
Intrinsic interactive reinforcement learning – Using
error-related potentials for real world human-robot
interaction
Su Kyoung Kim1,*, Elsa Andrea Kirchner1,2, Arne Stefes2, and Frank Kirchner1,2,

1Robotics Innovation Center, German Research Center for Artificial Intelligence (DFKI) GmbH, Bremen, Germany
2Robotics Lab, Faculty of Mathematics and Computer Science, University of Bremen, Germany
*su-kyoung.kim@dfki.de

ABSTRACT

Reinforcement learning (RL) enables robots to learn its optimal behavioral strategy in dynamic environments based on feedback.
Explicit human feedback during robot RL is advantageous, since an explicit reward function can be easily adapted. However, it
is very demanding and tiresome for a human to continuously and explicitly generate feedback. Therefore, the development of
implicit approaches is of high relevance. In this paper, we used an error-related potential (ErrP), an event-related activity in the
human electroencephalogram (EEG), as an intrinsically generated implicit feedback (rewards) for RL. Initially we validated our
approach with seven subjects in a simulated robot learning scenario. ErrPs were detected online in single trial with a balanced
accuracy (bACC) of 91%, which was sufficient to learn to recognize gestures and the correct mapping between human gestures
and robot actions in parallel. Finally, we validated our approach in a real robot scenario, in which seven subjects freely chose
gestures and the real robot correctly learned the mapping between gestures and actions (ErrP detection (90% bACC)). In this
paper, we demonstrated that intrinsically generated EEG-based human feedback in RL can successfully be used to implicitly
improve gesture-based robot control during human-robot interaction. We call our approach intrinsic interactive RL.

Introduction
Reinforcement learning (RL) in real-world robotic applications is challenging for different reasons: a) the high-dimensional
continuous state and action space, b) high-costs of generating real-world data (e.g., rollouts) and expensive real-world
experiences which cannot be replaced by learning in simulation, and c) no straightforward way to specify appropriate reward
functions including reward shaping to specify goals, etc.1–3 These problems scale exponentially with the complexity of the task
and the many pitfalls of the real world, which make it oftentimes impossible to decide whether or not an action was successful
or failed.

Several approaches have been suggested to avoid specifying reward functions such as inverse RL4–6, which extracts reward
functions from demonstrations of the human expert, e.g., obtained by kinesthetic teaching or teleoperation, or interactive RL7–9,
in which the robot communicates with a human to improve robot’s behavior and learning speed. Recent approaches have
focused on a more active contribution of the human to overcome the limitations of the initial approaches, especially of inverse
RL (e.g., the so-called value alignment problem10). For example, in cooperative inverse RL11, the human teaches the robot
about the human’s reward function and robot and human together try to maximize the reward. Another example is active reward
learning12, in which the reward function is actively learned from the human as an expert while learning the policy.

In fact, the use of human feedback is advantageous in real-world robotic applications for different reasons. First, not all
robotic applications allow us to define perfect reward functions because reliable ground truth measures of the robot’s actions are
not available, e.g., gripping an object can be validated based on touch sensor data. However, the stability of the grip may not
easily be derived from that data depending on the type of sensor used. Second, reward functions in real-world tasks are mostly
hand-coded and require extensive task knowledge, which is not always available or faulty. Third, a reward function that was
defined for a specific task A must be re-defined for task B even if A and B differ just slightly. However, human feedback can be
obtained irrespective of task types or variation. Fourth, feedback in RL is based on a predefined reward function and usually
discrete, and given for one specific action. Human feedback can more easily cover and hence validate a sequence of actions or
even a subjective impression of behavior. Subjective correctness of behavior often is not a matter of a discrete decision and
hence a subject which is difficult to be expressed and externalized even for a human. Thus, psychological measures, such as
brain activity, are a good source of implicit feedback about complex internal evaluations made by a human observer that are
hard to describe or to externalize. This is for example also known from the Uncanny Valley effect13 where the human may feel
that a robot’s appearance or behavior is strange without being able to explicitly saying what is strange. However, this evaluation



is clearly derivable from brain activity , e.g., by functional magnetic resonance imaging as shown for mismatches between the
appearance of an agent and its motion14.

To make use of human feedback is of special interest in scenarios, in which the robot is directly interacting with a human15.
Not only since the human is present anyway but also because during human-robot interaction the subjective sense of correctness
might be more relevant than formal correctness. We could already show in several different robotic applications that the
human electroencephalogram (EEG) encodes internal states, which can be detected online in single trial, by embedded brain
reading16–18 and can be used to improve robotic behavior, e.g., smoother interaction, in rehabilitation tasks19 and user workload
adjustments20, 21.

In this study, we use intrinsically generated human feedback in a variant of interactive RL to improve human-robot
interaction. We want to emphasize that we used human feedback as the exclusive reward source in contrast to most applications
of interactive RL, in which human feedback is used in addition besides more conventional rewards generated by a predefined
reward function8. We use intrinsic human feedback, i.e., a brain pattern called error-related potential (ErrP) as an implicit
measure of the human evaluation of correctness of the robot’s actions.

The ErrP is an established event-related potential (ERP) component, which has been investigated in different application
areas (for review22). It is elicited depending on task situation and therefore different types of ErrP can be specified, e.g.,
interaction ErrP23, 24, which is evoked by recognizing an error during interaction between human and machine, feedback
ErrP25, 26, which is elicited by recognizing an error that is made aware by feedback presented to the human, observation
ErrP24, 27, 28, which is evoked, while observing an erroneous action of the robot (another person/external system, etc.), or
response ErrP29, 30, which is elicited by recognizing the own error of the person who is performing a task that requires rapid
responses (e.g., choice reaction task). Recently, ErrPs elicited by execution or outcome errors have also been reported31.

It has been investigated whether it is feasible to use ErrPs in single trial to evaluate the correctness of system behav-
ior24, 28, 32, 33, or to improve gesture recognition34, 35. ErrPs have also been used to build a model in reinforcement learning
tasks32, 36. Further, ErrPs have been applied to robotic tasks to improve system performance using reinforcement learning32, 37–39.
For adaptive control of real robots, however, it is necessary to test the feasibility of the usage of ErrPs as online feedback not
only while observing the robot’s actions28, 33, 37, 39 but also during interaction with robots as suggested here in our study. In most
previous studies (e.g.,33), an explicit information about the correctness of the robot’s actions (ground truth) was displayed to the
human to enable evaluation of the correctness of the robot’s actions while the human was observing the robot’s actions. This
explicit information was necessary to detect ErrPs which were evoked while evaluating the correctness of the robot’s actions.
Hence, the ground truth of the robot’s actions was predefined and this predefined ground truth was presented to the human while
the robot was online correcting his/her actions based on ErrP detection33. In a recent experiment, however, it was enough that
the subject knew the intended target position to elicit the ErrP, for the robot to learn an optimal strategy39. In other protocols
outside the application field of human-robot interaction, subjects were even allowed to freely choose a movement target location
that was not cued38, 40. In our approach, the human performed freely-chosen gestures to communicate with the robot and the
robot learns an action strategy online to perform correct actions according to human gestures. This kind of interaction between
human and robot is beneficial, since the ground truth of the correctness of the robot’s actions can be implicitly generated in the
human through an interaction with the robot via gestures. Thus, it is not necessary to display an explicit information about the
correctness of robot’s actions to the human, since the human implicitly knows the correctness of the robot’s actions because the
human decided on a mapping between gesture and robot behavior beforehand. This matches natural interaction conditions in
which the mapping between command and response is not always predetermined or may change over time or differ between
users. We developed experimental scenarios to test this kind of human-robot interaction/collaboration, in which ErrPs were
used as the outcome of an evaluation that is delivered to the learning robot as feedback. Based on this feedback in RL, the
robot implicitly learns the meaning of human gestures by online learning of the assignment between human gestures and the
corresponding actions of the robot.

In summary, this paper proposes to use EEG as the only source of online feedback (reward) in RL tasks during human-robot
interaction/collaboration. We use intrinsically evoked brain activities that do neither distract nor cause additional effort
(externalization) on the human part. In our application, the robot learns the assignment of human gestures to corresponding
actions and at the same time the recognition of human gestures using RL with ErrPs as rewards. A main contribution of this
paper therefore lies in the efficient use of the human as a valuable critic in reinforcement learning robots. We make use of
the unique intrinsic cognitive abilities of the human brain to evaluate observed complex behavior, while the human is actively
communicating with the robot. This allows the robot to learn human gestures implicitly by means of ErrP-based RL. The
approach was validated in a simulated as well as a real robot scenario and the applicability of intrinsically evoked human
feedback (ErrP) in human-robot interaction/collaboration tasks could be demonstrated successfully. We consider our approach
as a promising application of embedded brain reading in robotics.

