
Towards a Methodology for Self-Verification
Christoph Lüth∗†, Martin Ring∗, Rolf Drechsler∗†

∗Dept. Cyber-Physical Systems
Deutsches Forschungszentrum für Künstliche Intelligenz

28359 Bremen, Germany

†Dept. Mathematics and Computer Science
University of Bremen

28359 Bremen, Germany

Abstract—The exponential growth of the complexity of elec-
tronic systems makes their verification increasingly difficult.
To address this problem, incremental refinements of existing
approaches are insufficient in the long term; new approaches
are needed. In this paper, we explore the new approach of self-
verification, where systems will verify themselves during run
time. Self-verification will give system engineers more time,
more resources, and more information to successfully finish the
verification. We sketch an architecture and methodology for self-
verification, which maps system properties to the development
phase in which they are verified, and illustrate the approach
with a first case study.

I. INTRODUCTION

Embedded and cyber-physical systems have found their way
into almost all parts of our lives, sometimes without us notic-
ing. They are at work in everyday devices, from the ubiquitous
smartphone to washing machines to cars and trains, and we
expect them to work fault-free and reliably, especially when
employed in safety-critical application areas such as trans-
portation. This proliferation into different application areas has
been made possible by immense progress in the development
of microchips, which are at the core of these cyber-physical
systems. Microchips have steadily become more powerful over
the last forty years, growing in an exponential fashion — the
number of transistors in a device is still doubling every 18
months (the well-known Moore’s Law) — resulting in systems
which today consist of billions of components.

To assure the correctness of embedded and cyber-physical
systems, a variety of verification methods help designers to
check whether the system is free of errors, and whether it
meets its specified requirements. Amongst the verification
methods in use today are the following:

• Simulative verification, which is based on a model of
the system. The inputs are explicitly assigned and propa-
gated through the system, and afterwards the outputs are
compared to the expected values. This technique is very
mature and well supported, but complete coverage of all

Research supported by BMBF grant SELFIE, grant no. 01IW16001.

possible input values is practically impossible to obtain
by simulation for contemporary systems.

• Emulative verification realizes simulation directly in a
prototypical implementation of the desired chip in dedi-
cated hardware. While this allows for an acceleration by
several orders of magnitudes, with this method complete
coverage can only be achieved in rare cases.

• Formal verification considers the problem mathematically
and proves that a chip is correct (i.e. satisfies certain
properties). This is currently an intensively researched
topic in both academia and industry. Formal verification
aims for complete coverage, but scalability remains an
issue: formal verification can today only be applied to
rather small circuits and systems.

Unfortunately, the progress in manufacturing and develop-
ing microchips has far outpaced the progress in developing
verification methods. This is known as the verification gap:
the time needed to verify systems has been growing while
simultaneously the time to market has been decreasing.

Current research activities try to address this problem.
However, almost all corresponding developments rely on in-
cremental improvements of existing solutions. For example,
designers try to lift the respective design and verification
tasks to higher levels of abstraction, provided by modeling
languages such as SysML or system description languages
such as SystemC, which eventually leads to design at the so-
called formal specification level [1] or the electronic system
level [2]. But these developments have been unable to close the
verification gap comprehensively, due to the exponential nature
of Moore’s law. It is obvious that the underlying problems
cannot be addressed through incremental improvements, but
require a fundamental change in the way how circuits and
systems are verified today.

Because of the complexity of the underlying theoretical
satisfiability problem (it is NP-complete) we cannot reasonably
hope to speed up verification methods by the required orders
of magnitude. Hence, we need to extend the time available for
verification. This can be achieved by continuing verification

978-1-5090-3012-5/17/$31.00 c© 2017 IEEE

Overall System

Target System

Monitor Verifier

Verification Packages

CPU

Controller

Verification System

Monitor Verifier

Verification Packages

CPU

Controller Hardware Software

Fig. 1. A basic system architecture for self-verifying systems. Self-verification
is performed by a dedicated verification system which is added to the target
system. The monitor observes the behaviour of the target system and triggers
the verifier if it observes input related to unverified properties. The controller
decides how to handle successful or unsuccessful verification results.

after production and deployment. In other words, systems
continue to verify their correctness at run time. This is the
basic idea of self-verification. We have put forth this idea in
earlier papers [3], [4]; in this paper, we will lay out first steps
towards a sustainable methodology of self-verification.

