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estimation

CHRISTIAN LANDER,German Research Center for Artificial Intelligence (DFKI GmbH), Saarland Informatics
Campus, Germany
MARKUS LÖCHTEFELD, Aalborg University, Denmark
ANTONIO KRÜGER, German Research Center for Artificial Intelligence (DFKI GmbH), Saarland Informatics
Campus, Germany

We introduce hEYEbrid, a calibration-free method for spontaneous and long-term eye gaze tracking, with competitive gaze
estimation. It is based on a hybrid concept that combines infrared eye images with corneal imaging. For this, two eye cameras
are mounted on a glasses frame. In this way, the pupil can be tracked quickly with high precision. This information is
translated into the corneal image, which is used to create a connection to the environment, acting like a scene camera. In a
user study with 20 participants, we evaluated our approach against an extended version of the system, called 3C-hEYEbrid,
and a state-of-the-art head-mounted Pupil Labs eye tracker. We show that hEYEbrid provides accurate gaze estimation in
unconstrained environments and is robust against calibration drift (e.g. caused by taking off and putting on the device).
In addition, we present a mobile and wearable implementation of hEYEbrid and 3C-hEYEbrid, that is also usable with a
monocular Pupil Labs eye tracker. It connects the head-mounted device to a mobile phone, enabling gaze estimation in real
time. hEYEbrid represents a significant step towards pervasive gaze-based interfaces.
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1 INTRODUCTION
The visual system allows us to perceive a highly detailed reflection of our environment and plays an important role
when interacting with the real world. The point of gaze reveals where we are looking, and is used to quantify our
attention and interests [71]. Hence, eye gaze has been used as an input modality in human computer interaction
since the early 90s [19]. Recently, gaze-based interfaces in stationary settings became a valid option, as remote
eye trackers became easily available at a low price point. The latest devices for usage with desktop computers
are available for under $200 (Tobii 4C [69]). However, making gaze-based interfaces ubiquitous remains an
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open challenge that cannot be resolved using remote technologies. In particular, the integration of gaze support
in next-gen AR and VR devices seems inevitable, as the latest industrial evolutions suggest [64, 65]. For the
remainder of the article we will focus on head-mounted eye trackers, as these are the most promising technology
for pervasive gaze-based interfaces [3].
These eye trackers consist of a glasses frame that is equipped with at least two cameras: first, an eye camera
capturing a close-up image of the user’s eye, and second, a world camera partially recording the user’s current
field of view. The purpose of the eye camera is to detect and track the pupil as well as its movements. A widely
used approach to achieve this is active illumination of the eye with infrared. Gaze estimation is the process
of mapping the pupil positions from the eye camera’s into the world camera’s coordinate system. A crucial
step towards gaze estimation is calibration, which is used to create a function that maps eye to gaze positions.
Current state-of-the-art eye trackers, such as Tobii Pro Glasses 2 [66], are built on model-based (geometric) gaze
estimation. This method enables calibration-less gaze estimation. To adapt the model and compute personal
parameters like the angle kappa (compare [33]), at least a one- dpoint calibration is needed. To further increase the
accuracy to be competitive, even more calibration points are needed [72]. Further, these methods need complex
hardware setups with more than two cameras and are extremely expensive (more than tens of thousands of
USD). On the other hand’s, eye trackers that rely on regression-based (interpolation) gaze estimation need a more
extensive calibration step, but are usually cheaper [24].
All gaze estimation methods share the same set of parameters, that are acquired through the calibration. According
to Hansen et al. [14], these are:

• camera calibration to determine the intrinsic camera parameters
• geometric calibration to determine relative locations and orientations in the setup, like camera and light
sources
• personal calibration to estimate the cornea curvature, the angle kappa (offset between visual and pupillary
axes)
• gaze mapping calibration to determine the parameters of the eye to gaze mapping function