2/21



Methods

Approaches
Figure 1 shows the schematic overview of the concept of the proposed approach (see also Supplementary Movie S1). We
developed a human-robot interface, which enables the control of a robot by using human gestures. In our approach, the robot
has no prior knowledge about the gestures before the robot receives feedback by interacting with the human. The robot learns
the meaning of the gestures in a more indirect way by learning the assignment of human gestures to the corresponding actions.
Here, we do not use a two-step procedure. The robot learns to recognize the human gestures based on gesture features extracted
from a Leap Motion Controller41. In parallel, the robot learns the mapping between human gestures and robot actions by acting
and receiving human feedback. On this account, theoretically, the human can change the meaning of the gestures, while the
robot is learning the mapping between human gestures and robot actions. That means, relearning of gestures is possible.

For the learning of the mapping between human gestures and robot actions, we used a contextual bandit approach42, which
enables to choose the robot’s actions based on context provided by human gestures. In our application, the user executes
different gestures to control the robot and the robot chooses the actions depending on the gesture type. When the chosen action
from the algorithm corresponds to the performed gesture of the user, the algorithm receives a positive feedback from the user.
Otherwise, the user delivers a negative feedback to the algorithm. In this way, the algorithm learns a good policy for choosing
actions based on a given context. That means, the action-selection strategy is updated with every action based on the feedback
received from the user. To maximize the correct selection of actions in the long-term, the algorithm exploits the previous
experiences and explores to gather new knowledge. Here, we tried to assure a robust learning through the stronger weighting of
positive feedback compared to negative feedback.

As feedback (rewards), we used surface EEG signals measured from the user. When the user is recognizing a wrong
mapping between the user’s gestures and the corresponding actions of the robot, an ErrP is evoked in the user, which is
detected in real time and transferred to the learning algorithm as a negative feedback. In contrast, the algorithm receives a
positive feedback, i.e., NoErrP, when the mapping is correct. Note that we defined that the positive feedback results in a higher
absolute reward value (rt = 1) than the negative feedback results (rt = 0). This non-externalized kind of human feedback is a
very effective way to communicate with the learner, since by the evaluation on the robot’s behavior brain activity (ErrP) is
intrinsically evoked and detected for implicit feedback.

Scenario Description
Figure 2 shows the schematic overview of the scenarios. We developed a simulated and real robot scenario to validate our
approach. Both simulated and real robot scenario contain a training and test phase. In the training phase, the subjects did not
interact with the robot. Instead, the subjects observed the robot’s actions without performing gestures (observation task). In
contrast, in the test phase, the subjects interacted with the robot by using gestures (interaction task). Since the time to record
the data took longer compared to the observation task, we used a classifier trained in the observation task to online detect
ErrPs in the interaction task (classifier transfer approach). In previous studies, we could already show that calibration time
can be reduced by applying such classifier transfer24, 43. Both, the simulated and the real robot scenario followed the same
concept for the training phase, i.e., the human performed no gestures. However, the test phase differed between simulated
and real robot scenario. In the simulated robot scenario, subjects performed the gestures according to instructions. Hence,
we could log all relevant data, i.e., action instruction, action made by the robot, errors committed by the robot, and decision
from a ErrP classifier. In contrast, in the real robot scenario, the subjects could freely choose a gesture (no action instruction).
Hence, we recorded a video of both gestures performed by the user and actions executed by the robot to evaluate ErrP detection
performance and the robot’s performance.

Simulated Robot Scenario
In the observation task (training phase), subjects were instructed to only observe commands given by gestures and the robot’s
actions. The experimental procedure is depicted in Figure 3a. A total of three pictures and one video were presented to the
subject in each trial (Fig. 3a-1, 2, 5, 6). In the first picture, the initial position of the robot was presented to the subjects for 1 s.
In the second picture, the instruction for robot control was presented to the subjects (e.g., please move the robot to the right).
However, the subjects were not required to perform the corresponding gesture. Instead, gestures and the robot’s actions were
preprogrammed. There was one video for each movement trajectory (action), i.e., forward, right and left movement of the
robot, that were kept identical for each action type, since in the real robot scenario trajectories that the robot performed were
also identical (pre-programmed) for each action type starting at the same position. Erroneous actions were simulated with a
probability of 11%. After the instruction, a fixation cross was presented for 1 s. In the end, the executed action of the simulated
robot was displayed to the subjects for 1s as a video. Here, the robot was simulated by using the simulation tool MARS44.
Note that the actions of the robot were not simulated online, but recorded beforehand. An observation ErrP was expected to be
evoked in the EEG of the subjects, when the subjects observed and recognized an erroneous action of the robot.

3/21



In the interaction task (test phase), subjects were instructed to control the simulated robot using a gesture recording system
called Leap Motion41. We used three kinds of hand gestures to move the robot to the left, right or forward (Supplementary Fig.
S1). The subjects moved their right hand to the left to move the robot to the left, they moved their left hand to the right to move
the robot to the right, and they made a fist to move the robot forward (it was allowed to use either the right or the left fists here).
The experimental procedure is depicted in Figure 3a. A total of five pictures and one video were presented to the subject in
each trial. With the first picture, the initial position of the robot was presented to the subjects for 1 s. By the second picture,
the instruction for robot control was presented to the subjects (e.g., please move the robot to the right). Then, the subjects
were required to perform the gesture, which corresponded to the previous instruction for robot control. The subjects had 10 s
to perform the gesture. The picture did not disappear until the subjects performed the gesture. Here, it was allowed to skip
a gesture, when the subjects were not entirely sure which gesture had to be performed, for example, the subjects missed the
instruction for robot control. The next instruction was presented when the subjects performed no gestures for 10s. In this case,
the entire event was not included for evaluation. In this way, wrong gestures of the subjects were avoided. After performing
a gesture, the subjects received the confirmation message that the gesture was successfully recorded. Note that the gesture
performed by the subject (Fig. 3a-4) was not yet recognized in our RL algorithm. Instead, the gesture was recorded and gesture
features were extracted using Leap Motion41 at that moment. However we displayed “gesture recognized” to the subject, since
this is more comprehensible. This message was displayed for 1 s. Afterwards, a fixation cross was presented for 1s. In the
end, the executed action of the simulated robot was displayed to the subjects for 1s as a video, which was embedded in a
custom presenter. As in the observation task, the robot was simulated by using the simulation tool MARS44. While the subjects
controlled the robot, we measured EEG signals from the subjects. In cases in which a gesture of a subject did not assign to
the intended robot action and the subject detected such mismatch (i.e., the erroneous interaction between the subject and the
robot), we expected an interaction ErrP. Here, the online detection of the interaction ErrP (at the single-trial level) enabled us to
automatically generate feedback for RL.

Real Robot Scenario
As in the simulated robot scenario, we used a training and test phase. The concept of the training phase (observation task) is
the same as of the simulated robot scenario. The experimental procedure is depicted in Figure 3b (see also Supplementary
Movie S2). The instruction for robot control was displayed on the monitor for 1 s (Fig. 3-b1). Afterwards, the instruction
disappeared (Fig. 3-b2) and the real robot began to execute the action. Subjects were instructed to observe the executed actions
of the real robot. Executions of the robot’s action were differently long depending on the type of robot’s actions (left, right,
forward) and took between 1.5 s and 2 s. As in the simulated robot scenario, robot’s actions were preprogrammed, in which
erroneous actions were simulated with the probability of 11%. Thus, subjects did not need to perform gestures to control the
robot. In the interaction task (test phase), subjects were instructed to freely choose gestures to control the real robot (Fig. 3c
and Supplementary Movie S2). However, this free selection of gestures allows no ground truth to evaluate the performance of
the robot. Hence, we recorded both gestures performed by the subjects and actions executed by the robot by video to obtain the
ground truth for the robot’s performance. Again, we recorded EEG signals from all subjects. We detected online interaction
ErrPs, when the subjects recognized the errors made by the robot.

For both training and test phase, two labels were generated for the classification: a) correct mapping between human
gestures and robot’s actions (Corr), which leads to no occurrence of ErrPs (NoErrP) and b) wrong mapping between human
gestures and robot’s actions (Err), which leads to occurrence of ErrPs (ErrP). The ratio of correct and wrong mapping was
1:8 for the training phase. However, in the test phase (both simulated and real robot scenario), the ratio of correct and wrong
mapping was different depending on the performance of the robot’s behaviors (Fig. 2).

