
 

 

Data-Driven, Statistical Learning Method for Inductive Confirmation of 
Structural Models  

 
Wolfgang Maass  Iaroslav Shcherbatyi 

Saarland University  Saarland University 
wolfgang.maass@iss.uni-saarland.de  iaroslav.shcherbatyi@iss.uni-saarland.de 

 
 

Abstract 
 

Automatic extraction of structural models interferes 
with the deductive research method in information 
systems research. Nonetheless it is tempting to use a 
statistical learning method for assessing meaningful 
relations between structural variables given the 
underlying measurement model. In this paper, we 
discuss the epistemological background for this method 
and describe its general structure. Thereafter this 
method is applied in a mode of inductive confirmation 
to an existing data set that has been used for evaluating 
a deductively derived structural model. In this study, a 
range of machine learning model classes is used for 
statistical learning and results are compared with the 
original model.  
 
1. Introduction  

 
Structural equation modeling (SEM) has become a 

dominant statistical method for evaluating theories in 
behavioral sciences. At first, models and data collection 
study designs are developed that are subsequently 
evaluated by raised data sets. Later, model fitting is 
assessed and used as positive or negative support of an 
initially hypothesized model [1]. Even though that 
questions arise with this epistemological procedure, 
known as Null Hypothesis Significance Test (NHST) 
[2], it is quite common in information systems research 
that only one hypothetical model is tested even despite 
the existence of many potentially meaningful models 
supported by the same data set [3]. 

SEM consists of a combination of measurement and 
structural models [4]. With a given set of indicator and 
structural variables, all possible models can be 
enumerated, evaluated against one or many data sets in 
principle. In practice this is only a meaningful approach 
for small variable sets. Search space complexity is 
generally reduced by heuristics and theory-driven 
constraints. For instance, prohibition of bidirectional 
paths, focus on non-recursive structural models or 

search procedures looking for locally maximizing 
models (e.g., Maximum Likelihood). Resulting models 
are compared by fit indices, such as RMSEA and GFI 
[4]. Nonetheless, search spaces for non-trivial sets of 
measurement and structural variables remain extremely 
large. Therefore w.l.o.g, we confine our research to 
search spaces on structural models spanned by structural 
variables and keep measurement models constant. 

Due to the lack of research on model search, we start 
with an already published model as a baseline [5]. By 
using a data-driven, statistical learning search 
procedure, we automatically extract a candidate model 
with various statistical learning algorithms and compare 
their performance. Finally we compare the best 
performing extracted model with the original baseline 
model. In the discussion we analyze general capabilities 
of statistical learning models for data-driven extraction 
of conceptual models and deliberate on the general 
potential of model search for information systems 
research. Finally limitations and an outlook are 
discussed. 

 
2. Inductive, deductive and hybrid modes 

of research 
 
Structural equation modeling (SEM) is used for 

evaluating parameters defined by a hypothesized 
underlying model by statistical analysis of empirical 
measurements [4] with an emphasis on analyzing 
covariance [6] or component-based [7] structures 
between observed and latent variables [8]. 
Conventionally theory drives model specification that is 
assessed by statistical analysis of empirically assessed 
data [4]. By theoretical considerations the latent variable 
model consisting of exogenous and endogenous 
variables is described in closed form as follows: eta = B 
h + G x + z with h a vector of latent endogenous 
variables to be explained, x a vector of latent exogenous 
variables, zeta capturing disturbances and B and G are 
coefficient matrices [8]. Similarly, measurement models 
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are described in close form as follows: x = Lx x + d and 
y = Ly h+ e [8]. 

Different structural models fit equally well to 
collected data and in cases with over-fitting, researchers 
might be even tempted to favor models that are far to 
specific. Also complexity-penalizing indices, such as 
AIC and BIC, tend to favor models with less parameters 
by design [3]. 

By reversing NHST, we ask how many potentially 
meaningful structural models are possible if n variables 
and p paths are given that exhibit equally likely 
interpretations of data [9] as a similarity class of models,  
so-called “confounds” [3].  

The search model approach resembles and is even 
anchored in the discussion currently conducted around 
the term “Big Data” [10-12]. A key claim of proponents 
of big data research is that patterns can be extracted 
automatically from large data sets [13]. In contrast, it is 
argued that also big data is subject to sampling bias, 
dependent on viewpoints, tools for collecting data, and 
data ontologies and the need for epistemological 
interpretations by domain experts [12]. 

To consolidate the extreme research positions of 
inductivism and empiricism, Kitchin argues for an 
hybrid approach that combines inductive, data-driven 
and deductive methods [12]. Deductive research starts 
with theories and models that are evaluated by empirical 
studies while inductive research starts from data 
ontologies and data collections and results in inductively 
derived theories and models (cf. Fig. 1). A hybrid 
approach is proposed by Kitchin that starts with an 
inductive mode of research resulting in hypotheses that 
are, in turn, evaluated by deductive research (cf. Fig. 1). 
As with pure deductive and inductive modes, an hybrid 
mode is open for circular activations for further theory 
development. 