Even if it is possible to set up a fully calibrated eye tracker, that is, a system in which the camera parameters and
the geometry are known, the so-called calibration drift will affect the gaze estimation accuracy. This effect can
be caused by several factors (e.g. eye physiology, environmental factors, the device’s position) and is known to
worsen the gaze estimation [26]. Besides that, the current appropriate calibration procedures usually require the
user to fixate a sequence of visual stimuli. That is, a supervisor, usually a professional, is needed to check the
validity of the data sampling, the positioning of the cameras and finally the accuracy of the recorded calibration.
To summarize, this step itself constitutes a serious problem that prevents the application of current head-mounted
eye trackers at pervasive scale [32]. Desirable attributes of an eye tracker include minimal intrusiveness and
obstruction, allowing for free movements while maintaining high accuracy, easy and flexible setup, and low cost.
A more detailed description of eye tracker preferences is given by Scott and Findlay [53]. Although the latest
commercial eye trackers try to include all these attributes, they remain regrettably expensive. Moreover, most
of these devices rely on a direct connection to a powerful computer for real-time data processing. As a result,
current head-mounted eye trackers are neither applicable for spontaneous interaction nor suitable to conduct
long-lasting in-the-wild experiments.

In this paper we present hEYEbrid, a concept that enables calibration-free and accurate gaze estimation us-
ing a head-mounted device. We developed a hybrid approach to estimate a person’s gaze, utilizing two eye
cameras: (1) an infrared eye camera that is tracking the pupil’s positions and its movements, and (2) a natural
light eye camera that captures closeup RGB images of the eye. The latter captures the environment reflected on
the corneal surface, i.e. the iris and the pupil of the human eye, and is referred to as the corneal camera in the rest
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of the paper. The underlying assumption is that the pupil center in the corneal camera’s images corresponds to
the actual gaze point in the real environment. This assumption is similar to the one that most current eye-trackers
make. Pupil position and center are extracted in the infrared image and mapped onto the corneal image. Hence
we are able to extract the reflection within the pupil area, which roughly represents the user’s current field of
view. Both cameras are placed next to each other in a fixed position, focusing on the same eye. With hEYEbrid, we
do eliminate the need for a cumbersome calibration as well as regular re-calibration procedures. To compute the
relationship between the infrared and corneal camera image plane, a mapping needs to be computed at one time
during the construction process of the head-mounted device. Thus hEYEbrid is an enabling technology for any
kind of gaze estimation in pervasive settings, such as spontaneous gaze estimation or user studies in the wild.

Fig. 1. The developed hEYEbrid concept used to build a mobile and wearable device for spontaneous competitive gaze
estimation at any place and any time. The head-mounted device is connected to a Nexus 6P that processes both camera
streams in real time.

In a controlled user study with 20 participants we evaluated the gaze estimation accuracy of three approaches,
each different in the number and location of cameras: (1) hEYEbrid using two eye cameras, (2) 3Camera hEYEbrid
(3C-hEYEbrid), which combines the two eye cameras of hEYEbrid with an additional scene camera, and (3) a
state-of-the-art monocular Pupil Labs eye tracking system1. In three validation sessions, each participant had
to focus on 15 different objects. Between sessions, we either re-calibrated the Pupil Labs eye tracker or asked
the participant to take off and put on the device to simulate a calibration drift. With hEYEbrid, we achieved the
highest gaze estimation accuracy, compared to the other approaches, namely 2.19°. The simulated calibration drift

1https://pupil-labs.com/
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had no significant impact on hEYEbrid’s performance, as it still achieved 2.36° accuracy in a fully unconstrained
setting.
Finally, we designed and implemented a mobile and wearable system by connecting a head-mounted device

based on hEYEbrid to an Android phone, as illustrated in figure 1. It includes the functionalities for ad-hoc gaze
estimation on a public screen and focused object detection. Moreover, the mobile application is able to drive a
head-mounted Pupil Labs eye tracker as well as the 3C-hEYEbrid device.
In sum, our work provides the following contributions:
• Novel hybrid approach connecting IR eye and corneal images.
• Accurate and constant long-term gaze estimation without (re-)calibration.
• Wearable and mobile system to employ gaze as an input modality in fully pervasive settings.