Systems: gesture recording system, simulated and real robot
For gesture recording, we used a Leap Motion Controller (LMC)41. The LMC is a sensor, which connects with the computer
via USB. The detection range is approximately 50 cm. The LMC has two monochromatic infrared cameras and three infrared
LEDs. Each of both cameras records an image and using both cameras a stereo image is created. The LMC software determines
the position of hand and finger bones in x, y, and z coordinates relative to the sensor. In the end, the LMC API provides
the position and orientation of hand and fingers. The LMC API also allows to obtain a high-level information such as palm
normal vector, direction, the posture of the hand (grab strength, pinch strength). For our application, we used the palm normal
vector and grip strength as feature vectors, i.e., the x, y, z components of the palm normal vector and a value from zero to one,
which describes how far the hand is opened or closed (from flat hand [0] to fist [1]). We recorded 10 samples (100 ms per
sample) and generated a feature vector per sample. All feature vectors from 10 samples were averaged and this was used for
the RL algorithm. Note that the RL algorithms received gesture features (raw values), but not the output of a separate gesture
classification (i.e., recognized gestures) from the LMC API. For our application, we used three types of gestures: left, right, and
forward gesture (Supplementary Fig. S1).

For the real robot scenario, we used a six degree of freedom (6-DOF) robotic arm called COMPI45 (Fig. 3b), which was

4/21



developed at our institute (http://robotik.dfki-bremen.de/en/research/robot-systems.html). In this application, the robot arm was
controlled by sending joint values over network to the robot control computer. Four predefined actions (left, right, forward, back
to start) were implemented as a sequence of joint positions and three predefined actions (left, right, forward) were triggered
from the learning system. For the simulated robot scenario, we simulated the robotic arm COMPI (Fig. 3a) by using the
simulation tool MARS44 developed at our institute (http://robotik.dfki-bremen.de/en/research/softwaretools.html). The same
approach as for the real robot control was used to control the simulated robot, but instead of network transfer, the joint values
were sent. In the simulated robot scenario, we displayed the sequence of actions of the simulated robot to the subjects as a
video, which was embedded in a custom presenter. That means, the actions of the robot were not simulated during the whole
time of the task.

Reinforcement learning (RL)
In our application, we used three kinds of gestures. That means, different types of actions should be chosen depending on
gesture type. To this end, we used a contextual bandit approach42 as a variant of reinforcement learning, in which only
one action is selected per episode. Here, a learning algorithm sequentially selects actions of the robot based on contextual
information of the user’s gestures and robot’s action (i.e., assignment of the user’s gestures to the robot’s actions). The learner
adapts the action-selection strategy based on feedback (ErrPs) received from the user. In the multi-armed bandit approach,
context information is formulated as described in Li et al.42. The algorithm proceeds in discrete trials t = 1, 2, 3, ..., T . For
each trial, the algorithm observes the current user and a set At of arms together with the feature vector xt per action. The
vector xt contains the context. Based on observed payoffs in previous trials, the algorithm chooses an arm at and receives
payoff rt . The algorithm improves the arm-selection strategy with the new observation (xt ,rt ,at ). The total payoff of algorithm
is defined as ∑

T
n=1 rxt ,at and the optimal expected total payoff is defined as E [∑T

n=1 rxt ,a∗t ]. To obtain the optimal expected
total payoff, the expected total payoff should be maximized. In other words, the difference between the expected and the

received total payoff (RA(T )
de f
= E[∑T

n=1 rxt (a
∗
t )] – E[∑T

n=1 rxt (at)]) should be minimized. To minimize the regret, the algorithm
exploits the previous experience to choose the best action. However, the algorithm has only a limited knowledge from the
previous experience and thus the action-selection strategy is not perfect. For this reason, the algorithm explores to gather
further knowledge to build the best action-selection strategy46. However, this is not limited to maximize the current reward.
That means, in principle, the exploration can increase short-term regret, but can reduce long-term regret. Hence, we need a
good trade off between exploitation and exploration. As algorithm, we chose the LinUCB algorithm42 that assumes that the
expected payoff of an action a is linear in its feature xt (context) with unknown coefficient vector θ ∗a . To obtain the optimal
trade off between exploitation and exploration, the LinUCB algorithm42 uses an upper confidence bound (UCB) algorithm46–48.
For each trial (t), the algorithm estimates the mean payoff of each action (ût,a) and its confidence interval (ct,a) and selects
the action, which has the highest UCB [at = arg maxa (ût,a + ct,a), see line 11 in algorithm 1]. As mentioned earlier, we used
different types of gestures and each gesture can be assigned to a particular action of the robot. Thus, the gesture features provide
context. However, the robot’s action provides no context. Hence, we modified the original LinUCB algorithm. The exploration
parameter (α) was empirically set to 2. Details are included in the Supplementary Materials.

Algorithm 1. Modified LinUCB algorithm
0: Inputs: α ∈ R+

1: for all a ∈ At do
2: AAAa ← IIId (d-dimensional identity matrix)
3: bbba ← OOOd×1 (d-dimensional zero vector)
4: end for
5: for t = 1,2,3, ...,T do
6: Observe features of all arms a ∈ At : xt ∈ Rd

7: for all a ∈ At do
8: θ̂θθ ← AAA−1

a bbba

9: Pt,a ← θ̂θθ
T

xxxt + α

√
xxxT

t AAA−1
a xxxt

10: end for
11: Choose arm at = arg maxa∈At ,Pt,a with ties broken arbitrarily and observe a real valued payoff rt

12: AAAa,t ← AAAa,t + xxxt xxxT
t

13: bbba,t ← bbba,t + rt xxxt
14: end for

5/21



EEG pattern as reward in RL
We used EEG pattern as feedback, i.e., we used positive and negative feedback provided by the classifier: 1 for correct mapping
between human gestures and robot actions (Corr) and 0 for wrong mapping between human gestures and robot actions (Err):
rt = 1 or 0 in algorithm 1. As mentioned earlier, the collection of real-world data is high-costly and time-consuming in general
and especially erroneous events do not often occur compared to non-erroneous events in real-world applications. Thus, it takes
a long time to collect data containing ErrPs to train a classifier. To overcome this issue, we performed two approaches.

First, we augmented EEG data to receive two epochs (time windows which were used to extract features for the classifier)
for the same event by a time shift during data segmentation (Fig. 4a). Hence, we received two decisions from the classifier for
the same event (Fig. 4b). Only when we obtained the correct mapping from both time windows for the same event, a positive
feedback, i.e., a feedback of rt = 1 was sent to the learning algorithm. Otherwise, we send a feedback of rt = 0 (Fig. 4b).
That means, the positive feedback is more reliably obtained due to our data augmentation approach. Second, we emphasized
non-erroneous events (correct mapping) that more often occurs in real-world experiences compared to wrong events (wrong
mapping). Thus, the learning algorithm received 1 for a correct mapping and 0 for a wrong mapping. That means, positive
feedback (rt = 1) was updated (see, line 13 in algorithm 1) and had an effect on next action selection (see, line 8 and 9 in
algorithm 1). In contrast, negative feedback (rt = 0) was not updated (see, line 13 in algorithm 1). Nevertheless, negative
feedback had also an impact on next action selection, since the features (context) was updated (see, line 12 in algorithm 1)
and newly fitted (i.e., a new value of the estimated coefficient θ̂ ), which also affects next action selection (see, line 8 and 9 in
algorithm 1).

In our application, positive feedback (rt = 1) can be given in two cases (Fig. 4b): a) true negative (TN) classification (ErrP
was not detected when the robot made no mistake) or b) false negative (FN) classification (ErrP was not detected although
the robot made a mistake). Note that the positive class stands for a wrong mapping (Err label, ErrP). In contrast, negative
feedback (rt = 0) can be given in two cases (Fig. 4b): a) true positive (TP) classification (ErrP was detected when the robot
made a mistake) or b) false positive (FP) classification (ErrP was detected although the robot made no mistake). To summarize,
we tried to assure a robust learning by obtaining a higher reliability of positive events to overcome the under-supply of the
real-world data in general and the rare occurrence of erroneous events.

For each subject, we pre-trained the algorithm by presenting the algorithm a gesture feature set (recorded from an additional
subject) three times per gesture type as well as a simulated perfect ErrP based feedback to avoid the constant occurrence of
wrong mapping in the early stage of learning (details in Supplementary text). In fact, in real-world applications usually learning
does not always start at zero. Typically some knowledge is already available, e.g., some gestures are known but other might
wanted to be added. However, sometimes training does start at zero also in real-world applications. Therefore, we additionally
tested our approach in one subject (Subject 2) without pre-training. Online learning was found to be stable without pre-training.
We obtained a balanced accuracy of 85% in the online ErrP detection (details in Supplementary text and Supplementary Fig.
S2). Further, a similar pattern of regret was obtained with all subjects in the pre-training phase (Supplementary Fig. S3).