In deductive research, models are derived from 
theory and empirical testing of models provides insights 
resulting in adaptation of theories. Inductive research 
provides insights derived from data.  Research with big 
data often follows a pure inductive paradigm resulting 
in fragmented insights reinforcing convenient “as-if” 
assumptions [14]. Therefore we argue for a hybrid 
approach in which inductively derived insights become 
assumptions for models that are evaluated by deductive 
research (cf. Figure 1). 

A hybrid mode of research enables researchers to 
deal with large amounts of data, (semi-) automatically 
derive potentially interesting hypotheses that are 
subsequently tested by rigorous deductive research. 
Hypotheses derived from data require interpretation 
from a domain perspective. Hypotheses do not come out 
of nowhere but are grounded in data ontologies that are 
input to inductive research. Data ontologies provide a 
lens by which researchers look at basic signals in a 

certain domain of interest, such as answers to single 
items in structural models. Different hypotheses will be 
derived from data depending on data ontologies, data 
collection technologies, and data analytical models. 
Hence, there is no objective truth in data but biased 
results depending on viewpoints [12]. 
 

  
Figure 1. Hybrid mode of research 

 
Data-driven inductive and hybrid modes of research 

are in an embryonic state with respect to epistemology 
and research results that go beyond trivial correlations 
(e.g., [14, 15]). Inductively extracted patterns between 
latent concepts grounded in compounds of data 
dimensions as typical for empirical research in 
information systems are rare. Few researchers have 
proposed methods for inductive modes of research [16]. 

In this early stage of an evolving research paradigm, 
the question arises whether it is still valid to assume that 
theoretically sound models can only come from 
researcher’s deliberation on theoretical knowledge and 
cannot be derived from data.  

By taking the stance of inductive research, we start 
with the hypotheses that statistical learning methods are 
able to derive structural models from measurement 
models alone without consideration of theoretically 
assumed structural relations between latent variables. 
This hypothesis can be tested relative to established 
deductive methods in two ways. First, it can be used by 
an ex-ante mode, i.e. structural models are derived 
inductively and used as hypothesis for a subsequent 
deductive study (inductive exploration). Second, 
models previously derived by deductive studies are 
confirmed by independent inductive studies (inductive 
confirmation). In this paper, we describe a method for 
inductive confirmation of previously evaluated models 
by applying various statistical learning methods. 
In detail, we focus on covariance-based structural 
equation model (SEM) that is used as a standard tool for 
research in social sciences, and the information systems 
community in particular. Assuming measurement 
models with strong ties (covariance-based or PLS-
based) with their latent structural variables they depend 

Theory/models	

Empirical	studies	

Data	collec5on	

Data	analysis	

Update	theory/model	

Data	ontologies	

Data	collec5on	

Data	analy5cs	

Pa:ern	extrac5on	

Interpreta5on	

Theory/	
model	development	

Deductive Research Inductive Research 

Interpreta5on	

Inductive Research 

Deductive Research 

Hybrid Research 

Data	ontologies	

interpreta5on	

hypotheses	

…	

Empirical	studies	

interpreta5on	

…	

Update	theory/model	

5700



 

 

on [8],  we investigate whether structural models can be 
automatically extracted from data instead of deriving it 
from theory alone. In the following, we will discuss our 
research question by using an existing deductive study 
as a baseline. We will show how data is analyzed by 
various methods of statistical learning resulting in a set 
of structural relations as input for a structural model. 
Resulting structural models are compared with the 
original model.  
 
3. Modeling approach and methodology 
 

We focus on path analysis in structural models and 
abstain from using fit estimates in SEM for comparing 
models. This is done for the same reason as discussed 
by Fife et al. (2014), i.e. we presuppose particular 
measurement models but leave freedom for choosing 
structural models randomly [3]. Fife et al. simply 
generate all potential models for a set of structural 
variables and evaluate these structural models by 
RMSEA fit index. For the set of structural variable 
introduced in [5], this approach targets the evaluation of 
1.19*1021 different structural models that is neither 
feasible nor reasonable with non-trivial data sets. Thus, 
the approach proposed by Fife et al. (2014) only works 
for small sets of structural variables and small structural 
models. 

 
Figure 2. Example data split 

 
Instead, we apply and compare results of different 

data-driven statistical learning models by introducing a 
targeted accuracy metric. Resulting models are tested 
and evaluated by separate test and evaluation data sets. 
We assume that we are given a set of concepts, and we 
want to establish whether there exist directed relational 
dependencies between different concepts. To do so, we 
assume that we are also given a set of observations, 
where any observation for every concept contains a 
vector or real values describing the concept. 