The remainder of the paper is structured as follows: We first give an in-depth description of the existing eye
tracking and gaze estimation techniques and their problems. We also review the existing work tackling the
problem of calibration. After that, we introduce the concept hEYEbrid as well as its extension, 3C-hEYEbrid, and
describe the implementation. We then describe the conducted study and present its results. In the last part of the
paper, we illustrate the design and implementation of the mobile prototype.

2 BACKGROUND & RELATED WORK
In this section we will first provide an overview about the anatomy of the human eye and the parts that are
important for eye tracking and gaze estimation. After that we will focus on the description and presentation of
different eye tracking and gaze estimation methods, as well as their current problems.

Fig. 2. Snapshots of the human eye. a) shows a picture facing the human eye; b) shows a cross section of the eye.

2.1 The Eye
The human eye is our organ of vision. The eyeball is made up of three layers, as shown in figure 2a). The cornea
is a clear transparent convex layer at the front of the eye; the white part is the sclera, which is a continuation of
the cornea and protects the sensitive mechanism of the organ. The third and innermost layer, the retina, contains
the rods and cones, which are the light-sensitive receptors, connected to the optic nerve. The fovea centralis
(often fovea) is the region of the most accurate vision, which constitutes about 5° of vision. Between cornea and
lens, the iris is located, whose function is to to adapt the pupil diameter according to different light conditions.
The pupil is a black circular opening in the center of the iris, through which light is passed to the lens and the
retina. The lens is a biconvex body refracting (bending) the incoming light, so that it can be focused on the retina.
The border or edge between the cornea and sclera is called the limbus [7].
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Most important for gaze estimation is the definition of the axes of the eye. In a simplified model, there are two
main axes, as depicted in Figure 2b). The optical axis is defined by the line connecting the center of curvatures of
the eye, i.e. the center of the eyeball, the pupil and the lens. It is often referred to as the line of gaze (LoG). The
visual axis is defined as the line passing through the fovea and the center of the pupil. It is often referred to as
the line of sight (LoS) and determines the real gaze direction. The pupillary axis is the normal line to the corneal
surface passing through the center of the pupil, which is slightly different from the optical axis. Most important
for gaze estimation is the so-called angle kappa that is formed between the line of sight and the pupillary axis. A
definition of all axes and their respective angles can be found in [33].
The movements performed by the human eye are divided into several categories [16]. Basically, one distinguishes
between fixations, saccades and smooth-pursuit movements [14]. Fixation is not a real movement by itself, as it
describes the state of resting the gaze at a specific target within the central vision for a certain amount of time,
typically around 200–300 milliseconds (ms). Saccades are fast, jump-like movements of the eye to re-focus it
between two consecutive fixations, with a duration of 30–80 ms. Smooth pursuit movements are performed,
when following an object that moves with a constant speed (e.g., gazing at a passing car). The movements, our
eyes perform throughout the day are linked to cognitive processes and can be used to analyze people’s visual
behavior [56].

2.2 Eye Tracking & Gaze Estimation
Nowadays, three main techniques exist to track a person’s eye and do gaze estimation. The electro-oculography
(EOG) based method places electrodes around the eye to measure the skin potentials, as proposed by Kaufman et
al. [23]. The scleral search coil method uses a small coil that is embedded into a contact lens. It measures the
voltage caused by an external electro-magnetic field [49]. Camera-based (video-based) techniques use the images
of the eye to detect its characteristics in combination with images of the field of view to realize gaze estimation.
This method is mainly applied nowadays, by either using a head-mounted (cameras are mounted on the head) or
a remote (cameras are placed in the environment) system. As hEYEbrid belongs to the category of head-mounted
video-based eye gaze trackers, we will focus on these techniques. For a detailed review of eye gaze tracking
methods, we refer the reader to Young and Sheena [73]. In the following section we will provide the reader with
an overview of video-based eye tracking and gaze estimation methods. Although it is not the main focus of the ar-
ticle, it is important to understand the current problems and how we try to tackle them with our proposed method.

