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Abstract— This paper presents an online technique which
employs incremental support vector regression to learn the
damping term of an underwater vehicle motion model, subject
to dynamical changes in the vehicle’s body. To learn the
damping term, we use data collected from the robot’s on-board
navigation sensors and actuator encoders. We introduce a new
sample-efficient methodology which accounts for adding new
training samples, removing old samples, and outlier rejection.
The proposed method is tested in a real-world experimental
scenario to account for the model’s dynamical changes due to
a change in the vehicle’s geometrical shape.

I. INTRODUCTION

Improving control and guidance of unmanned underwater
vehicles (UUVs) is still an active area of research, which is
challenged by lots of uncertainties when it comes to model-
ing the motion behavior of such robots. Such uncertainties
arise from modeling complex physical behaviors due to the
interaction between the vehicle’s body and its surrounding
fluid which are hard to observe explicitly (e.g., induced added
mass, viscous hydrodynamic damping, body oscillations,
and vortex shedding [1]). The necessity of accurate motion
models is evident for improved implementations of model-
based control schemes, simulation purposes, and navigation.
Nevertheless, when deployed in the field, sensors malfunc-
tion and drop-outs still pose a threat to UUV’s mission or
might even lead to losing the vehicle, in such cases an
accurate motion model can be a life saver.

Motion models for underwater vehicles have been estab-
lished generically in several previous studies such as [1],
[2], [3]. A motion model is an explicitly defined function
which maps a vehicle’s control inputs (forces and moments)
to the vehicle’s states (position, velocity, acceleration), which
is comprised of parameters such as the vehicle’s inertia,
hydrodynamic added mass, buoyancy, and drag coefficients.
Furthermore, it was shown in previous work [4], [5] that
experimentally validated motion models perform much more
accurately than analytically/empirically derived ones. In
practice, even a good working static model would produce
wrong predictions when the actual vehicle dynamics change.
In applications such as underwater robotics, temperature,
viscosity, or density fluctuations of the water, change of ve-
hicle’s payload, adding or removing of external components,
body wear and damage, actuator malfunctions or failure, and
bio-fouling are all factors that can lead to a change in the
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Fig. 1. AUV Leng during experiments showing locations of the thrusters.

robot’s expected behavior. In long-term underwater missions,
a robot can encounter unforeseen changes, and therefore
adapting to such situations is an essential aspect of such
missions. An example of a long-term mission is the mission
to Jupiter’s icy moon Europa - “Europa Explorer” [6], where
a robotic system is designed for exploring an unknown
environment such as the ocean of Europa. For such purpose,
machine learning appeals as a promising technique for learn-
ing the interaction between UUVs and their environment,
adapting their models, and detecting anomalies and failures.

This paper addresses the problem of learning online the
damping model of an underwater vehicle subject to dynami-
cal changes due to physical changes in the vehicle’s body. As
an extension to the work in [7], we present a novel approach
of an incremental support vector machine regressor (IncSVR)
to learn the decoupled damping term in a motion model of
an UUV. The IncSVR is used here as a data driven-model,
which means that the prediction of the trained model is a
function of the training data samples rather than an explicit
function with constant parameters.

In this work, we present the following contributions. First
we introduce a new framework to learn dynamically the
damping term of a motion model of an UUV, which is based
on an IncSVR. We provide a novel method for including
new and excluding old data samples, as well as a criterion
for outlier rejection. Second, we evaluate experimentally the
performance of our method by adapting online the model
of the robot “Leng” (Fig. 1) in the yaw degree of freedom
due to change in its dynamics. As a proof of concept, we
consider the dynamical changes resulting from adding a hull
to its rear thruster as shown in Fig. 2a and 2b.

We introduce the mathematical models for UUVs in
Section II after a short literature review. In Section III, we
introduce our machine learning approach and evaluate it in
Section IV, followed by the conclusion.