We concentrate on establishing all pairwise 
dependencies between concepts. For every pair of 
concepts, we solve the supervised learning problem of 
predicting values describing observation of concept B 
given the values of corresponding observation of the 

concept A and vice versa. We use a value proportional 
to the test accuracy of obtained predictive models to 
obtain a value that describes the strength of a relation 
between two concepts. This value allows establishing an 
ordering of all possible relations by strength, and among 
them we select n strongest ones, where n characterizes 
how complex the model should be and is provided by 
user. The resulting relation set is used as input for 
evaluation methods for structural models, such as 
covariance-based SEM. 
 
3.1. Assessment of relationship strengths  
 
For every two structural variables A and B, we define 
the strength of a path relation from A to B as a value 
proportional to the accuracy with which indicator 
variables of B can be predicted given indicator variables 
of A. We call this value “improvement over random 
guess (IRG)”. Let this value be denoted as IAB for two 
structural variables A and B. Then this value is defined 
as a ratio 
 

IAB = RAB / MAB 
 
where RAB  is the best error that can be obtained for 
prediction of values of B while neglecting 
corresponding values of A, and MAB is the error 
achieved with a predictive model which takes as input 
values for indicators of A and tries to estimate 
corresponding values for indicators of B. 
The larger the value of IAB, the better B can be predicted 
given the values of A. In particular, if the value of IAB is 
1.0, then the model is not better than the model which 
simply makes random guesses for indicators of B while 
discarding the inputs, i.e. indicators of A. Values larger 
than 1.0 indicate amount of improvement achieved over 
the random model. Values larger than 1.0 indicate 
amount of improvement that can be achieved over the 
random model. 
Normalization by random model is used in order to 
account for the concepts for which the distribution of 
their values is unbalanced and where predicting the most 
likely output already leads to a small error rate, 
compared to other concepts.  
 
3.2. Data preprocessing 
 
For evaluation of the values of RAB and MAB, firstly the 
following manipulations on the data are performed. 
Consider representation of all the data on indicators 
available for the variables A and B (cf. Figure 2). Every 
pair of rows that corresponds to the same observation is 
taken as a pair of inputs and outputs. The data is split 
into three parts: training data (50% of all pairs), 
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validation data (25%), and the rest of the data as testing 
data (cf. Figure 2).  
 
3.3. Computing performance of a random 
model RAB 
 
Let Ai denote the i-th row out of n in total corresponding 
to the values describing variable A in i-th observation, 
and similarly Bi denote the i-th row describing values of 
variable B in i-the observation. We compute the value 
of the RAB with a split as follows. Let ATr

 and BTr denote 
training subsets and ATs and BTs denote testing subsets 
of rows describing variables A and B.  
For every row in BTs we obtain a random prediction by 
sampling uniformly a row from the training subset BTr. 
Let a set of such samples be denoted as BTs’. We 
measure the accuracy of such random predictions in 
terms of RMSE on test set: 
 

 
  

Whole rows are sampled from a training set such that 
the distribution of outputs of the random model 
corresponds closely to the actual distribution of outputs, 
as for example sampling rows of values where every 
value is sampled uniformly can lead to a distribution of 
outputs of random model which does not correspond to 
the actual distribution. Such a sampling scheme 
particularly helps to capture possible correlations 
between the values in the row, which could potentially 
be exploited to increase the performance of a random 
model.  
In order to decrease the variance of the estimate of 
random model performance, we repeat the procedure 
outlined above for 100 times and average obtained 
values of R’AB. The resulting average performance is 
taken as value of RAB. We found experimentally that on 
average 100 trials allow to reduce variance to negligible 
values.  
 
3.4. Computing performance of statistical 
learning model MAB 
 
We compute the value of the MAB by applying a fitting 
procedure [17] to the problem of predicting the indicator 
values of B given the indicator values of A.  
We use multiple classes of statistical learning models to 
estimate MAB to see whether the values of IRG change 
significantly with different model classes. These classes 
are described in the following sections.  
 
 

3.5. Parameter selection for statistical learning 
models 
 
Every model class that we consider has a set of 
hyperparameters which need to be adjusted in order to 
maximize the performance of the trained predictive 
model.  
For hyperparameter selection, we use the split of data as 
was used for the random model evaluation. Training 
split of data is used to train a model for a particular 
configuration of hyperparameters. The resulting model 
is evaluated on the validation set, which yields an 
estimate of model performance for particular setting of 
hyperparameters, and allows choosing the best out of a 
set of candidate hyperparameter configurations. Model 
performance is measured by RMSE of model 
predictions. Finally, a robust estimate of model 
performance with the best configuration selected on the 
validation set is obtained by evaluating the model on the 
test set. This estimate is taken as value for MAB. 
For models with small finite sets of possible 
configurations of hyperparameters, all possible 
configurations of hyperparameters can be enumerated in 
brute force manner. However, it is not uncommon that 
parameters of models are real numbers, which can attain 
arbitrary large or small values.  
For enumeration of such hyperparameter values, a 
discrete subset of all possible values is used, taken in the 
wide interval of practically feasible values. This is 
justified by the fact that such continuous 
hyperparameters commonly are proportional to the 
complexity of the model [18]. The optimal value of such 
hyperparameters represents a tradeoff between under 
and overfitting [18] and, thus, is typically attained for a 
finite value of hyperparameter.  