Detecting and tracking the eye is an essential step towards gaze estimation. Eye detection and tracking is
still a challenging task, as there are many unforeseen issues that have to be taken into account, like occlusion of
the eye by the eyelids, degree of openness of the eye, variability in size, reflectivity or head pose, etc. The eye can
be characterized through different features including the intensity distribution of the pupil, iris, and cornea, as
well as by their shapes. Ethnicity, viewing angle, head pose, color, texture, light conditions, the position of the iris
within the eye socket, and the state of the eye (i.e., open/closed) are issues that heavily influence the appearance
of the eye. According to Hansen et al. [14], there exists a huge taxonomy of eye detection techniques, consisting
of shape-based, appearance-based and hybrid methods. To get an in-depth review and comparison of different
approaches for each method, we refer the reader to them. We will provide a briefer description of the approaches
in the following.
Shape-based approaches are based on a pre-defined geometric model of the eye’s shape that is used to match
against. Existing methods differ in the level of detail, ranging from simple elliptical to complex models. Feature-
based shape methods detect the eye according to its features, such as edges, eye corners, the limbus (border
between iris and sclera) or pupil. The appearance-based (holistic) approach is comparable with a template
matching. For this an image patch model is created and eye detection is done using a similarity measure [75].
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The difference from other methods is that appearance-based techniques detect the eyes directly based on the
photometric appearance (color, filter response). Existing hybrid methods simply combine the aforementioned
methods to exploit their respective benefits.
The most prominent eye detection method nowadays is to use active infrared (IR) illumination [14]. This is
primarily done to enhance the contrast between pupil and iris. It is a special technique that cannot be mapped
exclusively to one of the groups from above. We distinguish between methods relying on visible light, called
passive, and invisible light, called active approaches. Most active methods use near IR light sources (780-880
nm), invisible for the human eye, thus not disturbing the user. Depending on the location of the light source
with respect to the camera, the pupil appears to be bright (close to the optical axis of the camera) [36] or dark
(away from the camera’s optical axis). The most popular algorithm is Starburst [30], introduced in 2015. It is a
video-based eye detection method, using the pupil contours as feature point, that are mapped onto an ellipse
shape using RANSAC model fitting. Recently Fuhl et al. [11] compared the latest pupil detection algorithms ElSe
[10], ExCuSe [9], Labs [22], SET [20], Swirski [60] and Starburst using different datasets of active illuminated
dark-pupil images. All these methods are feature-based methods using ellipse models and work on IR eye images.
They found that all algorithms give reasonable results. However, when it comes to real world images revealing
problems like changing illumination, occlusions, or reflections [52], the ElSe algorithm outperforms existing
approaches with respect to detection rate.
In summary, the recent development of more robust and accurate pupil detection algorithms is a major step
towards pervasive head-mounted eye tracking, which is a requirement for mobile gaze estimation.