A. Literature Review

Several studies addressed the problem of experimental and
simulated identification of UUV models. Most studies ad-
dressed offline identification of either decoupled, one degree-
of-freedom (DOF) models [5] where the model parameters
were estimated through least squares (LS). Identification of
a 6-DOF second-order coupled model of a low speed open
frame vehicle with total least squares was reported in [8].
Fewer studies reported online identification, the authors of
[9] employed an adaptive identifier of a decoupled model
based on minimization of a Lyapunov candidate function.
In [10], the identification of a 3-DOF coupled model was
presented, where damping is modeled as linear and turbulent
skin friction. In [3], the authors compare the performance
of an adaptive identifier to LS identification of a coupled 6-
DOF model. Their results show similar performance for both
models. In other comparative studies between the adaptive
identifier and the LS method, the authors of [11], [12] show
that LS identification performs slightly better than the adap-
tive method. All of the above mentioned literature implement
techniques to identify parameters of explicitly defined motion
models, where the damping effect is approximated as a
second-order function. Very few studies report data-driven
models for UUVs employing machine learning techniques.

Supervised model learning has been widely used in several
robotic applications such as manipulators’ inverse kinematics
and dynamics [13], and modeling of aerial vehicles [14]. In
the field of underwater robotics, machine learning is so far
rarely used. The authors of [15] used neural networks to
identify the damping terms of a simulated underwater robot,
where the neural network model showed better performance
than the least squares one. Identification of a model under-
water vehicle with a least squares support vector regression
(LS-SVR) was presented in [16] by using towing tank tests.
In these works, the models were trained offline. In [7], [17]
we showed that data-driven methods outperforms model-
based methods for both the coupled and decoupled models.
In this work we extend our findings by introducing an online
adaptation for the damping model based on an incremental
SVR rusing real data from on-board navigation sensors of an
AUV. For an overview on data selection strategies for online
SVM refer to [18].

II. MATHEMATICAL MODELS OF UNDERWATER VEHICLES

A. The model plant

The general nonlinear equations of motion of a 6-DOF
underwater vehicle can be described as two main parts, the
kinematic and the dynamic equations. The kinematic part
maps the robot’s body frame velocities ν = [u v w p q r]T

(surge, sway, heave, roll, pitch, yaw) onto earth-fixed-frame
velocities which are namely the derivatives of the robot’s po-
sition and orientation given by the vector η = [x y z φ θ ψ]T .
The dynamic plant takes into account the vehicle’s added
mass and Coriolis, drag, buoyant, gravitational, and external
control forces. We follow the general notation of [1] for
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Fig. 2. Leng’s rear thruster: (a) without hull and (b) with hull.

expressing the kinematic (1) and dynamic (2) equations:

η̇ = J(η)ν , (1)

Mν̇ + C(ν)ν + d(ν) + g(η) = τ . (2)

We follow the definitions of [1] for the inertia, Coriolis,
and gravitational/buoyant terms. The inertia matrix M =
MRB +MA combines both the rigid-body and the added-
mass terms, as well as the Coriolis and centripetal matrix
C = CRB + CA. For the gravitational/buoyancy (restoring)
forces, a similar definition to that of [1] is followed. The
damping term d(ν) is explained in detail in Section II-B. The
dynamic model is assumed to have the following properties:

• The states of the system (ν, ν̇) are bounded, instru-
mented and can be measured directly or indirectly
(numerically differentiated).

• The inertia matrix M ∈ R6×6 is positive, symmetric,
and known.

• The Coriolis matrix C(ν) ∈ R6×6 is skew-symmetric
(C(ν) = −C(ν)T ), and known.

• The restoring forces and moments g(η) ∈ R6×1 are
known and constant.

• The applied input forces and moments τ ∈ R6×1 are
bounded and can be measured.

B. The damping term

The hydrodynamic damping term d(ν) ∈ R6×1 represents
the dissipative forces and moments, experienced by a rigid
body moving through a viscous fluid. These forces are
induced by the potential damping due to forced body oscil-
lations, skin friction (due to laminar and turbulent boundary
layers), wave drift, and vortex shedding [1]. Modeling these
phenomena analytically is yet considered an unsolved task
that is prone to a lot of uncertainties arising from the fluid’s
viscosity, density, temperature, and salinity or even complex
geometrical shape of the robot. Several previous studies
suggested rough approximations of the damping term by
considering first and second order velocities only.