 
 
Figure 3. Example of tradeoff between complexity and 

overfitting of k nearest neighbor model. Smaller 
number of neighbors usually result in more complex 

decision boundaries [19].  
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Example of such effect is shown in Figure 3, where for 
varying values of parameter k of a k-nearest neighbors 
predictive model (cf. section 3.6.4. for details) the 
corresponding value of IRG is shown. When the model 
is too simple (right side of the graph in Figure 3) or too 
complex (left most side of graph in Figure 3) model does 
not perform well, but its performance is rather 
maximized for a tradeoff between model complexity 
and overfitting.  
 
3.6. Classes of statistical learning models 
considered 
 
Multiple classes of statistical learning models were 
evaluated to access effect of different classes used on 
IRG. All of those classes are equivalent in limit of all 
possible data as all of them are universally consistent 
[19-22]. However, we assumed that some models 
perform better than others if the amount of data is not 
large enough [23]. 
Some of the classes of predictive models cannot be 
directly used in settings where the output should be a 
vector. For those models, for every entry of the output 
vector a separate model is trained and predicted vector 
of outputs consists of outputs of separate models for 
every output entry.  
 
3.6.1. Neural networks 
 
Particular strength of neural networks is that they are 
easy to extend to multiple outputs [24] and recently 
demonstrate state of the art performance across many 
domains [25]. Furthermore, it is proven that neural 
networks are universally consistent [26] in contrast to 
commonly used linear models whose modeling 
capability is only limited to linear dependencies 
between inputs and outputs.  
In this work a class of fully connected neural networks 
is used, due to their simplicity [27]. Such networks 
consist of input layer, output layer, and a number of 
hidden layers. These layers are arranged in a sequence, 
starting from the input layer, then proceeding with the 
hidden layers, and ending with the output layer. For all 
layers except for the input layers, the output of every 
neuron of the layer depends on the outputs of all neurons 
of the previous layer. Computing outputs y of the feed 
forward fully connected neural network can be 
expressed as follows for input x: 
 

 
 
where Wi is a matrix and bi is a vector whose size is 
determined by number of neurons in the neural network, 
n denotes a number of layers, and function a is a vector 
valued function which applies an activation function 

[27] to every value in the input vector. In this work the 
rectified linear activation function was used [27]. 
Training of the neural networks was done using the 
stochastic gradient descent with momentum training 
procedure [17]. We posed the training procedure as 
direct optimization of the mean squared deviations of 
the predictions of the neural network from the desired 
target values. 
Complexity of fully connected feed forward neural 
networks is determined by the number of layers used in 
the architrecture and number of neurons in every layer. 
 
3.6.2. Kernel support vector machines 
 
Linear support vector machines represent a class of 
linear models which is well-studied theoretically [28]. 
An extension of linear support vector machines are 
kernel support vector regression (SVR) [29], which can 
approximate any function where the output values are  
real numbers, given sufficient amount of data about the 
function.  
Computing the outputs of SVR requires a kernel 
function [29], which takes two input vectors as 
parameters and outputs real number which characterizes 
how similar or dissimilar inputs are. One particularly 
popular choice for a kernel function is Radial Basis 
Kernel, for which it is proven that SVR is universally 
consistent [30].  
In this paper, we use SVR with Radial Basis Kernel. 
Such kernel has one hyperparameter (gamma) which 
requires tuning. Additionally, SVR itself has two 
hyperparameters, one of which is a positive real number 
that controls the complexity of the model, and epsilon 
value which in original SVR formulation controls 
maximum error of the regression model [29]. 
 
3.6.3. Boosted models  
 
Boosted models work by combining multiple simple 
models into one complex model. The output of such 
complex models are a weighted sum of outputs of 
simple models. Such model class is similar to neural 
network with a single hidden layer, where the output is 
also a weighted sum of outputs of neurons (simple 
models).  
The difference between boosted models and neural 
networks is that they are trained differently. While 
training of the neural networks constitutes adjustment of 
parameters of all neurons at once, boosted models 
consist of simple models which are added sequentially 
one by one [31]. 
Similar to neural networks, complexity of boosted 
models is adjusted by the number of nodes used in the 
final model. Additionally, a learning rate value can be 
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adjusted, which tunes how much a new node added to 
the boosting model changes its outputs.  
 
3.6.4. K nearest neighbors 
 
K-nearest neighbors model (kNN) represents one of the 
simpler classes of statistical learning models [19]. The 
output of a kNN model for some input is the mean of k 
outputs which corresponds to inputs in a training set 
being most similar to a selected input value. Such 
similarity is defined by a similarity function, which is 
typically Euclidian distance.  
The only hyperparameter of a kNN model is the number 
k of closest data points to be considered. This number is 
limited by the number of data points that are available 
in the training dataset.  
 
3.7. Direction dependency of IRG values 
 
The strength of a relation as defined by the value of the 
improvement over the random prediction in the previous 
sections depends on the direction of the relation between 
variables. 
 