Gaze estimation is the primary task of gaze trackers, which are often just referred to as eye trackers. Gaze
can be defined as either the gaze direction or the point of regard (PoR). A person’s gaze is usually determined by
the head pose (position and orientation) together with the eyeball rotation. The gaze changes if at least one of the
two values varies. It is common that a person first brings the head into a comfortable position before orientating
the eyes. To achieve very accurate gaze estimation, head movements have to be included. This is done by tracking
it via additional hardware (e.g., tracking the head, as done with remote trackers), or integrating them directly
into the method used.
Different methods exist to realize gaze estimation, which is always about finding a suitable mapping from pupil
to gaze positions. Depending on the hardware approach, pupil positions are mapped into the scene video of a
head-mounted device, or onto the screen if using a remote approach. The gaze estimation method by itself is
independent of the hardware approach. The majority use feature-based methods, which are divided into two
subclasses. Geometric (or model-based) ones calculate a 3D gaze direction vector by modeling the eye as a sphere.
The center of the cornea is estimated, and thus the optical axis can be computed. Such methods rely on prior
knowledge of personal eye parameters, such as size and radii of the eyeball and the cornea. Recently, Swirski
et al. [61] proposed a new ellipse fitting model that automatically constructs the 3D eye model. They were
able to achieve an average gaze error of 1.68°. However, they used perfect simulated noiseless data to provide
ground-truth results. In general, model-based approaches may require specific hardware and 3D knowledge
about the scene that is not always available, especially in mobile settings.
Regression (or interpolation-based) methods typically create a 2D mapping from pupil to gaze positions. Various
approaches exist to assess this mapping by polynomial functions[4], neural networks [21] or homography trans-
formations [74]. Although regression-based gaze estimation is able to achieve highly accurate results (up to 0.5°,
as reported in [32]), it usually requires a user-dependent calibration to evaluate the parameters needed for the
mapping. These include information about the relationship between the cameras as well as personal parameters
like the angle kappa, using the Purkinje images [8].
An alternative approach for gaze estimation is taken by appearance-based methods that analyze the pixel intensity
of the raw eye image. These methods work without a user calibration, but provide only a rough accuracy. For
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instance, Zhang et al. [75] report on 6.1° on average.
In summary, all present gaze estimation methods require some kind of calibration process [14]; they differ solely
in the type and the amount of calibration, which influences the gaze estimation accuracy. With hEYEbrid we aim
to eliminate the need for a calibration while still enabling reasonable gaze estimation in mobile settings. In the
following, we will highlight the problems of calibration and current investigations to address these.

2.3 Calibration
According to Holmqvist et al. [16], accuracy is one major characteristics of data quality in eye trackers. It is
defined as the distance between the estimated gaze position of the device and the actual gaze location in the
environment (where the person is really looking). Inaccuracy is directly influenced by the eye tracker itself; that
can be a result of bad pupil detection and tracking, a poor mapping from pupil to gaze positions, or both. As
we presented earlier, much research has been done recently on improving the pupil detection, including under
realistic conditions [10]. Thus the source of error is more related to a bad pupil-to-gaze mapping, which is a
direct result of a poor calibration. The calibration is performed by looking at a number of pre-defined visual
stimuli. While the user is fixating the calibration target, data is sampled that consists of pupil positions in the eye
image, the physical orientation of the eye and the location of the target on the calibration plane (i.e. for remote
trackers the screen, for head-mounted devices the scene camera images) [13]. But the calibration procedure itself
leads to many problems.
First of all, the calibration is an individual process that has to be conducted for each user separately prior to
usage [8, 16]. The reasoning is that the calibration includes human-specific parameters (e.g., cornea curvature
and angle kappa) and geometric information (e.g., relative location and orientation between cameras) [14].
Nyström et al. [45] investigated calibration with respect to practical issues. Typically a second person is needed
to set up and calibrate the eye tracking device. They compared different approaches of setting up the device
and sampling the calibration data. With an operator approach, a second person is doing all the work, whereas
in a participant-controlled approach, the users themselves monitor the data sampling. A system-controlled
approach does an automatic collection of calibration data, as the decision whether or not the user is currently
fixating the calibration target is an automated process. Nyström et al. [45] found that a participant-controlled
approach yields the best results. Automatic decision by the system still achieves better accuracy and precision
than an operator-controlled calibration. It is noteworthy that at least for remote eye tracking devices, the major
manufacturers use an automatic calibration (e.g., Tobii 4C2 [68]). However, modern high-end head-mounted eye
trackers such as the Tobii Pro Glasses 2 [67] still require the support of an additional person acting as operator.
Also, the developer-friendly Labs eye tracker applies a combination of the approaches depending on the use
case [24]. Although this might not be a huge problem per se, the occurrence of the so-called calibration drift
requires a regular re-calibration to maintain accurate gaze estimation. This effect describes the deterioration of
gaze estimation accuracy due to various reasons. These include changes in eye physiology (e.g., wetness of the
eye), the environment (e.g., lighting conditions), the position of the device and/or the camera in relation to the
eye, and changes of the user’s location and orientation [5]. Necessary re-calibration in the sense of executing the
full procedure to replace outdated calibration data is thereby time-consuming and distracts from the actual task.
Existing methods use a sampling subset to reduce time and effort [26, 55] and keep track of the user’s position in
space [25].
In sum, the user, location and orientation dependency, the calibration drift and the need for supervision prevent
head-mounted eye gaze trackers from being used outside of a controlled environment in pervasive settings.
Existing research addresses the aforementioned issues partially, but there exists no work so far that resolves all
of them. A prominent approach, for instance, is to make use of smooth pursuit movements of the eye. Pfeuffer et