Here, we will express the damping term as a combination
of a coupled and decoupled part,

d(ν) = dcoup.(ν) + ddecoup.(ν) , (3)

where the decoupled term maps each velocity onto a resistive
force/moment in its respective DOF, whereas the coupled
term accounts for the interaction between velocities from
several DOFs and maps them into resistive forces and
moments in the given DOFs. In this work, we identify the
decoupled terms of the damping function, but keeping in
mind that the decoupled terms are not enough to predict
coupled motion. The online identification of the fully coupled
damping term will be addressed in future work. Nevertheless,
decoupled models can still be useful for cases where the
robot is in hovering mode or performing sharp maneuvers
in confined spaces. To ensure that only the effect of the
decoupled terms is observed, only one DOF is actuated at a
time, and observing that velocities in other DOFs are zero.
The decoupled damping function can then be expressed as

ddecoup.(ν) = di(νi), (4)

where i = 1...6. di(νi) are nonlinear functions, each
mapping a linear or angular velocity into a damping
force/moment in a single DOF. Given the assumptions in
Section II-A, the output of the damping term can be observed
by rearranging Eq. (2) as follows:

d(ν) = τ −Mν̇ − C(ν)ν − g(η) . (5)

We assume the following properties of the damping term:
• The inputs to the damping function are the vehicle’s

linear and angular velocities ν.
• The outputs of the damping term are bounded and can

be measured and calculated in real-time using Eq. (5).
• The decoupled damping term is a vector of unknown

nonlinear functions.
• The damping term is not a static model but can change

dynamically due to several factors mentioned before in
Section I.

• Variations in the damping term have a higher impact
factor on the model compared to other terms, unless
there is a drastic change in the shape or mass of the
vehicle.

In the next Section, we introduce our extension of the support
vector regression to learn the damping term and update it in
real-time.

III. INCREMENTAL SUPPORT VECTOR REGRESSION

First, this section introduces the support vector regression
(SVR) and describes its application for solving nonlinear
regression problems. Second, the incremental SVR (IncSVR)
is introduced which is a method for updating the SVR
with new incoming samples. Third, we introduce a novel
method for handling the training data which involves criteria
for adding samples and forgetting samples, and removal of
outliers.

A. Overview

Support vector regression is a supervised learning method
effective for modeling and interpolating nonlinear functions.
SVR is explained in detail in [19]. The advantage of this
method is that its final data model is represented using
a small subset of the training dataset, namely the support
vectors. This fact renders SVR as an attractive sparse method
for robotic applications which usually suffer from low com-
putational and memory resources. We justify further the
selection of this method by the ability to perform density
analysis on the support vectors which is not possible in the
case of model-based or other regression methods such as
neural networks.

The basic idea of SVR is to fit a function f(x) = 〈w, x〉+b
onto a training data set D = {(xi, yi)|i = 1, ..., n}. To
acquire the sparseness property, errors below some margin
ε are not penalized. In our case, the SVR is used to fit
the damping term. Hence the model can be simplified by
omitting the offset parameter b, knowing beforehand that no
drag forces can be produced when the vehicle is not moving
and no currents are present. The regression function can be
written then as f(x) = 〈w, x〉, and the weights vector w can
be obtained by solving the optimization problem:

min
w,b

1

2
‖w‖22 + C

n∑
i=1

(ξi + ξ∗i )

s.t. ε+ ξi ≥ 〈w, xi〉 − yi ≥ −ε− ξ∗i
ξi, ξ

∗
i ≥ 0 ∀i : 1 ≤ i ≤ n .