This paper is structured as follows: we first present the basic
principles of self-verification, followed by the methodology of
how to develop self-verifying systems. We explore a first case
study, and finish with conclusions.

II. SELF-VERIFICATION

By allowing verification to continue after deployment, en-
gineers will gain the following advantages:

• more time, as verification is not cut off at deployment, and
thus not bound by time-to-market constraints anymore;

• more resources, as self-verification can be run on all
deployed systems in parallel;

• more information, as self-verification can take into ac-
count knowledge about the environment the system is
deployed in.

The basic architecture for self-verification is sketched in
Figure 1. The target system, which realizes the intended
functionality, is extended with a verification system, which per-
forms verification at run time. The latter checks and proves that
the system realizes the intended functionality correctly. Using
dedicated hardware separate from the target system instead of
e.g. using one dedicated core of a multi-core processor has the
advantage that at least in theory the verification system can be
formally verified and thus proven to be error-free, and that we
can also reuse the verification system design for many other
systems, in particular for custom-built hardware which may
not provide an additional core (as in our case study below).
Due to limited resources available in the verification system,
the tools supporting formal verification have to be adapted
to lightweight versions of existing tools, with the goal of
providing maximum performance with minimal resources.

This architecture raises a number of interesting research
questions, such as which properties are suitable to be verified
at run time, which have to be proven at design time, how does a
design flow for a self-verifying system look like, and how can
we reduce the system state space enough to allow verification
at run time under limited resources? We will address these

questions in the following, thus constituting a methodology
for self-verification.

III. METHODOLOGY

To motivate our methodology, we consider a simple method-
ology exercise from the application domain of smart homes.
Suppose we want to implement a smart light controller con-
nected to a light sensor and a light switch. It should turn off the
light when it gets bright enough outside, and turn on the light
when it gets dark. This system is basic enough that we can
understand the behaviour in toto and thus are able to envisage
the design flow. We emphasize that due to this simplicity it is
not a useful case study; we will consider one later.

A. Informal Requirements Specification

We start the development with a non-formal specification of
the intended behaviour. A first attempt would be an informal,
textual specification (which we call RS-1):

Let e(t) be the luminosity at time t, and Elo < Ehi.
(i) If the luminosity drops below Elo the light should

switch on.
(ii) If the luminosity raises above Ehi for TD seconds the

light should switch off.

Note how we implemented a hysteresis with two different
thresholds Elo < Ehi to avoid a flickering effect when the
luminosity jitters around one threshold. We also introduce a
delay in switching off the light such that the light stays on
if there is a short bright flash (e.g. lightning, a passing car)
during an otherwise dark night. A first attempt to formalize
this specification using differential equations (describing the
change of the system behaviour over time) might be the
following, which we call RS-2:

on(t)
def
=

{
1 if e(t) = Elo,

∂e(t)
∂t < 0

0 otherwise
(1)

off(t) def
=

 −1 if ∂e(t−TD)
∂t > 0 and

∀s. t− TD ≤ s ≤ t =⇒ e(s) ≥ Ehi

0 otherwise
(2)

light(t) def
=

∫ t

0

on(t) + off(t) dt (3)

where light(t) is the state of the light at time t, and on(t), off(t)
auxiliary functions which model turning the light on and off.

B. Formal Requirements Specification

The continuous mathematics used in RS-2, although well-
known to engineers, is not well suited for systems devel-
opment, as digital system are by their nature discrete.1 A
discrete system uses a discrete clock, which is measured in

1Having said that, there are numerous attempts to describe the behaviour
of these so-called hybrid systems (e.g. [5], [6]). However, all of these
serve to bridge the gap in expressiveness between continuous and discrete
mathematics, so we end up with discrete descriptions in any case.

ticks of length ∆T .2 The discrete luminosity measurement is
E(n) = e(n ·∆T), and the discrete equivalent of specification
RS-2 is the following specification FS-1:

on(n)
def
=E(n) < Elo (4)

off(n)
def
=E(n) > Ehi (5)

light(n)
def
=

0 n = 0
1 if on(n)
0 if ∀m.n−D ≤ m ≤ n =⇒ off(m)
light(n− 1) otherwise

where D
def
= p TD

∆T q is the number of ticks in the time span TD.
The system state at tick n depends on off(n−D), . . . , off(n−
1). This is not desirable, because the underlying system model
is a finite state machine with transitions based on the current
state and the observed input; in other words, we do not keep
track of past states. Specifications at this level need to be
relational in the sense that they only relate two states, a pre-
and a post-state, thereby defining all possible state transitions.