Online ErrP detection
Subjects
Seven subjects (3 females, 4 males, age: 24.85±7.4, right-handed, normal or corrected-to normal vision) participated in the
simulated robot scenario study. In addition, nine subjects participated in the study using the real robot scenario. Two subjects
from nine subjects were excluded: During the acquisition we had technical problems with the LMC loosing the signal caused
by a loose USB cable connection for one of these two subjects. The cable was exchanged afterwards. One subjects moved too
much during acquisition (in the break between the sets) such that the EEG cap moved backwards resulting in high impedances
and big shifts in electrode positions. In the end, seven subjects (3 females, 4 males, age: 30.28±8.3, right-handed, normal or
corrected-to normal vision) were selected for the real robot scenario study. Two subjects (Subject 1 and Subject 2) participated
in both simulated and real robot scenario.

All experiments were carried out in accordance with the approved guidelines. Experimental protocols were approved by the
ethics committee of the University of Bremen. Written informed consent was obtained from all participants that volunteered to
perform the experiments. Written informed consent for publication of identifying information/images was also obtained from
all participants.

Data Acquisition
EEGs were continuously recorded using the actiCap system (Brain Products GmbH, Munich, Germany), in which 64 active
electrodes were arranged in accordance to an extended 10-20 system with reference at FCz. Impedance was kept below 5 kΩ.
EEG signals were sampled at 5 kHz, amplified by two 32 channel Brain Amp DC amplifiers (Brain Products GmbH, Munich,
Germany), and filtered with a low cut-off of 0.1 Hz and high cut-off of 1 kHz.

6/21



Dataset
An overview of the dataset is illustrated in Figure 2. For both scenarios, i.e., the simulated and real robot scenario, a total of five
datasets was collected for each subject. Four datasets (training data) from the observation task were used to train a classifier
and one dataset (test data) from the interaction task was used to evaluate the trained classifier. Hence, a classifier transfer
(observation task→ interaction task) was applied for both the simulated and the real robot scenario. For the training phase, each
dataset contained 10 erroneous and 80 correct trials. For the test phase, online test data contained a different number of errors
depending on the robot’s online performance (Fig. 2). This was caused by the difference in performance of the online applied
learning algorithm, since its payoff is affected by the quality of feedback (i.e., the performance of online ErrP detection). For
the simulated robot scenario, the task time per set took 6 minutes for collection time of training data and 12 minutes for the
online test data. We needed more time for the online test data, since the subjects performed gestures in the online test. However,
for the training data, the subjects did not perform gestures. Instead, they only observed the actions of the robot. For the real
robot scenario, the duration of the real robot’s action took longer compared to the actions of the simulated robot. Thus, each set
took 12 minutes for both the training and the online test data (Fig. 2).

Preprocessing
The EEG data was analyzed using a Python-based framework for preprocessing and classification49. The continuous EEG
signal was segmented into epochs from −0.1 s to 1 s for each event type (correct/erroneous trial). Here, a challenge of online
ErrP detection in our robot control scenario was to detect ErrPs without knowing when erroneous actions of the robot were
recognized by the subjects. Another challenge is the variation of error recognition depending on the type of robot action (left,
right, forward). That means, the onset of correct and erroneous events is unknown. Thus, we could not segment the EEG signals
after each event type. Instead, we segmented the EEG signals after the start of the robot’s action. In other words, we began to
detect ErrP after the onset of the robot’s action. The segmented correct trials did not overlap with the following erroneous trials,
since a fixation point (cross) was presented for 1s after each event type (Fig. 4a). That means, there was at least 1 s between the
robot’s actions (i.e., between correct and erroneous events). Thus, only the correct trials without any error-related activity were
labeled as correct. In the same way, only the erroneous trials without any correct-related activity were labeled as erroneous.
All epochs were normalized to zero mean for each channel, decimated to 50 Hz, and band pass filtered (0.5 to 10 Hz). This
procedure was also used in other studies28. The xDAWN spatial filter50 was used to enhance the signal-to-noise ratio. By
applying the xDAWN the number of 64 physical channels was reduced to 8 pseudo channels.

Feature selection, feature extraction, and classification
Since we did not know the exact time point of the occurrence of the erroneous events (i.e., subjectively determined onset of the
erroneous actions of the robot), we performed a pre-analysis to find an optimal window to detect ErrPs (details, Supplementary
text and Supplementary Fig. S4). Based on this pre-analysis, we chose two time windows for feature extraction: [−0.1 s–0.6 s,
0 s–0.7 s]] for both simulated and real robot scenario. Features were extracted from eight pseudo channels after spatial filtering.
We extracted a total of 280 features (8 pseudo channels× 35 data points = 280 for each time window). Features were normalized
over all trials and used to train a classifier. A linear support vector machine (SVM)51 was used to classify correct and erroneous
trials. We optimized the cost parameter of the SVM (i.e., regularization constant52) and the class weight of underrepresented
instances with a stratified five-fold cross validation using a grid search. We used the predetermined values [100, 10−1, ... ,
10−6] for the cost parameter of the SVM and [1, 2, 4, 6, 8] for the class weight of underrepresented instances. Note that we had
an unbalanced ratio between erroneous and correct trials of 1:8. Hence, different penalty constants were used for two different
classes53. As a metric for classification performance we used the arithmetic mean of true positive rate and true negative rate,
balanced accuracy (bACC), where the erroneous trials belonged to the positive class.

Results

Online ErrP detection
In both simulated and real robot scenarios, ErrPs were elicited by erroneous behavior of the robot showing a characteristic
waveform with fronto-central positive and negative peaks (Supplementary Fig. S5 and Supplementary text). Table 1 shows the
online classification performance. Based on the number of trials the chance level should be around 58% and 60%54 for the
simulated and real robot scenario respectively. For the simulated robot control, we achieved a high classification performance,
(91% balanced accuracy (bACC) over all subjects). Further, we observed that there are variabilities between subjects (84%–99%
bACC). For the real robot scenario, we obtained a high classification performance as well (90% bACC over all subjects).
Again, we observed variabilities between subjects (73%–98% bACC). These very high performances in ErrP classification
were achieved by our data augmentation approach. ErrP classification performance was improved for some subjects compared
to a single window approach (Supplementary text and Supplementary Tab. S3).

7/21



Performance of robot control
Table 2 shows the accuracy of robot actions for the simulated and the real robot scenario during total learning time. In both, we
achieved a high performance.

Figure 5a shows the accumulated errors of the simulated robot. In general, we observed a reduction of errors in the last third
of the experiment. This pattern was shown for all subjects. The error curve was already stable in the middle of the experiment
for all subjects except for one (Subject 4). For most subjects (Subject 1, Subject 2, Subject 5, and Subject 7), errors occurred
more often at the beginning of the experiment compared to the end of an experiment. For Subject 3, we observed that the
error curve stabilized very slowly. This subject also showed a higher total number of errors and more errors occurring in the
beginning of the experiment compared to Subject 1, Subject 2, Subject 5, and Subject 7. However, we observed a stabilization
of the error curve in the middle of the experiment. The highest total number of errors was obtained with Subject 4. For this
subject, a very slow stabilization of the error rate was observed (the errors often occurred not only in the beginning but also still
in the middle of the experiment).

Figure 5c and Figure 5d show accumulated errors of the first and second half of the experiment. It can be seen that the
amount of accumulated errors in the second half of the experiment was obviously smaller compared to the first half of the
experiment. Figure 5e shows that the total number of errors for each subject was substantially higher for the first half of the
experiment compared to the second half of the experiment. We observed that this tendency was not obviously shown for Subject
4. However, statistical evaluation (Fig. 5f) shows that the amount of accumulated errors was significantly reduced [Wilcoxon
sign-rank test: first half of the experiment vs. second half of the experiment: p < 0.016, two-sided, alpha = 0.05]. Hence, error
rate decreased over time by learning.