(6)

The slack variables ξ and ξ∗ represent the deviation from
the ε-tube. The hyperparameter C weights between having
a more generalizing model with low weights and having too
large deviations. Solving this problem requires the applica-
tion of the Lagrangian multiplier technique, which by itself
leads to a dual optimization problem (The reader may refer
to [19] for detailed explanation):

min
α,β


1

2

n∑
i,j=1

(αi − βi)(αj − βj)κ(xi, xj)

+ ε

n∑
i=1

(αi + βi)−
n∑
i=1

yi(αi − βi)
,

s.t. 0 ≤ αi, βi ≤ C ∀i : 1 ≤ i ≤ n

(7)

where κ(xi, xj) is a kernel function. It replaces the dot
product in the optimization function and it is used to account
for nonlinearities. Omitting the offset parameter b simplified
the optimization problem by removing one constraint from
the original formulation stated in [19]. The advantages of the
dual optimization problem is that the optimization function
is transformed into a quadratic form and the constraints
for the dual variables α and β are simplified. For solving
the optimization problem, we follow a similar approach as
introduced in [20] for support vector machines (SVMs). First,
we initialize the dual variables αj and βj to zero, and then
we loop over the training samples updating the values of dual
variables αj and βj using the following update formulas (see



[20] for more details):

αnew
j = αold

j − 1

κ(xj , xj)
(ε+ yj−∑

i

(αold
i − βold

i )κ(xi, xj)),

βnew
j = βold

j − 1

κ(xj , xj)
(ε− yj+∑

i

(αold
i − βold

i )κ(xi, xj)),

if αnew
j < 0 : αnew

j = 0, if βnew
j < 0 : βnew

j = 0,

if αnew
j > C : αnew

j = C, if βnew
j > C : βnew

j = C.

(8)

The stopping criterion can be set to a maximum number of
iterations or when the differences between two consecutive
update loops is less than a certain threshold. The regression
function can finally be expressed as f(x) =

∑n
j=1(αj −

βj)κ(xj , x) , where the index j represents the support vec-
tors.

B. Incremental SVR

To implement an online learning algorithm, we iterate
over a small batch of training samples to optimize the target
function using the method described above in every update
step. For every update, a new fixed-size batch of samples
is supplied to the SVR. Whenever a new training batch is
added, we reuse a certain amount of old sample weights
and update them instead of deleting all the weights of the
previous support samples. This is a “warm start” approach
which will save time, since we start from a more appropriate
solution. To save memory resources, all inactive samples or
the samples lying inside the ε-tube are deleted since their
weights are zero and they have no effect on the regression
function. Another aspect of the online algorithm is selecting a
maximum threshold for the number of reused samples, where
this threshold has to be selected depending on the dynamical
properties of the system being identified. For a fast changing
system, a low number of reused samples has to be selected,
whereas for a slow dynamic system a larger threshold can
be selected, depending on the available memory.

C. Online Implementation

In this part, we introduce a sample-efficient method for
online training, where we describe our inclusion, forgetting,
and outlier removal criteria to keep the number of support
vectors limited and to prevent the regressor to learn only
local parts of the sampling domain or to rely on artifacts in
the data.

1) Inclusion criterion: At each new training step, the
IncSVR will take a batch of n new training samples. The
most common approach is to include all samples. This
approach is computationally expensive since it can lead to
adding new samples that might not have any significant influ-
ence on the regression function, but only consume memory
and processing power. For example, adding new samples
that fall inside the ε-tube or samples that are too close to
previous support vectors, will not have a major effect on
the regression function. To save computational and memory
resources, we propose the following approach: whenever a

new sample (xi, yi) is observed it will be discarded if one
of the the following is true:

i) the sample lies inside the ε-tube, |f(xi)− yi| < ε
ii) the sample is relatively close to an already existing

support vector, (|xi − xsv| < a, |yi − ysv| < b)

where a and b are thresholds that are chosen heuristically
depending on the range and resolution of the sample’s do-
main (≈ range/n samples). For example if the samples xi
represent a velocity bounded between −1m/s and 1m/s, and
we require 100 samples to describe our regression function,
then a value of the threshold a would be 0.01− 0.02m/s.

2) Forgetting criterion: To keep the size of the training
set bounded, old samples have to be removed or forgotten.
A common way is to forget the oldest samples when new
samples are added. One consequence of this approach is that
samples can get concentrated locally in certain areas of the
sampling domain and removed from others, which would
lead to losing information about the areas with less or no
samples. An example would be a robot operating at low
speeds for a long period of time, which can lead to a loss
of information about its behavior in higher speed ranges.
To prevent such problem, we propose an approach to keep
distribution of the support vectors balanced over the sample
domain and remove old samples in areas of high densities
first. The algorithm of forgetting samples is described as
follows:

I Divide the sample domain into a number of bins with
a certain resolution.

