would fall back to the max-
imum sampling rate, which is in the order of 109Hz. Hence, we
compare an independent query execution with our on-demand
streaming approach.
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Figure 14: AdaM and FAST on football data
with varying read time slack.

For the independent execution of queries, the number of sensor
reads and data transmissions increases linearly with the number of
queries. This is because each read request causes a sensor read and
a transmission.

On-demand scheduling can fuse read requests whenever their
tolerance intervals overlap. The probability for such overlaps in-
creases with the number of read requests. Thus, read and traffic
sharing becomes more frequent with larger query sets. We increase
the number of queries by factor 40. However, the number of reads
increases by less than factor 7, saving 87% in reads and transfers.

Increasing Tolerances. Another way to increase the probabil-
ity for read fusion is to increase read time tolerances. We analyze
this effect in Figure 11a. We therefore fix the number of queries
to 20. The number of sensor reads decays exponentially when the
tolerance increases. This observation is in accordance with the theo-
retical coincidence probability of random events with exponentially
distributed lengths described by Erlang et al. [6].

7.2.2 Read Time Optimization.
We now evaluate the deviation from desired read times in our

experiments. Our read time optimizer never increases the amount
of sensor reads or transfers. However, it reduces the mean deviation
from desired read times by up to 69% in our experiment with larger
query sets (Figure 10b).

We observe two contradicting effects in Figure 10b: On the one
hand, more read requests increase read time deviations. The prob-
ability of read sharing increases and we utilize tolerances to fuse
reads. This effect dominates up to 20 concurrent queries. On the
other hand, more read requests decrease read time deviations: It be-
comes more probable that multiple sensor reads take place within
the tolerance interval of a read request. In such cases, the opti-
mizer selects the sensor read which implies the smallest read time
deviation. This effect dominates for 50 or more concurrent queries.

In Figure 11b, we study how an increasing read time tolerance
affects the optimization. The read time deviation increases with the
read time tolerance, because we use additional tolerances primarily
to reduce sensor reads and data transmissions. Thus, the selected
fragments, in which we perform the optimization, deviate more
from the desired read times of read request.

Query Prioritization. Each UDSF can define its individual
penalty function to model read time preferences within tolerance
intervals. We use this feature to prioritize selected UDSFs when
optimizing read times. For example, prioritized UDSFs may penalize
read time deviations with p (t ) = t2, while non-prioritized UDSFs
set p (t ) = |t |. We analyze the impact of such a prioritization in Fig-
ure 12. Prioritization reduces read time deviations considerably for
the prioritized UDSFs. This effect declines when the fraction of pri-
oritized UDSFs increases. When many UDSFs are prioritized, sensor
reads are often shared among them which repeals the prioritization.
The read time deviation for non-prioritized UDSFs increases with
the fraction of prioritized UDSFs. The same holds for the overall
mean deviation. Hence, we recommend to prioritize small subsets
of UDSFs only.

Prioritizing all queries (100%) leads to a mean read time devia-
tion of 18.7ms. Prioritizing no query (0%) reduces the mean read
time deviation to 18.2ms. This is because p (t ) = |t | (not prioritized)
grows linear when the read time deviation increases. This mini-
mizes the overall sum of read time deviations and, thereby, the
mean read time deviation. In contrast, p (t ) = t2 (prioritized) grows
quadratically and focuses on avoiding high deviations rather than
minimizing the mean deviation.

We consider the example from Figure 12 as being a gentle prioriti-
zation. We can of course apply more strict differentiations between
UDSFs by increasing the differences between penalty functions. For
example, by multiplying the functions or by increasing the power.
Our introductory use-case is an extreme yet realistic example for
UDSF prioritization: the AdaM UDSF tolerates read time slack, but
with rather high penalty of p (t ) = t2. Other queries forbid any read
time delay, but are fine with reading earlier. The penalty for read-
ing ahead of the desired read time is thus zero. Accordingly, we
optimize read times solely on behalf of AdaM, resulting in a mean
deviation in the order of nanoseconds (Figure 13).

7.2.3 The Effect of Read Time Slack.
Our experiments show that read time tolerances lead to fewer

sensor reads and transferred tuples. Hence, we advocate read time
tolerances for adaptive sampling techniques. We now analyze how
read time deviations affect AdaM and FAST, our representatives of
adaptive sampling techniques. Therefore, we affect sensor reads by
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uniformly distributed random slacks. In this section, we monitor
the speed of the ball during a football match.

We shows the number of sensor reads and transfers for different
read time slacks in Figure 14a. Both, AdaM and FAST, are robust
against slack: the number of sensor reads and transfers remains
almost constant for slacks up to ±5ms. Larger slacks reduce sensor
reads for FAST, because read time delays can be larger than the aver-
age read frequency. The adaptive filter of AdaM massively reduces
data transfers as it avoids sending consecutive similar measures
when the football is on the ground or airborne.

The mean deviation between the obtained speed graph and the
underlying DEBS’13 raw data increases slightly with the slack (Fig-
ure 14b). However, we consider both techniques as robust because
they retain a mean deviation of less than 0.6 km/h on the volatile
speed of a football.