Not surprisingly, we observed a fast stabilization of error rate for subjects with high performance in online ErrP detection
(Subject 1, Subject 2, Subject 5, Subject 6). In contrast, a slow stabilization of error rate was observed for subjects with lower
performance in online ErrP detection (Subject 3, Subject 4 (Tab 1 and Fig. 5a). Figure 5b shows the accumulated regret for
each subject. We observed the correlation between the regret and the errors of the robot for all subjects except for one subject
(Subject 5). For Subject 5, a small number of errors occurred, even though the regret was high. The reason for this is the high
number of false positives in the online ErrP detection for this subject. In our approach, the false positives have less influence
than false negatives (see Section Discussion). Thus, the learned model was stable despite of a relative higher number of false
positives and thus a relative lower number of errors was shown for this subject. Otherwise, for all subjects showing a lower
value of regret, less errors were also observed. In general, we observed that the higher the regret was, the more errors occurred.

Figure 6a shows the accumulated errors of the real robot. As expected, both the accumulated number of errors and the
error curve were similar to the simulated robot scenario (Fig. 5a). Based on the results from the simulated robot scenario,
which revealed that the number of errors of the robot’s action was significantly reduced after 45 actions, we grouped the action
errors in the same way for the real robot scenario. This kind of grouping enables the comparison between the first part of both
experiments (45 actions), i.e., the simulated and the real robot scenario. When comparing the first part of the experiment (with
again actions 1 to 45) with the second part (here only 15 actions due to the shorter duration of the test run in the real robot
scenario compared to the simulated robot scenario) again an improvement in behavioral performance, i.e., a reduction of errors,
could be found (see Fig. 6c). However, one must be careful with the interpretation of this result, since the second half of the
test experiment in the real robot scenario contained fewer actions. For this reason, we did not perform the statistical test as in
the simulated robot scenario, but illustrated the results only in descriptive mode.

Effect of ErrP detection performance on the robot’s behavioral performance
Our approach favours the true positive rate (TPR) compared to the true negative rate (TNR) (Fig. 4). Correspondingly, we
found a correlation between the TPR and the robot’s performance [r =−0.899, p < 0.006] in the real robot scenario. Thus,
the number of FNs had a stronger impact on the robot’s performance than the number of FPs (Supplementary Tab. S2). In
fact, Subject 2 and Subject 4 who showed the worst accuracy of TPR achieved the worst performance in correctness of robot’s
action compared to the remaining subjects in the real robot scenario.

Moreover, the robot’s performance was more affected when a high number of FNs and FPs occurred together compared
to the occurrence of many FNs alone (Supplementary Tab. S2). The worst performance of the robot’s actions was achieved
with Subject 4 and second worst performance was observed for Subject 3 who showed a large number of FNs and FPs in the
simulated robot scenario (Supplementary Tab. S2). This finding is the reason why we found no correlation between the TRP
and the robot’s performance in the simulation robot scenario. We found no large effect of the number of FPs alone except for
Subject 7 (Supplementary Tab. S2). For this subject, gestures were poorly recognized (Supplementary text).

Discussion
Our results show that EEG signals (ErrPs) can successfully be used as human feedback (rewards) in RL for learning in
real-world robotic applications when a binary feedback is sufficient (binary reward specification). As expected, we observed

8/21



that the higher the performance of online ErrP detection, the smaller the number of errors of the robot for most subjects. This
result does not surprise, since high quality of feedback is the basis of efficient learning. In this context, a high accuracy of online
ErrP detection in single-trials is relevant for online learning of action strategy of the robot. In fact, we could show a real-time
ErrP classification with a high accuracy (91% balanced accuracy for the simulated robot scenario and and 92% balanced
accuracy for the real robot scenario). Hence, the successive detection of ErrPs on the same task event, which was proposed in33

was not necessary in our study. In fact, these successive detections (due to high amounts of misclassification in the first robot’s
actions) improved the classification performance in the case when a human observer recognized misclassifications of a ErrP
classifier (e.g., ErrP was detected although the robot’s action was correct or ErrP was not detected although the robot’s action
was wrong)33. However, the correction of the robot’s action by successively detecting ErrPs was possible only in binary tasks:
the robot should pick and place the objects in the left or in the right. That means, the wrong actions of the robot (placing a
object to the left) could be corrected (placing the object to the right) within a binary task33. Our approach is not limited to the
number of actions due to the inherent property of RL.

Obviously, the regret curve did not exactly correspond to the performance of the robot’s actions (Fig. 5a vs. 5b, Fig. 6a vs.
6b), since the online ErrP detection was not 100% confident. In particular, in case of misclassification of wrong mappings
(FN), i.e., the ErrP was not detected although the robot made a mistake, the learning algorithm, nevertheless, received a
positive reward (rt = 1) and updated the existing strategy for action selection accordingly. This was seen in Subject 2 (Fig.
6b): The regret was not increased when the ErrP was not detected although the robot made a mistake (misclassification of
wrong mapping, FN). Note that the regret should be increased when the ErrP is correctly detected (correct classification of
wrong mapping, TP). However, in most cases, we obtained correct classification of correct mapping (TN). The reason for the
majority of TNs is that we double-checked the cases of TN by a data augmentation approach. In this context, more TNs can be
generated than TPs (equivalently more FPs can be generated than FNs). This pattern can be seen in Figure 5b. We observed
higher accumulated values of regret for Subject 3, Subject 4, Subject 5, Subject 7. The reason for this observation is the higher
number of FPs for these subjects. In fact, Subject 1, Subject 2, and Subject 6 had a lower number of FPs. Nevertheless, the
learning of the mapping between human gestures and robot actions was in general not affected by the high number of FPs (Fig.
5b, Supplementary Fig. S2), since the learning algorithm updates the existing action strategy to a small extent according to the
update of context (gesture features), but does not update based on the reward (in this case rt = 0). In contrast, we obtained a
higher reliability that the positive feedback (TN) provided by the classifier is surely correct. Furthermore, the obtained results
indicate that our approaches to handle few real-world experiences in robotic RL (double-check of correct mapping through
EEG data augmentation and more emphasis on correct mapping [positive feedback]) can be successfully applied to online
learning of adaptive action strategies for robots. We stress again that our approach contributes to making less robot behavior
errors, although the number of FPs is relatively higher. Such an approach does further help to handle situations in which the
occurrence of an event in the EEG cannot be determined exactly as it is the case here. We do not know for sure at which time
point after the robot started to perform an action the human observer recognized an error in its behavior. Such asynchronous
behavior of ERPs in the EEG with respect to events must be handled with care. To consider any detection of ErrP as negative
event and only repeated absences of ErrP (double NoErrP) as positive events does help to handle this issue of unknown ErrP
onsets. Finally, for the real robot application we could clearly show that ErrP detection performance (i.e., TPR due to the
reasons given above) has a clear influence on the robot’s behavioral performance.

As a first demonstration of our proposed approach, we have used a multi-arm bandit approach42. However, our approach
does not allow to add further gestures on the basis of the existing knowledge, i.e., on the basis of the already learned gestures.
Instead, in our approach, the learning of gestures can be completely relearned through interaction with a human, when further
gestures should be added. In the present study, we have not tested how well the relearning of gestures is working in real
applications. A systematic evaluation on this issue as well as the influence of performance (changes) in gesture recognition
is needed in future work. Further, it is also interesting to investigate approaches that enable to add additional gesture-action
mappings while retaining the already learned knowledge (i.e., retaining learned gesture-action mappings). In fact, which
approaches are beneficial depends on real applications. When it is necessary to changes the meaning of the gestures due to new
situations or applications, the relearning of gestures may be a good option. However, the learning of further gestures makes
more sense, when the meaning of gestures should not be changed within the same application. Nevertheless, it may be useful to
relearn human gestures when we consider that the generation of gesture features is not 100% perfect. In fact, this partly depends
on the quality of the gesture recoding system as it can provide wrong features which strongly diverge from the gestures that
were actually performed by the human (ground truth). A systematic investigation on this issue may be useful in future work.

Our study was designed such that the human directly communicates with the robot via gestures. The human implicitly
provides the ground truth of the correctness of the robot’s actions. Hence, the human implicitly knows about the correctness of
robot’s actions and it is not necessary to present the human an explicit information about the ground truth of the correctness of
the robot’s actions. In principle, no guidance of the human is needed. The human can behave freely. However, in case of too
many actions that a robot can perform, a pre-selection of possible actions by context of interaction or additional explicit input

9/21



might be needed to avoid too long training of the RL approach in future work. Moreover, the expected negative effect on ErrP
expression in case of an increased number of false behavior of the robot caused by e.g., many options available, and the effect
of different levels of ErrP classification performance must still be investigated.