II Get the number of samples of each bin.
III While the number of support vectors is greater than

the maximum number of reused samples:
a) Find the bin with the highest number of samples.
b) Delete the oldest sample in this bin.

3) Outlier removal: For practical applications, data sam-
ples collected by a robot’s sensor are prone to faulty mea-
surements which appear as outliers in the training data. After
every training step, we check the support vectors for outliers
by calculating the residuals between the support samples and
their corresponding predictions

ressv = f(xsv)− ysv, (9)

where (xsv, ysv) is the set of support vector samples. Consid-
ering the limited computational resources of a mobile robot,
we use a simple approach based on the interquartile range
method. Quartiles divide the residuals set into four equal
parts where Q1, Q2, and Q3 denote the first, second and third
quartile respectively. Observations that fall outside of the
range [Q1−1.5(Q3−Q1), Q3+1.5(Q3−Q1)] are considered
as outliers and thereby their corresponding support vectors
and their weights are discarded.

4) Overall Framework: The full training chain consists of
6 main nodes as depicted in Fig. 3. The first node is the data
sync node, in our case the yaw angular velocity and damping
moment, where the data are logged with their corresponding
timestamps and then synchronized into an array. Whenever
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Fig. 3. Online training workflow.

the number of samples reaches a certain value n, the array
is fed as a training batch to the second node where the
inclusion criterion as described in Section III-C.1 accounts
for discarding repeated samples or samples within the ε-tube.
In some cases, if the whole batch of new samples are very
close to existing support samples or falling within the ε-tube,
then the full batch will be discarded and thus no training
would take place in this iteration, which contributes in saving
computational power. The exclusion criterion is performed
by another node, where the old support vectors are removed
following the algorithm described in Section III-C.2. The
remaining support samples are then stacked together with
the new training samples in a collector node which feeds the
stacked set to the trainer and updates the sample weights.
Finally, the clean-up node is responsible for removing the
outlier support samples. The model could slightly change
after removing outliers but we adapt to these changes in the
next loop to also limit the processing effort.

IV. EXPERIMENTAL EVALUATION

In this Section, we describe an experiment using the AUV
“Leng” (Fig. 1), where we implement the method described
above to adapt the damping term in the yaw DOF before
and after adding a hull module around the main rear thruster
of the vehicle as shown in Fig. 2. The addition of the new
module produces a clear noticeable change in the damping
term of the vehicle. Experiments are carried out in a salty
water basin with no waves or induced disturbances. We note
that the aim of this work is not to study the effects of currents
on model identification, the reader may refer to [10] for that.

For our evaluation, we used pySPACE [21].

A. Instrumentation and Data Acquisition

AUV “Leng” is a torpedo shaped vehicle that can be
actuated in five degrees of freedom excluding the roll. The
mechanical properties are as follows: a length of 3.75 m,
a diameter of 21 cm, and a dry mass of 76.2 kg. The
moment of inertia (dry + added mass) around the pitch and
yaw axes is 350 kg · m2. The vehicle is equipped with
several navigation sensors, where in this work we use a
KVH-1750 3-Axis-FOG (Fiber-Optic-Gyroscope) to measure
the angular velocities. Angular accelerations are computed
through numerical differentiation of the FOG data, which
are then filtered with a low pass Gaussian smoothing filter.
Two bow thrusters were installed in the vehicle which allow
it to perform sharp turns as well as moving sideways. The
thrusters are equipped with Hall-sensors to measure their
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Fig. 4. Datasets from both experiments showing the training (T1 and T2)
and the validation (V1 and V2) subsets.