7.3 Discussion
On-demand streaming from sensor nodes reduces the number of
sensor reads and the amount of transferred data by 57% in our
introductory use-case and by up to 87% with larger query sets (i.e.
more read requests per time). In comparison, periodic sampling
leads to extremely high sampling rates, because it falls back to the
maximum sampling rate required at any time. Adaptive sampling
reduces sensor reads for a single query, but falls short in combin-
ing multiple different data demands. On demand sampling unites
adaptive sampling with the multiplexing of different data demands,
which explains the savings.

In our experiments, the read time optimizer reduces the mean
deviation from desired read times by up to 69% . Our optimizer
never increases the number of sensor reads or the amount of trans-
ferred data. We allows for prioritizing queries by penalizing read
time deviations. We show two examples with gentle and strong
prioritizations.

We require read time tolerances to enable frequent read and
traffic sharing among queries. Our experiments show that AdaM
and FAST, as examples for adaptive sampling techniques, are robust
against read time slack. This verifies that read time tolerances are
applicable to adaptive sampling techniques.

8 RELATEDWORK
The problem of oversampling has been studied from various an-
gles. However, we observed that there is no one-fits-all solution:
either algorithms are limited to specific use-cases [17, 33], miss
adaptivity [26, 38], or do not consider shared sensors [36, 41]. In
the following section, we discuss how UDSFs and multi-query read
scheduling incorporate, extend, and aid existing oversampling re-
duction techniques. We then present related work from the field
of sensor networks regarding multi-query optimization and sensor
read scheduling.

Reduced Oversampling. TinyDB [26] introduces the concept
of acquisitional query processing (ACQP) to control when and how
often to sample. It arranges database operators together with fetch
operators (sensor reads) in a common processing pipeline. However,
TinyDB only allows for periodic sampling algorithms at the source
of a processing pipeline. This still leads to oversampling because it
prevents adaptive sampling [17, 19, 41]. Our UDSFs overcome this

limitation. Our sensor read scheduler further complements TinyDB
with the ability for read and traffic sharing.

Model-driven data acquisition is another way to reduce the num-
ber of sensor reads [10, 15, 22, 33, 42]. One can implement model-
driven data acquisition as UDSF as we have shown in Section 5.5.
The proposed algorithms neither mention nor hinder read sharing
among queries.

An orthogonal approach to reduce oversampling is the joint opti-
mization of data acquisition and delivery [36]. This method trades-
off data transfer costs (slow transfer, low cost) against sampling
costs (high frequency, high cost) while providing data freshness
guarantees. Our work complements this approach because the data
freshness benefits from read and traffic sharing among queries.

Multi Query Optimization. Several works propose to opti-
mize the query execution across queries and users in sensor net-
works [25, 46]. However, these publications do not consider sensor
read scheduling and can be applied supplementary to our schedul-
ing algorithm.

Xiang et al. [44, 45] as well as Mueller and Alonso [30] optimize
a batch of queries as a whole to eliminate redundancies and fuse
similar operations. They set the sampling rate of sensors to be
the greatest common divisor (GCD) of the sampling rates from all
queries. In contrast to our work, both approaches rely on periodic
sampling to compute the required GCD.

Scheduling Algorithms. Tavakoli et al. [38] also utilize read
time tolerances for sensor read scheduling. They model overlaps
of tolerance intervals in an online evolving interval-cover graph
which they use to determine read times. In contrast to our solution,
their approach is limited to periodic sampling and does not not
optimize exact read times.

Fang et al. [18] and CATS [47] address the issue of sampling
continuous intervals (e.g. video and audio recording). They explore
tolerances in the placement of recording intervals to maximize
interval overlaps. We consider the challenge to maximize interval
overlap as orthogonal to the optimization of exact sensor read times.
Further scheduling algorithms from the field of sensor networks
study transmission scheduling [5, 16, 29, 40]. They switch between
sleep times and transmission periods in order to save energy, but
do not cover sensor read scheduling or read sharing among queries.

In summary, our UDSFs andmulti-query read scheduling form a
common framework to incorporate the presented oversampling re-
duction techniques. UDSFswork as general abstraction for sampling
functions. Multi-query read scheduling transparently multiplexes
UDSFs on shared sensors, leading to a global cost optimization.

9 CONCLUSION
We introduce user-defined sampling functions (UDSFs) as well as
a multi-query scheduling algorithm for sensor reads. These are
powerful means to solve the problem of oversampling: USDFs en-
able diverse adaptive sampling techniques and allow for defining
the data demand of each query. Our multi-query scheduling al-
gorithm multiplexes UDSFs and utilizes read time tolerances to
minimize sensor reads with respect to query needs. The complexity
of multi-query scheduling is transparent to the user. Our experi-
mental evaluations show savings of 87% in sensor reads and data
transfers for an example with real-world sensor data. In addition,
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our read time optimizer reduces the deviation from desired read
times by up to 69% in our experiments. We further allow for priori-
tizing queries in a flexible way. Overall, on-demand data streaming
from sensor nodes leads to significantly reduced sampling rates
and corresponding savings in communication costs.
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