Furthermore, the development of approaches to enhance the benefit of using inherently generated human feedback (ErrPs)
may be a relevant research topic in future work. The most important advantage of using the ErrP lies within its nature as an
intrinsic, not externalized evaluation of a situation, which is done by the brain without the human being necessarily aware
of it. This evaluation is the result of a complex analysis of a situation taking into account a rich set of experiences and a
priori knowledge of the human observer. Therefore, this kind of feedback is most valuable in complex scenarios including
many state/action pairs and even contextual information. An example could be a robotic system and a human working in a car
production scenario to assemble the windshield into the car. Here the human is the experienced part that observes the doings of
the unexperienced part (the robot) continuously and recognizes any suboptimal activity of the robot. These observations are
not necessarily related to a very specific action in a specific state but are more likely an evaluation of a series of actions that
the robot performed and that together resulted in a suboptimal performance. Even if the human does perceive the suboptimal
performance immediately (and an ErrP is generated) there is no time for corrective statements of the human to the robot. Instead
the intrinsically generated ErrP could be used as a feedback to the robot to improve its doing for the next windshield. Moreover,
the feedback is instantaneous in its nature. There is in principle no need to wait for the robot to finish an action. Further, data
processing with specifically optimized hardware55 can be performed within nanoseconds. How this very valuable feedback is
used best in such a parallel continuous fashion is a question that must be studied further and can only be solved by means of
adequate control architectures. Future work will therefore focus on questions such as scalability to an increased number of
possible robot actions and continuous integration of ErrP based feedback. Using it directly could be an approach that would
however require some form of background learning of the robot and foreground acting as it is known from a RL concept called
Dyna-Q56, 57. ErrPs could also be used in an indirect way and be combined with an RL strategy that uses old experience for
replay called Experience Replay57–61.

In summary, we presented an intrinsic interactive RL approach using ErrP-based human feedback, which enables the
learning of adaptive behaviors of a robot during interaction with a human. We showed that the assignment of freely chosen
gestures to robot action can be learned by a robot during human-robot interaction based on specific intrinsically generated and
online analyzed brain activity, i.e., brain states. That means, the robot does (in case of no pre-training) not know about the
gestures at all in the beginning. Instead, the robot receives the input from gesture features from the gesture recording system.
In case of pre-training, the robot has only few information on the gestures that might be chosen to control it. In addition, in
both cases the meaning of the gestures is unknown to the robot and is learned by interaction. This kind of integration allows to
relearn human gestures while learning to change gesture-action mapping online or to even adapt to new users with different
gesture to action mappings online. Further, the real-time ErrP detection can be successfully used to send human intentions and
evaluation on the robot’s behaviors to the robot. We achieved a high accuracy of the online ErrP detection for the simulated
and real robot scenario (91% and 90%) although the onset of ErrP activity could not be determined beforehand, since for
different users the subjective experience of error onset (in the robot’s behavior) may differ. We could also increase the reliability
of successful online learning of adaptive action strategy of the robot by double-checking correct mappings using EEG data
augmentation and by emphasizing correct mapping (positive feedback). In the end, we could demonstrate that the robot can
adapt an optimal action strategy online by learning the mapping between human gestures (i.e. human intention) and its own
actions based on ErrP-based RL. Since the brain pattern used as feedback is intrinsically generated by the human observer
or interaction partner and needs no extra effort from the human this type of reinforcement learning can be called intrinsic
interactive RL.

References
1. Kaelbling, L. P., Littman, M. L. & Moore, A. W. Reinforcement learning: A survey. J. Artif. Intell. Res. 4, 237–285 (1996).
2. Kober, J., Bagnell, J. A. & Peters, J. Reinforcement learning in robotics: A survey. The Int. J. Robotics Res. 32, 1238–1274

(2013).
3. Kormushev, P., Calinon, S. & Caldwell, D. G. Reinforcement learning in robotics: Applications and real-world challenges.

Robotics 2, 122–148 (2013).
4. Ng, A. Y. & Russell, S. J. Algorithms for inverse reinforcement learning. In Proceedings of International Conference on

Machine Learning (ICML), 663–670 (2000).
5. Abbeel, P. & Ng, A. Y. Apprenticeship learning via inverse reinforcement learning. In Proceedings of International

Conference on Machine learning (ICML), 1 (2004).
6. Argall, B. D., Chernova, S., Veloso, M. & Browning, B. A survey of robot learning from demonstration. Robotics Auton.

Syst. 57, 469–483 (2009).

10/21



7. Thomaz, A. L., Hoffman, G. & Breazeal, C. Real-time interactive reinforcement learning for robots. In Proceedings of
AAAI Workshop on Human Comprehensible Machine Learning (2005).

8. Stahlhut, C., Navarro-Guerrero, N., Weber, C. & Wermter, S. Interaction in reinforcement learning reduces the need for
finely tuned hyperparameters in complex tasks. Kognitive Syst. 2 (2015).

9. Raza, S. A., Johnston, B. & Williams, M.-A. Reward from demonstration in interactive reinforcement learning. In The
Twenty-Ninth International Flairs Conference (AAAI, 2016).

10. Russell, S. & Norvig, P. Artificial Intelligence: A modern approach (Pearson, 2010).

11. Hadfield-Menell, D., Russell, S. J., Abbeel, P. & Dragan, A. Cooperative inverse reinforcement learning. In Proceedings of
Advances in Neural Information Processing Systems (NIPS), 3909–3917 (2016).

12. Daniel, C., Viering, M., Metz, J., Kroemer, O. & Peters, J. Active reward learning. In Proceedings of Robotics: Science
and Systems (2014).

13. Mori, M. The uncanny valley. Energy 7, 33–35 (1970).

14. Saygin, A. P., Chaminade, T., Ishiguro, H., Driver, J. & Frith, C. The thing that should not be: predictive coding and the
uncanny valley in perceiving human and humanoid robot actions. Soc. Cogn. Affect. Neurosci. 7, 413–422 (2012).

15. Kirchner, E. A. et al. Intuitive interaction with robots - technical approaches and challenges. In Drechsler, R. & Kühne, U.
(eds.) Formal Modeling and Verification of Cyber Physical Systems, 224–248 (Springer, 2015).

16. Kirchner, E. A. et al. On the applicability of brain reading for predictive human-machine interfaces in robotics. PLoS ONE
8, e81732 (2013).

17. Kirchner, E. A. & Drechsler, R. A formal model for embedded brain reading. Ind. Robot: An Int. J. 40, 530–540 (2013).

18. Kirchner, E. A., Fairclough, S. & Kirchner, F. Embedded multimodal interfaces in robotics: Applications, future trends and
societal implications. In Oviatt, S., Schuller, B., Cohen, P. & Sonntag, D. (eds.) Handbook of Multimodal-Multisensor
Interfaces, vol. 3, forthcoming. (ACM Books, Morgan Claypool, forthcoming).

19. Kirchner, E. A., Tabie, M. & Seeland, A. Multimodal movement prediction - towards an individual assistance of patients.
PLoS ONE 9, e85060 (2014). DOI 10.1371/journal.pone.0085060.

20. Wöhrle, H. & Kirchner, E. A. Online classifier adaptation for the detection of P300 target recognition processes in
a complex teleoperation scenario. In da Silva, H. P., Holzinger, A., Fairclough, S. & Majoe, D. (eds.) Physiological
Computing Systems, 105–118 (Springer Berlin Heidelberg, 2014).

21. Kirchner, E. A. et al. An intelligent man-machine interface - multi-robot control adapted for task engagement based on
single-trial detectability of P300. Front. Hum. Neurosci. 10, 291 (2016).

22. Chavarriaga, R., Sobolewski, A. & Millán, J. d. R. Errare machinale est: the use of error-related potentials in brain-machine
interfaces. Front. Neurosci. 8 (2014).

23. Ferrez, P. W. & Millán, J. d. R. Error-related EEG potentials generated during simulated brain-computer interaction. IEEE
Transaction on Biomed. Eng. 55, 923–929 (2008).

24. Kim, S. K. & Kirchner, E. A. Classifier transferability in the detection of error related potentials from observation to
interaction. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, (SMC), 3360–3365
(2013).

25. Miltner, W. H., Braun, C. H. & Coles, M. G. Event-related brain potentials following incorrect feedback in a time-estimation
task: evidence for a ”generic” neural system for error detection. J. Cogn. Neurosci. 9, 788–798 (1997).

26. Holroyd, C. & Coles, M. The neural basis of human error processing: Reinforcement learning, dopamine and the
error-related negativity. Psychol. Rev. 109, 679–709 (2002).

27. van Schie, H. T., Mars, R. B., Coles, M. G. H. & Bekkering, H. Modulation of activity in medial frontal and motor cortices
during error observation. Nat. Neurosci. 7, 549–554 (2004).