2https://help.tobii.com/hc/en-us/articles/213414285-Specifications-for-4C
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remote techniques head-mounted techniques

[39, 40] [51] [34] [41] [35] [62] [63] [12] hEYEbrid

average accuracy N/A 15.14 mm
to 25.13 mm <1° 2.51° N/A 9.5° 2.5° 2.19°

3D pose
estimation yes yes no

calibration yes no yes no no yes no yes no

illumination none active
display

multiple
IR LEDs none 2 LEDs none none 4 IR

LEDs IR LED

cameras one one
biocular

two
scene + eye one one two

monocular one two
biocular

two
monocular

Table 1. An overview of existing gaze estimation approaches based on corneal imaging. It shows the main differences between
hEYEbridand remote and head-mounted techniques.

al. [46] calibrate a remote eye tracker while following moving objects on a screen in an unobtrusive way. The
movements of the eye are correlated with known trajectories of the moving objects (up to 0.6° of gaze estimation
accuracy). In a similar manner, Huang et al. [17] record calibration data during interaction with a computer
(2.56° error). However, both approaches are restricted to a specific interface, such as a display, and are developed
for remote devices. Another approach is to make use of visual saliency maps to auto-calibrate the eye gaze tracker
[6, 59]. Combining video and EOG-based devices with saliency maps computed on the scene videos enables one
to (re)-calibrate a head-mounted eye tracker [58] (6° of error in the best case). Although these works reduce
the calibration drift through an automatic calibration, they create other issues elsewhere, such as cumbersome
setups (cameras plus EOG) and inaccuracy. Recently Santini et al. [50] developed an approach for unsupervised
calibration of a head-mounted eye tracker. For this, they turn the user’s mobile phone into a calibration target that
is moved around to recalibrate the system while still reaching highly accurate results (0.59° of gaze estimation
error). But the approach is limited, as the recalibration has to be triggered manually. Hence the user has to know
that the accuracy is getting worse due to calibration drift.

With hEYEbrid we make use of the mirror-like characteristics of the eye’s cornea and exploit the fact, that
the environment is reflected on the human eye. By combining infrared images with corneal imaging in a head-
mounted device, we allow for calibration-free gaze estimation in unconstrained environments.