To achieve such a relational specification, we internalize
the counting into the system state by defining a function cnt
as follows in specification FS-2, where on(n) and off(n) are
given by (4), (5):

cnt(n)
def
=

 0 if n = 0
0 if n > 0 and ¬ off(n)
1 + cnt(n− 1) if n > 0 and off(n)

(6)

light(n)
def
=

0 if n = 0
1 if on(n)
0 if cnt(n) ≥ D
light(n− 1) otherwise

(7)

The system state Σ(n) at tick n is Σ(n)
def
= 〈cnt(n), light(n)〉,

and the system behaviour is a state transition function E(n)×
Σ(n) → Σ(n + 1), consisting of the two functions cnt and
light as defined in (6), (7).

C. Formal Specification Level

It is not straightforward how to implement the system spec-
ified by FS-2. The equations do not specify which arguments
are inputs and what constitutes the output of the system. Thus,
we need a more concrete model of the system which specifies
the components and datatypes in more detail. We give this
model in SysML/OCL, where SysML is used to model the
data, and OCL is used to specify the state transitions.

SysML [7], [8] is a modeling language, closely related to
UML, which describes the structure and behaviour of a system
by nine different diagram types, such as block definition
diagrams, state machine diagrams, or sequence diagrams.
SysML diagrams can be formal or informal; we concentrate on
the former here, and in particular use block definition diagrams
to describe the structure of our system.

2The length of ∆T is determined by the band width, i.e. the minimal time
width Tmin for which a change in system behaviour is detectable. With the
Nyquist-Shannon sampling theorem, we get a maximum time between ticks
needed to sample the system accurately as ∆T = 1

2
Tmin.

bdd [package] controller [Controller]

«block»
Controller

operations
tick()

«block»
Sensor

values
value: Int

«block»
Light

values
status: Boolean

«block»
Configuration

values
e_lo: Int
e_hi: Int
delay: Int

1
1

11 1 1

Fig. 2. SysML specification (FS-3)

Figure 2 shows a SysML specification of the system design.
It decomposes the system into blocks. Specifically, we have
decomposed the system into the main controller, which is
connected to the light sensor sensor and the switch light.
It has a configuration, which we split into a separate block,
detailing the lower and upper luminosity bound, and the delay
(in ticks) for switching off the light.

Figure 2 does not specify the actual state transitions from
equations (6) and (7). This is done in an OCL specification;
OCL [9] is a language using which we can constrain the
models described by SysML diagrams, by annotating precon-
ditions, postconditions or invariants. Thus, OCL is a language
to denote relational specifications such as FS-2. Translated
into SysML/OCL, FS-2 looks as follows, where tick () is the
state transition operation:

context Controller
def e: sensor.value
def off: e > config.e hi
def on: e < config.e lo
def off s: cnt≥ config.delay

context Controller::tick() post:
(not off implies cnt = 0) and
(off implies cnt = cnt@pre+ 1) and
(on implies light.status) and
(off s implies not light.status) and
(not (on or off s) implies

light.status = light.status@pre)

D. Electronic System Level

We are now arriving at a formal model of the system
which we can implement in either software or hardware; we
call this the electronic system level. We are more interested
in hardware, so we give an implementation in the hardware
modeling language Chisel [10] (another alternative would be
the more popular, but more verbose, SystemC). To go from the
Chisel model to actual hardware, we can e.g. generate Verilog,
and implement it on an FPGA.

Spec. Contents Formalism When to show proof obligations
RS-1 Requirements Natural language

No proof required
RS-2 Requirements Informal mathematics

No proof required
FS-1 Formal requirements Temporal and first-order logic

Design time
FS-2 Formal requirements Relational first-order logic

No proof required
FS-3 System structure, formal requirements SysML/OCL

Run time
FM-1 Executable system model Chisel

Fig. 3. Specification levels, with their contents, their formalism, and the time in the development process when the properties have to be proven.

class LightController (e low: Int , e high: Int) extends
Module {

val io = new Bundle {
val e = UInt (INPUT,8)
val l ight = Bool(OUTPUT)

}

val x = Reg(Bool(false))
val cnt = Reg(UInt(8))

cnt := io .e > UInt (e low, 8) && cnt+1 | | io .e ≥
UInt (e low) && 0

x := cnt > d | | ! (io .e > UInt (e high,8)) && x

io . l ight := x
}

To sum up the development, we have developed a concrete
hardware implementation of a light switch controller from an
initial informal requirements specification in natural language.
The question is whether this development is correct, i.e.
whether the final result satisfies the initial requirements. Can
we prove the correctness properties?