A  B 
1  1 2 
2  3 2 
2  3 3 
1  1 2 
2  2 3 
1  1 3 
2  2 2 

 
Figure 4. Example pair of data for variables A and B 

 
In the Figure 4, the value of the variable A can be 
determined exactly given the indicator values of the row 
of indicators for B, however this does not hold true for 
the other direction. This is due to the fact that relation 
between B and A is many to one, and so given the value 
of A, the exact value of B cannot be determined.  
 
3.8. Selection of structural model from IRG 
values 
 
In order to come up with a model of relations between 
latent constructs, called variables for brevity, we firstly 
compute the IRG value for every pair of variables that 
describes the strength of the relation between both 
variables.  

                                                
1 Code repository http://goo.gl/r35rzv 

Obtained IRG values allow to come up with ordering of 
all possible binary relations starting from the strongest 
to the weakest. In order to come up with a structural 
model, n strongest relations are selected, where n is 
provided by the user.   
 
3.9. Implementation details 
 
The statistical learning tool was implemented in Python 
programming language, using Tensor Flow [32] python 
package to implement neural networks training, and 
sklearn [33] for the other classes of predictive models.1  
 
4. Inductive confirmation 
 
The starting point for our analysis is a paper published 
by Meseguer et al. that uses the Technology Acceptance 
Model (TAM) for perception of Wikipedia as a teaching 
resource [5] and its data set2. We have chosen a TAM 
study because it is one of the most established models in 
IS research derived by using a deductive mode of 
research [34]. It relates latent variables of Perceived 
Usefulness (PU), Perceived Ease of Use (PEU), and 
User Acceptance (UA) with one another. Davis found a 
strong relation between PU and UA and a weaker 
relation between PEU and UA but a stronger path from 
PEU to PU to UA. TAM has been replicated in many 
deductive studies. Meseguer et al. extended TAM by 
adding six constructs, i.e. quality, perceived enjoyment, 
image, sharing attitude, job relevance, and profile 2.0 
[5]. In their study, they found support for 15 causal 
relationships between these 15 latent structural 
variables. Each structural variable is defined by two to 
four indicator variables. All proposed relationships were 
tested being significant by a SEM analysis with path 
coefficients ranging from 0.105 to 0.683. 
Starting with the data set for the measurement model, 
we tested abovementioned statistical learning models 
without prior knowledge on relationships between latent 
variables, i.e. the structural model. 
 
4.1. Hyperparameter selection 
 
For every class of models considered in the previous 
section, we state the set of hyperparameters that is 
optimized, as well as a set of values from an interval 
used if a particular hyperparameter is unbound (cf. 
tables below). We verified that larger intervals of 
hyperparameter values do not improve the performance 
of predictive models.  
While it is likely that for other practical problems the 
intervals presented in this work will also be sufficient, it 

2 https://archive.ics.uci.edu/ml/datasets/wiki4HE 
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is generally advised to verify this by extending the 
intervals and observing whether this leads to large 
change in obtained results. For every class of models, a 
grid search was performed to determine the best 
configuration of hyperparameters. Comparison of 
different hyperparameter settings was done using the 
validation split of data as previously described. 
 

Table 1. Hyperparameters of ANN and ranges over 
which grid search was performed. 

Name Values tried 
Number of layers {1, 2, … 5} 
Num. of neurons in layer {2, 4, 8, … 512} 

 
Table 2. Hyperparameters of Kernel SVM and ranges 

over which grid search was performed 
Name Values tried 
Complexity parameter {2-10, 2-9, 2-8, … , 210} 
Gamma of RBF kernel {2-10, 2-8, 2-6, … , 20} 
Epsilon {2-10, 2-8, 2-6, … , 20}  

 
Table 3. Hyperparameters of Boosted models and 

ranges over which grid search was performed. 
Name Values tried 
Num. of weak learners {2, 4, 8, … 1024} 
Learning rate {2-10, 2-8, 2-6, … , 20} 

 
Table 4. Hyperparameters of kNN models and ranges 

over which grid search was performed. Here, N is 
the size of the training data set. 

Name Range 
Num. of neighbors (k) {1, 2, 3, … N} 

 
4.2. Experimental results and discussion 
 
Obtained results indicate that for the type of data 
considered different classes of learning models perform 
rather similarly. In particular, deviation between 
different values of IRG for different model classes is 
0.02 on average (cf. Table 5). This is supported by the 
fact that every model class considered in this research is 
universally consistent (see previous section) and, thus, 
for arbitrary large dataset available should perform 
similarly. This suggests that in practice any proposed 
single class of universally consistent model is already 
sufficient for our proposed method. This is likely to not 
hold true when the amount of training data is much 
smaller than used in this work (300 training records) or 
if the number of items per latent structural variable is 
large, e.g., much larger than 5 as is in our experiments. 
[18]. 
 