2.4 Gaze Estimation using Corneal Imaging
Different research areas took advantage of the specular reflections on the eye. Nishino and Nayar [39, 40] pio-
neered corneal reflection analysis, giving an analysis of what information the reflected image of an eye reveals.
They developed the corneal catadioptric imaging system using a geometric model of the cornea. The derived
system can be used for several applications like facial reconstruction and relighting [38], face recognition [37]
and the calibration of display-camera setups [42]. Besides applications in the field of computer vision [43], several
approaches utilize the reflection of the eye to enable gaze estimation [44]. Nakazawa et al. [34] used infrared
light to create patterns in the surroundings, visible in the reflection image, to map the user’s gaze into the
environment. Nitschke et al. [41] further improved the method by omitting the active illumination. However,
these approaches limited the user’s mobility by using a remote camera. They achieved highly accurate gaze
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estimation ( < 1°error), but in a highly constrained setting while sitting in front of a large screen. Nakazawa et al.
[35] used a head-mounted device to capture corneal reflections and achieved an average gaze estimation accuracy
between 2.51° and 4.65° in a highly constrained static desktop setting, not competitive with current commercial
remote desktop eye tracking systems. Takemura et al. [62, 63] developed a mobile prototype to estimate the object
a user is focusing on. They utilized natural feature tracking to detect objects visible in the corneal images. Both
systems are based on 3D eye pose estimation and geometric modeling of the eye, making them computationally
expensive. Their current implementations achieve only 7.3 and 1 fps respectively. In addition, these works lack
a detailed evaluation of the gaze estimation accuracy in realistic settings. Their two-camera prototype uses a
corneal and a scene camera, and thus relies on a user-specific calibration. Consequently, both cannot be used
for gaze based interaction in pervasive settings. Recently El Hafi et al. [12] developed a mobile corneal imaging
system based on high-resolution cameras (4k) capturing both eyes. They show the possibility to reliably detect
objects in the corneal reflections. In their experiment they evaluated the gaze estimation in a desktop setting
while looking at different targets on a computer screen and achieved an average error of 2.5°. However, their
installed 4K cameras can only deliver images at 11 fps, slowing down the processing speed. Table 1 highlights the
primary differences of hEYEbrid compared to the aforementioned approaches. For the sake of completeness, we
also included the remote techniques. To summarize, hEYEbrid is advancing the existing head-mounted approaches
as it (1) introduces a new concept, without a 3D pose estimation and limbus tracking; (2) is evaluated in a mobile
setting and (3) achieves better gaze estimation accuracy than existing approaches (especially for on-screen gaze
estimation, with an average of 1.64°).

With hEYEbrid, we propose a novel hybrid concept that enables spontaneous and accurate gaze estimation
in real time. The head-mounted device can be connected to a mobile phone. The user can dynamically choose to
use our system, without the need for calibration or the support of other persons.

3 HEYEBRID
As stated in the section above, gaze estimation using a head-mounted eye tracker faces several challenges
that come along with the main problem of calibration. Ideally, the user should be able to put on a device that
is immediately ready to use and provides robust and accurate gaze estimation. In keeping with this idea, we
introduce the concept of hEYEbrid in the following.

3.1 Concept
The basic idea of the approach is that the pupil center in the corneal image, i.e. in the reflected scene, coincides
with the actual gaze in the real environment. In Figure 3, the concept is visualized. The area within the corneal
limbus (often only limbus), that is the pupil and the iris, reflects the scene a person is currently facing. As the eye
is a spherical object, it acts like a fish-eye view into the world from the person’s perspective. Hence the reflection
is a distorted representation that is blended with the structure of the iris and is clearest within the area of the
pupil. Figure 3 also highlights the two most important axes of the eye, when it comes to gaze estimation. Standard
head-mounted eye tracking systems model the angle kappa, i.e. the difference between visual and pupillary axes,
using the vector of the first Purkinje and the pupil center. Note that both axes are going through the pupil center,
i.e., the pupil center on the corneal reflection refers to the gaze.

Corneal images cover the whole eye, including the complete visible eyeball, eyelashes and parts of the skin
around the eye. As only the area within the corneal limbus reveals a reflection of the environment, the parts
outside can be neglected. Existing works that use corneal reflections for gaze estimation are based on limbus
tracking [35, 41, 62]. To accomplish an exact and robust extraction on the corneal images, these approaches rely
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Fig. 3. Basic idea of hEYEbrid to use the pupil center in the corneal image (i.e. the environment reflected on the human eye)
as the gaze point in the actual scene.

on a combination of feature- and model-based methods. Although the limbus can be distinguished well from the
surrounding white sclera, other image features, such as eyelashes and eyelids, make the separation harder. In
addition, the underlying models are complex to compute [44, 62, 63]. That is why we decided to use a different
approach in hEYEbrid.

Fig. 4. Basic processing pipeline of hEYEbrid, which combines infrared eye and corneal images. The pupil is tracked in the IR
image and mapped onto the corneal image to finally crop the reflection within the pupil. The mapped pupil center coincides
with the gaze point.