E. Proving Verification Properties

The development here is of course simple enough to prove
correctness comprehensively at design time, but we want to
explore the question from the point of self-verification; in
particular, we want to know which correctness properties arise,
which properties we need to prove at design-time, and which
properties we can feasibly push into run time verification.

First, note that the step from the informal natural language
specification RS-1 to the continuous specification RS-2 can
by its nature not be proven formally,3 but we only trace the
requirements [11]. The second step from RS-2 to FS-1 could
be proven mathematically, but not many tools support proofs
at this level, so we view the continuous specification RS-2 as
more rigorous but informal too.

In the third step, the relational specification FS-2 was
developed. Here, we can actually prove correctness (that FS-1

3Note that when we speak about “formal proof” we mean proofs conducted
on and checked by a computer, using tools such as SAT checkers, SMT
provers, or interactive theorem provers.

implies FS-2) by induction on the states. This proof has to
be done at design time, since it talks about all system states,
and at run time we can only refer to the current and possibly
previous state.

In the fourth step, we go from the relational specification
FS-2 to the SysML/OCL model FS-3. Part of this step is
just a change of notation, rephrasing relational statements as
OCL constraints, part of this step specifies the system structure
which was implicit or unspecified before. All in all, there are
no proof obligations here.

Finally, there is the step from SysML/OCL to Chisel. In
this step, we need to prove that the invariants and pre/postcon-
ditions are satisfied by the operations in the implementation.
This is a typical verification activity as mentioned in Section I,
and can be achieved by a variety of means, such as testing,
model checking, or theorem proving (in increasing order of
completeness and complexity). However, these proofs can be
pushed into run time, since they only relate the current and
previous state.

Figure 3 gives an overview over the specification levels and
formalisms involved, and when properties are to be proven.
To sum up, we have found three different kinds of properties:
informal ones, formulated in natural language, which cannot
be proven; global ones which talk about all system states,
which we can formulate e.g. in linear temporal logic (LTL,
[12]); and local ones which talk about the current and next
system state. At run time, we can only prove local properties,
as we do not have access to all system states. Hence, the formal
system model given in SysML/OCL (FS-3) should form the
basis of the self-verification.

F. Efficient Self-Verification

Now that we have ascertained which properties we can
verify at run time, we can investigate how to verify them. At
run time, we can only use fully automatic proof procedures
with a light memory footprint, such as lightweight versions
of SAT checkers or SMT provers. In general, the memory
requirements of these tools grow exponentially with the state
space of the system; this is known as state explosion. Hence,
we need to reduce the state space as much as possible.

In our development, the state space of the final system
comprises the variables e, light , d, e low and e hi. The
first two have 8 and 1 bit, respectively; assuming the latter
three to be of 8 bits width, we have a total state space of
28+1+3·8 = 233. However, d, e low and e hi do not change
very often,4 so to reduce the state space we can treat them as
parameters. More precisely, each time the values of d, e low
or e hi change, the invariant is proven for the current values
of d, e low or e hi and all possible values of e and light —
a state space of 29, or a reduction by a factor of 16 millions.
We call attributes such as d, e low or e hi quasi-static.

This is the reason why we have modeled the configuration
as a separate block in Figure 2. By annotating this block
with a suitable stereotype the engineer can mark it as a rarely
changing configuration, which is treated as quasi-static. This
is a small, conservative extension to SysML which all tools
can handle, and which at the same time reduces the state space
for run time verification dramatically.

IV. CASE STUDY

In order to explore the scalability of our approach, we
extend the initial light controller example into a more realistic
application. This controller supports multiple light sources and
luminosity sensors, as well as manual switches and presence
detectors. Its informal specification is given as follows:

Sensors, switches and presence detectors are assigned to a
light source via a configuration.
(R-1) If the arithmetic average of all sensors connected to a

light source is below Elo, then this light is switched
on. Conversely, if the arithmetic average of all sensors
connected to a light source is above Ehi, then this light
is switched off.