rotational speed (ω). The produced moment in the yaw DOF
is computed as (τyaw =

∑
i di(K

1
i ωi|ωi|+K2

i vi|ωi|), where
di is the distance of each thruster to the vehicle’s center of
mass, vi is the relative speed of the vehicle at the point
where the thruster is mounted, and (K1

i ,K
2
i ) are thruster

coefficients derived from CFD simulations of the thrusters.
To ensure that only the effect of the decoupled yaw

damping is observed, we make sure that all other measured
velocities are zero. The vehicle is thus actuated only in the
yaw DOF by applying an open loop command to its bow and
stern thrusters and therefore allowing the vehicle to rotate
about its vertical axis. A dataset D can then be defined as
xi = ri representing the vehicle’s yaw angular velocity,
and yi = di(ri) is the angular damping moment sample,
computed using Eq. (5). Two experiments were carried out
with the vehicle fully submerged. The first experiment was
performed before adding the hull module to the rear part of
the vehicle, whereas the second experiment was done after
the hull was installed. The experiments were executed by
actuating the thrusters with a sinusoidal command, giving
maximum thrust value as amplitude and a period large
enough to allow the vehicle to reach its maximum angular
speed. Each of the two datasets is split into two subsets, a
training and a validation set. The validation datasets, denoted
as V1 and V2, are collected first to evaluate the performance
of the learned damping term. The training subsets, denoted
as T1 and T2, are used to train the regressor. The dashed
lines Fig. 4 show the separation between the training and
validation sets.



Fig. 6. Zoomed-in view showing samples added and discarded by the
inclusion criterion, old support vectors removed by the exclusion criterion,
and outliers removal.

B. Parameter Tuning

The parameters of the inclusion and exclusion criteria
were selected manually. Knowing that the maximum range
of the yaw angular velocity, achieved by our vehicle, is
between [−0.25 rd/s, 0.25 rd/s] and the maximum torque
output of the thrusters is between [−100N ·m, 100N ·m],
we choose the inclusion criterion thresholds as a = 0.01 rd/s
and b = 5N · m. The size of one training batch was
set to 50 samples, and 60 old support samples reused in
every new iteration. To optimize the hyperparameters of the
regressor, the training dataset from the first experiment (T1)
was processed offline, where we divide this dataset into
batches of 50 samples to mimic the online process. We
implement a grid-search algorithm with a non-randomized
k-fold cross-validation, where in every run we leave out one
batch for evaluation and feed in the remaining for training the
regressor. After every training step, the regressor is evaluated
with the batch left out using the mean absolute error metric
(MAE), and then MAE is averaged over all iterations.

This process is repeated for every combination of hy-
perparameters in the following grid {kernel : “RBF”, C :
[101, 102, 103, 104], ε : [0.1, 1, 2, 5], γ : [5, 10, 20, 30]}. A
radial basis function (RBF) kernel was chosen over other
types of kernels due to its good capabilities to deal with
nonlinear systems. An RBF kernel is expressed as κ(x, z) =
exp(−γ||x−z||2), where γ determines how far the influence
of a single training example. The grid-search shows that the
parameters {C = 1000, γ = 10, ε = 0.1} result in the best
performance.

C. Online Training and Evaluation

For the online training experiments, we use the set of
parameters calculated in Section IV-B. The first experiment
was carried out without the thruster hull where the damping
model was learned after 12 iterations. While evaluating
with the validation sets, convergence was assumed when
the difference of the MAE between two consecutive updates
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Fig. 7. MAE with validation sets vs. number of iterations

is minimal and close to the value provided by the cross-
validation grid-search (Fig.7). Fig. 5 shows some of the
iterations where we plot the angular velocity r (rd/s) versus
the damping moment TN (N ·m). The old samples are shown
in blue. The new samples, added in each iteration, are shown
in red. The support samples (or support vectors) are shown
in green, and the old or deleted support samples are shown
in yellow. Figures 5a and 5b show the first stages of the
training where samples are being accumulated along with the
learned function, whereas Fig. 5c shows the last iteration of
the first experiment where the full damping term has been
learned. A zoomed-in view of a training iteration is depicted
in Fig. 6, where the samples falling inside the ε-tube or in
the proximity of an existing support vector are discarded by
the inclusion criterion, old support vectors from high density
regions are removed by the exclusion criterion, and false
measurements are removed by the outlier removal node.