 
 

4.3. Structural model selection 
 
Directed binary relations between any structural 
variable A and B (AàB) of the model [5] with high IRG 
are selected that indicate a strong deviation from 
predictions based on random guesses. Higher IRG stand 
for better prediction of B given A (cf. Table 5). Derived 
from test data analysis, we determined an IRG of 1.40 
as a lower threshold for relations between latent 
structural variables of interest, resulting in a matrix Ι 
with IRG values for all directed binary relations 
between structural variables. 
Next a binary trigger map τ is applied that obtains a 
positive value if a relation is supported by previous 
research and a neutral value if unsupported (cf. Table 6). 
A positive value indicates a path that directly or 
indirectly connects two variables. An operator Ψ(Ι, τ) is 
defined that first deletes all weaker IRG values if 
relations between two variables are supported in both 
directions by an IRG value above an assumed threshold 
and second interchanges IRG values of both relations 
between A and B if τ(B, A) is positive but τ(A, B) is not. 
Thus higher IRG values are exchanged according to 
theoretically stronger directed relations.  
 
Table 5. Average (first number in cell) and deviation 

of values of IRG across different model classes. 
Average deviation of IRG values is 0.02, which 
shows that selection of relations with statistical 
learning is stable to choice of particular model 
class among those considered. Bold: selected 
relation; italics: deselected relation; Grey cell: 

relation reversed due to τ. 
 Use Qu PU PEU ENJ BI JR Pf IM SA 

Use 
 1.41 

0.02 
1.73 
0.02 

1.39 
0.01 

1.49 
0.02 

1.95 
0.04 

1.48 
0.02 

1.5 
0.01 

1.44 
0.01 

1.32 
0.03 

Qu 
1.53 
0.03 

 1.55 
0.03 

1.39 
0.03 

1.52 
0.05 

1.62 
0.03 

1.44 
0.06 

1.44 
0.01 

1.36 
0.04 

1.32 
0.02 

PU 
1.62 
0.02 

1.41 
0.03 

 1.38 
0.03 

1.55 
0.04 

1.7 
0.05 

1.48 
0.02 

1.46 
0.01 

1.42 
0.02 

1.32 
0.02 

PEU 
1.4 

0 
1.36 
0.02 

1.4 
0.01 

 1.58 
0.06 

1.45 
0.03 

1.47 
0.04 

1.47 
0.02 

1.38 
0.01 

1.3 
0.01 

ENJ 
1.43 
0.01 

1.35 
0.02 

1.48 
0.01 

1.45 
0.04 

 1.48 
0.03 

1.48 
0.03 

1.43 
0.01 

1.38 
0.01 

1.35 
0.01 

BI 
1.72 
0.01 

1.39 
0.02 

1.58 
0.01 

1.39 
0.01 

1.45 
0.02 

 1.37 
0.05 

1.49 
0.01 

1.41 
0.02 

1.32 
0.01 

JR 
1.39 
0.02 

1.28 
0.01 

1.33 
0.01 

1.38 
0 

1.41 
0.01 

1.43 
0.01 

 1.46 
0.01 

1.43 
0.01 

1.33 
0.04 

Pf 
1.41 
0.01 

1.29 
0.01 

1.35 
0.02 

1.38 
0 

1.42 
0.02 

1.46 
0.01 

1.52 
0.01 

 1.38 
0.01 

1.33 
0.02 

IM 
1.46 
0.02 

1.31 
0.01 

1.42 
0.01 

1.38 
0.01 

1.45 
0.01 

1.46 
0.04 

1.55 
0.02 

1.43 
0.01 

 1.4 
0.03 

SA 
1.42 
0.02 

1.3 
0.01 

1.36 
0.02 

1.4 
0.03 

1.47 
0.03 

1.43 
0.02 

1.46 
0.04 

1.49 
0.03 

1.44 
0.03 
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For instance, Use à PU has an IRG value  of 1.73 while 
PU à Use has an IRG value of 1.62. Thus, application 
of Ψ(Ι, τ) deletes the IRG value for PU à Use (1.62) 
and subsequently moves the IRG value of Use à PU 
(1.73) to become the IRG value of PU à Use as 
supported by previous research (cf. Table 6). No 
changes are made if τ(A, B) and τ(B, A) are neutral, i.e. 
previous research is neutral towards a particular relation 
between A and B. Thus Ψ recognizes known directions 
but is also susceptible for new relations. Application of 
Ψ(Ι, τ) results in a transformed IRG matrix Ι’ from 
which a structural model is derived. 
In our example, we simply derived τ directly from [5] 
while changes to τ might also be derived from a 
researcher’s hypotheses. In our example, statistical 
learning methods determined 40 relations with an IRG 
above 1.40. In 19 cases, Ψ made a selection on relations 
(cf. Table 5) and 14 relations were reversed (cf. Table 
5). 
 
4.4. Evaluation of the extracted structural 
model 
 
The output of the proposed data-driven approach for 
extracting structural relations by statistical learning 
methods is used as input for a covariance-based SEM. 
This is done in compliance with the original model [5] 
while other analytical methods for structural models are 
feasible.  
 