(R-2) Every time the state of a manual switch connected to
a light source changes, the state of the light source is
negated. After such a manual override, the automatic
control of (R-1) is disabled as long as a person is
detected by at least one of the presence detectors.

(R-3) Once no person is detected, the light is switched off.

The assignments of luminosity sensors to lights is stored in
the controller. Two operations, connect and disconnect, are
triggered whenever sensors are (dis)connected:

context Controller::connect(sensor: Sensor, light: Light)
pre: not sensors.contains(sensor)
post: sensors.contains(sensor) and

config.at(light.id).sensors.contains(sensor.id)

When a sensor is disconnected from the controller, the assign-
ment is also removed from the configuration:

context Controller::disconnect(sensor: Sensor)
pre: sensors.contains(sensor)

4In fact, the system model does not specify how they can change at all;
the case study below specifies how a configuration can be changed.

bdd [package] controller [Controller]

«block»
Controller

operations
connect(s: Sensor, light: Id)
connect(s: Switch, light: Id)
disconnect(s: Sensor)
disconnect(s: Switch)
tick()

«block»
Sensor

values
id: Id
value: Int

«block»
Switch

values
id: Id
status: Boolean

«block»
Detector

values
id: Id
status: Boolean

«block»
Light

values
id: Id
status: Boolean

«block»
Configuration

values
e_lo: Int
e_hi: Int
switches: Id[*]
sensors: Id[*]

1

*

1

1

*

*

*

*

Fig. 4. SysML specification of the case study. The sensors (on the left)
include luminosity sensors, manual switches and presence detectors; actors
(on the right, top) light switches. The configuration (on the right, bottom)
specifies how switches and sensors are connected.

post:
not sensors.contains(sensor) and
not config.at(light.id).sensors.contains(sensor.id)

The following definition specifies the average of all lumi-
nosity sensors switch a light or off (requirement R-1):

context Light
def sensors: controller.config.at(id).sensors
def e: sensors.collect(self.value) / sensors.size()

def off: e > controller.config.at(id).e hi
def on: e < controller.config.at(id).e lo

Requirements (R-2) and (R-3) are specified as the postcon-
dition of the tick operation, which models the state transition:

context Controller::tick() post:
lights.forAll (light |

if light.detectors.exists (self.value) then
if light.switches.exists(switch |

switch 6= switch@pre) then
light.override and
light.status = not light.status@pre

else if light.override@pre then
light.status = light.status@pre

else
not light.override and
(on implies light.status) and
(off implies not light.status) and
(not (on or off) implies

light.status = light.status@pre)
endif

else not light.status and not light.override
endif)

For space reasons, we do not give the Chisel model here,

as our main focus is the verification of properties of the
SysML/OCL model. What makes the verification of this
system particularly challenging is the dynamic nature of the
infrastructure. All the components can be dynamically added
to and removed from the system, and every sensor, switch
and detector can register for a light source. Dynamic aspects
of this kind yield unmanageably large search spaces when
attempting a full verification. If we assume identifiers to be
only one byte for the components allowing for a maximum
of just 256 components of every kind, this already yields
(28)28

= 22048 possible layouts for every sensor type and
(22048)3 = 26144 for the system, multiplied by (22048)2 config-
uration states for e lo and e hi respectively. This search space
of 26144+4096 = 210240 for the system configuration states is
multiplied by the other inputs variables, viz. 8 bits for each
sensor, one for each switch, presence detector, and light, giving
a maximum search space of 2256·(8+1+1+1) = 22816. The total
search space of 210240+2816 = 213056 can obviously only be
handled by a symbolic proof. By considering the infrastructure
configuration (all identifiers attributes, and the configuration)
as quasi-static we can reduce the search space dramatically to
22816; this represents the absolute maximum with all possible
sensors, detectors, switches and lights connected. This further
shows that for realistic examples simple enumeration of all
states is not enough, and more advanced techniques (such
as a lightweight SAT checker) are needed at run-time; self-
verification is more than just checking property instances.