The second experiment was carried out after the thruster
hull was installed. In Fig. 5d, the data shift can be observed
due to the change of the vehicle dynamics which can be
physically interpreted as a shift of the yaw drag due to the
change of the geometrical shape of the vehicle’s body after
adding the thruster hull. At this point, an increase in the
error in iteration 15 from Fig. 7 can be observed, which is
explained by evaluating the old model with a new dataset. It
can be noticed from Figures 5d and 5e how the old support
samples where deleted after the addition of new up-to-date
samples as well as the shift in the regression function towards
the newly added samples. Fig. 5f shows the final update of
the damping function which was reached after 10 iterations
as shown in Fig. 7. Fig. 8 depicts a comparison between
the old model, learned at the end of the first experiment, to
the new model learned at the end of the second experiment,
along with the data samples used for both experiments.

For a more concrete evaluation, we establish two baselines
in which we train offline two SVRs with the same training
data sets collected in both experiments, but using the full set
at one time, to determine the best performance that could be
achieved with an offline SVR. We optimize hyperparameters
on the respective training dataset with the same grid as in
the online case with a 5-fold cross-validation. We use the
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(c) Full model learned at the end of first experiment.
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(d) Data shift due to change of the robot’s shape.
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(e) Intermediate stage of second experiment showing data shift.
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(f) Adapted model at the end of second experiment.

Fig. 5. Online training iteration examples showing the learned damping function. Experiment 1: 5a-5c, Experiment 2: 5d-5f

TABLE I
METRIC EVALUATION OF LEARNED DAMPING FUNCTION.

Regressor Validation set MAE RMSE active sv
B1 V1 3.14 (Nm) 3.94 (Nm) 418

IncSVR1 V1 3.26 (Nm) 4.36 (Nm) 60
B1 V2 5.65 (Nm) 7.6 (Nm) 418
B2 V2 3.44 (Nm) 4.48 (Nm) 538

IncSVR2 V2 3.52 (Nm) 4.61 (Nm) 60

following terminology: for the first experiment the baseline
SVR is denoted by B1, the online SVR at the first conver-
gence point by IncSVR1, and the validation set by V1, and

similarly for the second experiment (B2, IncSVR2, V2). For
evaluation we use the following metrics, the mean absolute
error (MAE), the root mean squared error (RMSE) and
the number of support vectors for each regressor. The results
can be seen in Table I. In the first two rows, we show that the
performance of the online method after the first convergence
(with 60 support vectors) is comparable to the first baseline
B1 (418 support vectors) even though it requires much less
resources. The same holds for the last two rows, which also
proves that the adaptation with the IncSVR2 actually works
with much less active support vectors. But note that in a
real-world setting, the new training which led to B2 does
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Fig. 8. Graphical comparison between the damping models before and
after adding the thruster hull.

not work, but B1 would be kept static instead, for saving
resources. So in fact in the more realistic comparison (row
three vs. five) where we keep B1 fixed and evaluated on the
new data V2, our approach shows better performance due
to the incremental adaptation. We conclude as follows. The
presented online method shows a good capability to adapt
to the data shift resulting from the change in hydrodynamic
damping. Using only a small number of support vectors, it
keeps a good performance when compared to the baseline
regressors that are trained offline with the full data batches.

V. CONCLUSION
In this work, we addressed the problem of learning online

the damping term of a motion model of an underwater
vehicle subject to dynamical changes due to physical changes
in the vehicle’s body, and evaluation was done on the robot
“Leng” in the yaw DOF. The method presented showed
good capability of adapting to the changes in the damping
after adding an extra hull to the vehicle. Benefiting from
the property of support vectors, the inclusion and exclusion
criteria helped to keep a balanced distribution of the samples
and prevented learning only local parts of the model. We
note that controlling the online adaptation in such fashion
is not possible in cases of neural networks or analytical-
models since only weights are learned and no information
about the density of the distribution is taken into account.
The identification of the fully coupled damping term will
be addressed in future work by combining our approach
with the WSDE-SVR [17] and replacing histograms by
multidimensional kernel-density estimation.
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