28. Iturrate, I., Montesano, L. & Minguez, J. Single trial recognition of error-related potentials during observation of robot
operation. In Proceedings of the 32th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, 4181–4184 (2010).

29. Falkenstein, M., Hoormann, J., Christ, S. & Hohnsbein, J. ERP components on reaction errors and their functional
significance: A tutorial. Biol. Psychol. 51, 87–107 (2000).

11/21



30. Parra, L., Spence, C., Gerson, A. & Sajda, P. Response error correction -a demonstration of improved human-machine
performance using real-time EEG monitoring. IEEE Transactions on Neural Syst. Rehabil. Eng. 11, 173–177 (2003).

31. Spüler, M. & Niethammer, C. Error-related potentials during continuous feedback: using EEG to detect errors of different
type and severity. Front. Hum. Neurosci. 9:155 (2015).

32. Chavarriaga, R. & Millán, J. d. R. Learning from EEG error-related potentials in noninvasive brain-computer interface.
IEEE Transactions on Neural Syst. Rehabil. Eng. 18, 381–388 (2010).

33. Salazar-Gomez, A. F., DelPreto, J., Gil, S., Guenther, F. H. & Rus, D. Correcting robot mistakes in real time using EEG
signal. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA-2017) (accepted).

34. Chavarriaga, R. et al. Adaptation of hybrid human-computer interaction systems using EEG error-related potentials. In
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 4226–4229
(2010).

35. Förster, K. et al. On the use of brain decoded signals for online user adaptive gesture recognition systems. In Pervasive,
427–444 (Springer, 2010).

36. Zander, T. O., Krol, L. R., Birbaumer, N. P. & Gramann, K. Neuroadaptive technology enables implicit cursor control
based on medial prefrontal cortex activity. Proc. Natl. Acad. Sci. 113, 14898–14903 (2016).

37. Iturrate, I., Montesano, L. & Minguez, J. Robot reinforcement learning using EEG-based reward signals. In IEEE
International Conference of on robotics and automation (ICRA), 4181–4184 (2010).

38. Iturrate, I., Montesano, L. & Minguez, J. Shared-control brain-computer interface for a two dimensional reaching task
using eeg error-related potentials. In Proceedings of the 35th Annual International Conference of Engineering in Medicine
and Biology Society (EMBC), 5258–5262 (2013).

39. Iturrate, I., Chavarriaga, R., Montesano, L., Minguez, J. & Millán, J. d. R. Teaching brain-machine interfaces as an
alternative paradigm to neuroprosthetics control. Sci. reports 5, 13893 (2015).

40. Chavarriaga, R., Iturrate, I. & Millán, J. d. R. Robust, accurate spelling based on error-related potentials. In Proceedings of
the 6th International Brain-Computer Interface Meeting, EPFL-CONF-218930 (2016).

41. Leap motion developer portal [online] (Available: https://developer.leapmotion.com/).

42. Li, L., Chu, W., Langford, J. & Schapire, R. E. A contextual-bandit approach to personalized news article recommendation.
In Proceedings of the 19th international conference on World wide web, 661–670 (ACM, 2010).

43. Kim, S. K. & Kirchner, E. A. Handling few training data: classifier transfer between different types of error-related
potentials. IEEE Transactions on Neural Syst. Rehabil. Eng. 24, 320–332 (2016).

44. Machina arte robotum simulans [online] (Available: http://mars-sim.org).

45. Bargsten, V. & Ferandez, J. d. G. Compi: Development of a 6-dof compliant robot arm for human-robot cooperation. In
Proceedings of the 8th International Workshop on Human-Friendly Robotics (HFR) (2015).

46. Auer, P. Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res. 3, 397–422 (2002).

47. Agrawal, R. Sample mean based index policies with o (log n) regret for the multi-armed bandit problem. Adv. Appl.
Probab. 1054–1078 (1995).

48. Auer, P., Cesa-Bianchi, N. & Fischer, P. Finite-time analysis of the multiarmed bandit problem. Mach. learning 47,
235–256 (2002).

49. Krell, M. M. et al. pySPACE - a signal processing and classification environment in Python. Front. Neuroinformatics 7
(2013).

50. Rivet, B., Souloumiac, A., Attina, V. & Gibert, G. xDAWN algorithm to enhance evoked potentials: Application to
brain-computer interface. IEEE Transaction on Biomed. Eng. 56, 2035–2043 (2009).

51. Chang, C.-C. & Lin, C.-J. LIBSVM: A library for support vector machines. ACM Transactions on Intell. Syst. Technol.
(TIST) 2, 27:1–27 (2011).

52. Schölkopf, B., Smola, A. J., Williamson, R. C. & Bartlett, P. L. New support vector algorithms. Neural computation 12,
1207–1245 (2000).

53. Veropoulos, K., Campbell, C., Cristianini, N. et al. Controlling the sensitivity of support vector machines. In Proceedings
of the international joint conference on artificial intelligence, 55–60 (1999).

12/21



54. Combrissona, E. & Jerbia, K. Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal
classification and statistical assessment of decoding accuracy. J. Neurosci. Methods 250, 126 – 136 (2015).

55. Wöhrle, H., Tabie, M., Kim, S. K., Kirchner, E. & Kirchner, F. A Hybrid FPGA-based System for EEG- and EMG-based
Online Movement Prediction. Sensors 17 (2017). DOI 10.3390/s17071552.

56. Sutton, R. S. & Barto, A. G. Reinforcement learning: An introduction (MIT Press, Cambridge, 1998).

57. Gu, S., Lillicrap, T. P., Sutskever, I. & Levine, S. Continuous deep Q-learning with model-based acceleration. CoRR
abs/1603.00748 (2016). URL http://arxiv.org/abs/1603.00748.

58. Lin, L.-J. Self-improving reactive agents based on reinforcement learning, planning and teaching. Mach. learning 8,
293–321 (1992).

59. Riedmiller, M. Neural fitted Q iteration–first experiences with a data efficient neural reinforcement learning method. In
Proceedings of European Conference on Machine Learning (ECML), 317–328 (2005).

60. Adam, S., Busoniu, L. & Babuska, R. Experience replay for real-time reinforcement learning control. IEEE Transactions
on Syst. Man, Cybern. Part C 42, 201–212 (2012).

61. Mnih, V. et al. Human-level control through deep reinforcement learning. Nat. 518, 529–533 (2015).

Acknowledgements
This work is supported by the German Ministry of Economics and Technology (BMWi) under the grant no. FKZ 50 RA 1301
and Federal Ministry of Education and Research (BMBF) under the grant no. 01IM14006A. We thank Alexander Fabisch,
Manuel Meder, and Anett Seeland for valuable comments.

Author contributions statement
SKK, EAK, AS, and FK designed the concept of the proposed approach. SKK, EAK, and AS designed the experiment and
SKK designed the evaluation concept. SKK and AS developed and performed the experiment. SKK and AS recorded, analyzed,
and evaluated the data. EAK gave feedback to data analysis and evaluation. SKK, EAK, AS, and FK discussed the results and
wrote the manuscript.

Additional information
Competing financial interests: The authors declare no conflict of financial interest. Data and materials availability: All
data are present in the paper. Please contact SKK for further information about data and other materials. Supplementary
Information: Supplementary text, Fig. S1-S5, Tab. S1-S3, and Movie S1-S2

13/21

http://arxiv.org/abs/1603.00748


(a) Online ErrP detection for each action, which is sent to 

     the learner as human feedback

(b) Recording of human gestures by using a Leap Motion, which 

     generates features, e.g., finger and hand position, etc.

(c) Online learning of gesture recognition and mapping between 

     human gestures and robot's actions in parallel based on features 

     from the Leap Motion and the EEG as human feedback

reinforcement learning

intention

EEG

gesture

action

exploration of the possible 

strategies to maximize the 

total long-term reward

action strategy

free selection of one of three 

gestures to give an instruction

gestures

no knowledge about the 

meaning of the gesture

action selection

observing the robot's action

observation
performing the chosen action

action execution

evaluating the robot's actions 

and delivering the feedback 

feedback (ErrP)

learning of the mapping 

between gestures and actions

strategy adaptation

N gestures

N feedback (rewards)

gestures / feedback

(a)

(b)

(c)

Figure 1. Concept of the proposed approach. The robot tries to find an optimal action strategy through interaction with the
human. The robot explores the possible action strategies and receives feedback (rewards) from the human. The goal of the
robot is to maximize the total reward in the long run. In this way, the robot can learn and adapt its action strategy, while the
human freely chooses the gestures and delivers feedback to the robot. In the end, the robot implicitly learns the meaning of
human gestures.