Of course the complexity of a proof can not be measured
by the number of variables involved alone. Consider the
arithmetic average function which is used to combine several
sensor values into one. When implementing this in hardware
one might chain multiple additions with a multiplication.
While hardware adders are relatively easy to check, optimized
hardware multipliers are very hard to verify since the usual
branch cutting approaches of model checkers and solvers fail
to reduce the search space for those particular circuits. Even a
simple 32 bit multiplier already yields a 64 bit search space,
requiring very elaborate proof methods to reduce this search
space [13], [14]. In the example, we have to multiply the
sum of the sensor values with the reciprocal of the number of
sensors. Obviously the sum of the sensor values is changing
frequently, but the number of sensors assigned to a light source
only changes when the system is reconfigured and can thus be
considered as quasi static. By verifying the multiplier with one
particular factor considered static every time the configuration
changes we can reduce the search space from 264 to 232.

V. CONCLUSIONS

In this paper, we have proposed a basic methodology to de-
velop self-verifying systems, which continue their verification
at run time after deployment. This gives engineers more time,
more resources and more information to successfully finish the
verification. Self-verification goes beyond self-testing (which
addresses failures in the production process), towards proving
functional correctness.

For the properties to be verified, we distinguish global prop-
erties, concerning all system states, and relational properties,
relating a pre- and a post-state. The latter suggests the use
of the SysML modeling language together with OCL as a
specification language for self-verifying systems.

Proof at run time has to be automatic, and at the same time
has to have a small memory footprint. To reduce the search
space of automatic proof methods, we have introduced the con-
cept of quasi-static attributes, which are those system which
change infrequently, so instead of trying to prove verification
properties for all values of these quasi-static attributes, we
only prove it for fixed values whenever they are set; a typical
application example of quasi-static data are configurations.

We have demonstrated our methodology with a small first
case study: we have shown how to model the system behaviour
in SysML/OCL, and how by treating configuration data as
quasi-static we could reduce the state space by a factor of
210240 even in this very simple scenario.

These are but small first steps, and need to be followed by
more work to make self-verification applicable, yet we believe
that self-verifying systems could provide the key to closing the
verification gap, and make the cyber-physical systems which
surround us every day more correct, and hence more safe.

REFERENCES

[1] R. Drechsler, M. Soeken, and R. Wille, “Formal Specification Level: To-
wards verification-driven design based on natural language processing,”
in Forum on Specfication and Design Languages, 2012, pp. 53–58.

[2] G. Martin, B. Bailey, and A. Piziali, ESL Design and Verification:
A Prescription for Electronic System Level Methodology. Morgan
Kaufmann Publishers Inc., 2007.

[3] R. Drechsler, H. M. Le, and M. Soeken, “Self-verification as the key
technology for next generation electronic systems,” in Symposium on
Integrated Circuits and System Design, 2014, pp. 1–4.

[4] R. Drechsler, M. Fränzle, and R. Wille, “Envisioning self-verification of
electronic systems,” in Int’l Symp. on Reconfigurable Communication-
centric Systems-on-Chip, 2015, pp. 1–6.

[5] R. Alur, C. Courcoubetis, T. Henzinger, and P. Ho, “Hybrid automata:
An algorithmic approach to the specification and verification of hybrid
systems,” Hybrid Systems, pp. 209–229, 1993.

[6] C. Zhou and M. Hansen, Duration Calculus: A formal approach to real-
time systems. Springer, 2013.

[7] Object Management Group, “OMG Systems Modeling Language (OMG
SysML),” OMG, Tech. Rep. formal/2015-06-04, 2015.

[8] T. Weilkiens, Systems Engineering with SysML/UML: Modeling, Anal-
ysis, Design. Morgan Kaufmann Publishers, 2007.

[9] Object Management Group, “Object Constraint Language,” OMG, Tech.
Rep. formal/2014-02-03, 2012.

[10] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware in a
scala embedded language,” in DAC Design Automation Conference 2012,
June 2012, pp. 1212–1221.

[11] O. C. Z. Gotel and A. C. W. Finkelstein, “An analysis of the requirements
traceability problem,” in IEEE International Conference on Require-
ments Engineering (ICRE 94), 1994, pp. 94–101.

[12] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic specifications,”
ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 8, no. 2, pp. 244–263, 1986.

[13] R. Kaivola and N. Narasimhan, “Formal verification of the pentium/-
sup/spl reg//4 floating-point multiplier,” in Design, Automation & Test
in Europe (DATE), 2002. IEEE, 2002, pp. 20–27.

[14] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler,
“Formal verification of integer multipliers by combining gröbner basis
with logic reduction,” in Design, Automation & Test in Europe (DATE),
2016. IEEE, 2016, pp. 1048–1053.