Table 6. Trigger matrix τ derived from [5] 
 Use Qu PU PEU ENJ BI JR Pf IM SA 
Use 0 0 0 0 0 0 0 0 0 0 
Qu 1 0 1 0 1 1 0 0 0 0 
PU 1 0 0 0 0 1 0 0 0 0 
PEU 1 0 1 0 0 1 0 0 0 0 
ENJ 1 0 1 1 0 1 0 0 0 0 
BI 1 0 0 0 0 0 0 0 0 0 
JR 1 1 1 1 1 1 1 1 1 1 
Pf 1 0 1 0 0 1 0 0 0 0 
IM 1 1 1 1 1 1 0 1 1 1 

SA 1 1 1 1 1 1 0 1 0 1 

 
Potential higher order concepts internally derived by 
statistical learning methods, e.g., created by multi-layer 
ANN, are decoupled from resulting structural models. 
This resembles how researchers deliberate on 
theoretical knowledge when they finally come up with a 
hypothetical, linear structural model. Therefore, we 
anticipate that some statistical learning models obtain 
the potential for using higher-order concepts internally 
but we only focus on results that are expressed by linear 
structural models without higher-order concept.  

In out work, resulting relations were integrated into a 
SEM that was evaluated by SPSS Amos 24 with a test 
data set with 300 cases that has not been used for 
training and validating the extracted model. Due to the 
fact that the measurement was re-used from the original 
model, we discuss results for the structural variable 
model alone. 
After deletion of non-significant relations, the model 
consists of 19 relations, i.e. three relations more than the 
original model on which SEM analysis was applied (cf. 
Table 7). Compared to the original model, all relations 
of the original model were found except the relation 
between Quality (QU) and Perceived enjoyment (ENJ). 
Instead we found a weakly significant relation between 
Profile 2.0 (PRF) and Perceived Ease-of-use (PEU).  
 
Table 7. Regression weights (bold: relation compliant 

with [5]; italics: relation supported by a path in 
[5]; *: new relation; Est: estimates for regression 
weights, S.E.: standard error; C.R.: critical ratio,  

p: p-value). 
   Est. S.E. C.R. p 

IMG ¬ JR .291 .066 4.382 *** 
SA ¬ JR .149 .053 2.806 .005 
SA ¬ IMG .210 .069 3.037 .002 
PRF ¬ SA .391 .092 4.258 *** 
PRF ¬ JR .115 .058 1.979 .048 
PEU ¬* PRF .087 .048 1.800 .072 
QU ¬ JR .123 .045 2.734 .006 
PEU ¬ ENJ .578 .091 6.324 *** 
PU ¬ QU .399 .060 6.696 *** 
PU ¬ IMG .303 .056 5.394 *** 
PU ¬ PEU .625 .122 5.135 *** 
BI ¬ PU .715 .087 8.260 *** 
BI ¬ PRF .179 .064 2.787 .005 
BI ¬ QU .213 .073 2.922 .003 
BI ¬ JR .328 .055 5.992 *** 
USE ¬ BI .689 .051 13.480 *** 
 
5. Summary and Outlook  
 
We have presented a novel approach for extracting 
structural relationships by data-driven, statistical 
learning methods. Therefore we described a method 
consisting of seven steps: (1) splitting data set into 
training, evaluation, and test subsets, (2) determination 
of a random model, (3) training statistical learning 
models incl. adjustment of hyperparameters so that 
under- and overfitting is minimized, (4) extraction of 
relevant relationships by IRG values, (5) theoretical 
adjustment (i.e., application of Ψ(Ι, τ)), (6) evaluation of 
the resulting model, (7) using results for assessment of 
the original model (inductive confirmation) or 
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derivation of hypotheses that are afterwards tested by 
deductive studies (inductive exploration). 
By application of our method to a data set previously 
used for evaluating a deductively developed structural 
model, a model was derived with 24 relations more than 
the original model. Previous knowledge represented by 
τ caused reversal of the direction of 19 relations that 
might be considered as being rather high. After 
deselecting non-significant relations by SEM analysis, 
the resulting model captured all relations of the original 
model except for one relation, while three new relations 
were found (complexity increase by 18%). Therefore, 
we conclude that our method provides strong support for 
the original model while recommending a re-assessment 
of the direction of causal relationships of 19 relations. 
Additionally, the newly proposed relation and one 
unsupported relation are recommended for re-
examination as well. 
A limitation is that the proposed method has been 
applied to one original model only. Studies for applying 
this method to a set of structural models including cross-
evaluation is under investigation. Furthermore, a 
statistical method for comparing structural models is 
needed as stressed in [3]. Recent work presented some 
initial methods for comparing models based on 
statistically sound similarity measures [1]. 
Finally, the proposed hybrid mode of research needs 
further refinement, in particular, with respect to its 
epistemological underpinning. Several researchers have 
recently discussed how data analytics and big data 
changes research in various fields [15, 35, 36], such as 
information systems. Nonetheless, an epistemologically 
sound method is in its infancies. An extension of the 
proposed hybrid mode of research is required that 
guides researchers in their search for deriving model 
candidates (inductive exploration) from data but also 
data-driven evaluation of existing models (inductive 
confirmation). 
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Appendix 
 