14/21



4-7 wrong actions

53-56 correct actions

(depending on the performance 

of the robot's behaviors)

interaction ErrPs

interaction task

(test phase)

test data

classifier transfer

simulated robot scenario

training data

human 

behavior

interacting with the robot and

observing the robot's behaviors

observing the robot's 

behaviors

observation ErrPs

observation task

(training phase)

simulated actions (via video)

action strategy is learned
simulated actions (via video)

actions are preprogrammed

interaction ErrPs

interaction task

(test/application phase)

test data

classifier transfer

real robot scenario

training data

interacting with the robot and

observing the robot's behaviors

observing the robot's 

behaviors

observation ErrPs

observation task

(training phase)

real actions

action strategy is learned

real actions

actions are preprogrammed

10 wrong actions

80 correct actions

robot 

behavior

number 

of trials

per set

task time 

per set
12 min for 90 actions6 min for 90 actions

duration 

of trial

8 sec

per gesture-action pair
4 sec per action

12 sec

per gesture-action pair
8 sec per action

12 min for 60 actions12 min for 90 actions

10 wrong actions

80 correct actions

6-19 wrong actions

71-85 correct actions

(depending on the performance 

of the robot's behaviors)

number 

of sets
1 set for online detection4 sets 1 set for online detection4 sets

Figure 2. Scenario concept and task procedures. Each scenario contains a training phase to train a classifier and a test
phase to evaluate this trained classifier. The reason for such classifier transfer is to reduce the calibration time. In the training
phase, the subject observes the robot’s actions without interacting with the robot, i.e., without performing gestures (observation
task). In this way, the time of data collection was substantially reduced in the training phase compared to the test phase that
required an interaction with the robot (interaction task) by using gestures. In other words, we used the classifier trained on
observation ErrPs to online detect interaction ErrPs in the test phase.

15/21



observation task (simulated robot): 1-2-5-6 

interaction task (simulated robot): 1-2-3-4-5-6

gesture recognized
4

right
1 2

3

5 6

waiting for gesture

a b observation task (real robot)

right (b2)

instruction 

disappeared

robot action 

(is moving to the right)

robot action 

(initial position)

(b1)

instruction

simulated robot

real robot (Compi)

interaction task (real robot)

free choice of gestures 

(gesture to move to the left)

robot action 

(is moving to the left)

real robot (Compi)

c

Figure 3. Simulated and real robot scenario. (a) Simulated robot scenario: In the observation task (training phase), four
pictures were presented to the subjects: (1) the initial position of the robot, (2) the instruction for the robot, (5) the fixation
cross, and (6) the action of the simulated robot. When the subjects recognized wrong actions of the robot, observation ErrPs
were evoked. In the interaction task (test phase), two pictures were additionally presented to the subjects: (3) the message that
requests gesture execution and (4) the conformation message that indicates that the gesture was successfully recorded. When
the subjects recognized erroneous actions of the robot, interaction ErrPs were evoked. (b) Real robot scenario (training phase):
The subjects observed the actions of the real robot. The instruction for the robot’s actions was presented on a monitor (b1) and
disappeared after 1 s (b2). The real robot executed the actions that were preprogrammed. Observation ErrPs were evoked when
the subjects recognized wrong actions of the real robot. (c) Real robot scenario (test phase): The subjects interacted with the
robot by using gestures. When the subjects recognized wrong actions of the real robot, interaction ErrPs were evoked. In
contrast to the simulated robot scenario, the subjects could freely choose the gestures to control the real robot.

16/21



c  c1st window

onset of the 

robot's action

time (s)

1st window

- 0.1 0 0.9 1

 Data augmentation through time shift

The robot's action (i.e., mapping) is ...

correct correct wrong wrongreality

correct wrong correct wrongprediction

TN FP FN TPclassification

positive

feedback

negative 

feedback

positive

feedback

negative 

feedback

...is sent to

the robot

1 0 1 0reward

0 1 0 1regret

Note: the positive class (P) stands for the Err label (ErrP) 

c: correct, w: wrong

   Two decisions from the two windows per action

2nd window

cross cross

c c2nd window

c w w

w c w

w w w

c wc

a

b

Figure 4. Data Augmentation approach. (a) Approach to find the interest of window for feature selection during
continuous actions of the robot and (b) Approach to handle few real-world data in robotic RL.

17/21



Simulated robot scenario.
Training: observation task, Test: interaction task

Subject TPR TNR bACC
Subject 1 (female) 1.00 0.98 0.99
Subject 2 (male) 0.86 0.96 0.91
Subject 3 (female) 0.92 0.83 0.88
Subject 4 (male) 0.89 0.79 0.84
Subject 5 (male) 1.00 0.73 0.86
Subject 6 (male) 1.00 0.98 0.99
Subject 7 (female) 1.00 0.77 0.89
Mean ± SEM 0.95 ±0.02 0.86 ±0.04 0.91 ±0.02
95% CI 0.95 ±0.06 0.86 ±0.10 0.91 ±0.06

Real robot scenario
Training: observation task, Test: interaction task

Subject TPR TNR bACC
Subject 1 (female) 1.00 0.96 0.98
Subject 2 (male) 0.50 0.96 0.73
Subject 3 (female) 1.00 0.89 0.95
Subject 4 (male) 0.57 0.89 0.73
Subject 5 (male) 1.00 0.89 0.95
Subject 6 (female) 1.00 0.96 0.98
Subject 7 (male) 1.00 0.95 0.98
Average ± SEM 0.87 ±0.09 0.93 ±0.01 0.90 ±0.04
95% CI 0.87 ±0.21 0.93 ±0.03 0.90 ±0.11

Table 1. Online ErrP detection during a simulated and robot control (TPR: true positive rate, TNR: true negative
rate, bACC: balanced accuracy [(TPR+TNR)/2]). Mean, standard error of mean (SEM), and 95% confidence interval (CI =
mean ± margin of errors are reported. Note that the positive class stands for a wrong mapping (Err label, ErrP).

18/21



Simulated robot scenario.
Subject Accumulated number of wrong actions Total actions Accuracy (%)
Subject 1 (female) 6 90 93.33
Subject 2 (male) 7 90 92.22
Subject 3 (female) 13 90 85.55
Subject 4 (male) 19 90 78.88
Subject 5 (male) 6 90 93.33
Subject 6 (male) 5 90 94.44
Subject 7 (female) 11 90 87.77
Mean ± SEM 9.57 ±0.32 90 89.36 ±3.40
95% CI 9.57 ±4.71 90 89.36 ±5.23

Real robot scenario
Subject Accumulated number of wrong actions Total actions Accuracy (%)
Subject 1 (female) 5 60 91.7
Subject 2 (male) 6 60 90.0
Subject 3 (female) 4 60 93.3
Subject 4 (male) 7 60 88.3
Subject 5 (male) 4 60 93.3
Subject 6 (female) 4 60 93.3
Subject 7 (male) 4 60 93.3
Mean ± SEM 4.86 ±1.21 60 91.90 ±2.02
95% CI 4.86 ±1.27 60 91.90 ±2.12

Table 2. Performance of the simulated and real robot (accumulated number of wrong actions, total number of
actions, and accuracy). Mean, standard error of mean (SEM), and 95% confidence interval (CI = mean ± margin of errors)
are reported.

19/21



Wilcoxon sign-rank test

Figure 5. Simulated robot learning. (a) Accumulated errors of the robot for each subjects, (b) Accumulated regret for each
subjects, (c) Accumulated errors of the robot in the first half of the experiment (1 to 45 actions) for each subject, (d)
Accumulated errors of the robot in the second half of the experiment (46 to 90 actions) for each subject, (e) Total number of the
robot’s errors in the first or the second half of the experiment for each subject, and (f) Comparison between the first and last
half of the experiment (1 to 45 actions vs. 46 to 90 actions) by performing Wilcoxon sign-rank test (two-sided, alpha = 0.05).
The raw values (sample size of 7, i.e., 7 data pairs) used for this statistical analysis were depicted in e.

20/21



ba

d

TP

TP

FP

TP

TP

TP

FP

TP

FP FN FN
TP

TP

FP

FN

B

- TPs, FPs, and FNs are depicted. 

- The remaining classifications are TNs.

- TPs, FPs, and FNs are depicted. 

- The remaining classifications are TNs.

c

Figure 6. Real robot learning. (a) Accumulated errors of the robot for each subject, (b) Accumulated regret for each subject,
(c) Total number of the robot’s errors over all subjects in the different phases of the experiment, (d) Accumulated regret for
Subject 1 and Subject 2.

21/21


	References