Table 8. IRG derived using ANN model class. 
 Use Qu PU PEU ENJ BI JR Pf Im SA 

Use  1.4 1.76 1.38 1.5 2.02 1.47 1.49 1.44 1.34 
Qu 1.49  1.51 1.39 1.56 1.63 1.31 1.42 1.29 1.31 

PU 1.65 1.45  1.41 1.55 1.74 1.48 1.46 1.43 1.34 
PEU 1.4 1.37 1.41  1.65 1.42 1.47 1.47 1.36 1.31 
ENJ 1.44 1.35 1.49 1.49  1.43 1.46 1.42 1.38 1.35 
BI 1.73 1.39 1.59 1.39 1.43  1.43 1.46 1.42 1.31 
JR 1.4 1.29 1.34 1.38 1.42 1.43  1.47 1.42 1.36 
Pf 1.41 1.28 1.36 1.37 1.45 1.47 1.52  1.38 1.35 

Im 1.5 1.3 1.42 1.39 1.48 1.45 1.56 1.43  1.43 
SA 1.42 1.29 1.37 1.42 1.48 1.4 1.49 1.52 1.41  

 
 
 
 
 
 
 
 
 
 

Table 9. IRG derived using SVR model class. 
 Use Qu PU PEU ENJ BI JR Pf Im SA 

Use  1.43 1.72 1.38 1.51 1.96 1.45 1.49 1.43 1.27 

Qu 1.53  1.53 1.33 1.49 1.55 1.51 1.45 1.33 1.34 
PU 1.6 1.42  1.32 1.58 1.75 1.51 1.45 1.41 1.28 
PEU 1.4 1.38 1.41  1.62 1.5 1.51 1.49 1.39 1.32 
ENJ 1.44 1.38 1.47 1.38  1.47 1.45 1.41 1.4 1.36 
BI 1.7 1.42 1.6 1.38 1.49  1.41 1.49 1.4 1.32 

JR 1.41 1.3 1.31 1.38 1.4 1.41  1.47 1.45 1.26 

Pf 1.42 1.31 1.36 1.38 1.4 1.46 1.51  1.37 1.34 
Im 1.42 1.31 1.4 1.36 1.45 1.47 1.58 1.43  1.35 
SA 1.41 1.3 1.31 1.36 1.47 1.44 1.49 1.45 1.47  

 
Table 10. IRG derived using AdaBoost model class.  

 Use Qu PU PEU ENJ BI JR Pf Im SA 
Use  1.42 1.7 1.4 1.49 1.91 1.47 1.51 1.44 1.34 

Qu 1.58  1.61 1.43 1.56 1.66 1.46 1.44 1.38 1.28 

PU 1.63 1.43  1.38 1.6 1.6 1.44 1.44 1.38 1.31 
PEU 1.4 1.35 1.38  1.58 1.43 1.39 1.44 1.36 1.28 
ENJ 1.42 1.34 1.48 1.48  1.5 1.5 1.42 1.37 1.35 
BI 1.73 1.39 1.58 1.38 1.42  1.32 1.49 1.39 1.34 
JR 1.38 1.26 1.32 1.37 1.42 1.43  1.43 1.43 1.38 

Pf 1.4 1.29 1.32 1.38 1.43 1.43 1.5  1.38 1.32 

Im 1.45 1.31 1.43 1.37 1.45 1.4 1.52 1.41  1.43 
SA 1.41 1.3 1.36 1.43 1.44 1.42 1.43 1.47 1.49  

 
Table 11. IRG derived using kNN model class. 

 Use Qu PU PEU ENJ BI JR Pf Im SA 
Use  1.39 1.72 1.38 1.46 1.91 1.51 1.52 1.45 1.33 
Qu 1.52  1.54 1.41 1.45 1.64 1.47 1.44 1.42 1.33 

PU 1.59 1.36  1.4 1.47 1.72 1.47 1.47 1.45 1.34 
PEU 1.4 1.32 1.39  1.47 1.45 1.52 1.48 1.39 1.3 
ENJ 1.41 1.33 1.49 1.45  1.5 1.51 1.45 1.37 1.34 
BI 1.73 1.36 1.56 1.39 1.45  1.33 1.5 1.43 1.3 
JR 1.36 1.28 1.34 1.38 1.41 1.43  1.46 1.42 1.31 
Pf 1.42 1.29 1.34 1.38 1.4 1.47 1.53  1.4 1.31 

Im 1.46 1.3 1.43 1.39 1.43 1.53 1.54 1.46  1.37 
SA 1.4 1.3 1.38 1.39 1.45 1.47 1.5 1.51 1.44  
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