Figure 4 illustrates the processing pipeline which we propose. Our concept is based on pupil detection and
tracking. The advantages are that the pupil naturally reflects our current field of view and the reflection within
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this area is explicit (unlike the iris’ reflectance). hEYEbrid is based on a two-camera approach, as it is hardly
possible to extract the pupil in the corneal image itself. Two different types of eye images – an infrared eye
and a corneal image – are combined and processed simultaneously. In this way we can profit from the matured
algorithms enabling a fast and robust pupil detection/tracking based on IR images. In each IR frame we obtain an
ellipse describing the pupil’s structure and center. This is mapped onto the corneal image, to finally crop the
reflection around the pupil, as depicted in Figure 4.

Fig. 5. Estimating a mapping between the two eye camera image planes based on epipolar geometry. In hEYEbrid, the
problem is reduced from 3D to 2D and solved via a planar homography mapping matrix.

To project information from the infrared to the corneal image, it is necessary to obtain a mapping between the
two image planes. Both cameras, the infrared as well as the corneal imaging camera, are placed in front of the
same eye in a fixed position relative to each other. The necessary mapping has to be computed only once. We do
this during the construction process of the head-mounted device. This mapping is a 3D transformation problem.
Figure 5 visualizes the geometric solution of how to find the pupil, which we extracted in the IR plane, in the
corneal plane.

In our system, we have two converging cameras in a specific position and orientation. According to the Epipolar
Constraint [15] , the following equation holds:

mT
2 Fm1 = 0 with a suitable 3 × 3 matrix F, called a fundamental matrix

It says that a pixelm2 of the corneal image plane, which corresponds to a pixelm1 in the infrared image plane,
cannot lie everywhere. The fundamental matrix has rank 2, thus is not invertible, and has seven degrees of
freedom (DOF), i.e. 9 minus two for rank and scale. If the fundamental matrix is known, we know for each pixel

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 149. Publication date:
December 2017.



149:12 • C. Lander et al.

m1 in the IR frame the corresponding epipolar line l2 in the corneal frame and vice versa:

mT
2 l2 = 0 with l2 = Fm1

mT
1 l1 = 0 with l1 = Fm2

where the vector li = (a,b, c )T describes the epipolar line ax + by + c = 0. The fundamental matrix F can be
computed from correspondences of image points. Givenm1, the search form2 is reduced to searching along the
epipolar line.
In hEYEbrid, we simplify the camera transformation from 3D to a 2D problem. For this we assume the eye to be
flat, so that the usual rotations of the pupil in 3D space are represented by a moving ellipse on a plane. That is
the camera image plane, as it just records a 2D image. The original 3D information is encoded in changes of the
elliptical parameters, such as minor and major axes, which result in different shapes of the pupil. In that case, the
mapping reduces to searching for a transformation matrix between two planes. A planar homography matrix H
satisfies the following constraint:

m2 = Hm1 for a 3 × 3 matrix H with rank 3

There is a one-to-one point correspondence in this particular case, which can be computed using image features
for instance. The homography matrix H is actually a projective transformation and has 8 degrees of freedom,
2 for scale, 2 for rotation, 2 for translation and 2 for line of infinity. It is important to note that it is not robust
against changes in distance to the planes one wants to find the correspondence between. Consequently, we have
to ensure that the distance from both cameras to the eye remains rather stable.
Finally, the combination of two eye cameras in a hybrid method is such that (1) we exactly compute the position
of the pupil and its center without relying on 3D eye pose estimation using pre-defined parameters [35, 41]
and (2) we do not require a user calibration [63]. The concept can be seen as just moving the scene camera of a
video-based head-mounted eye tracker below the eye to capture the world through the eye of the user. In doing
so, we eliminate the need for a calibration procedure.

3.2 Extension 3C-hEYEbrid
We modified hEYEbrid by adding scene images to the concept, based on the scene registration approach by
Nakazawa et al. [2]. In Figure 6 the additional concept of 3C-hEYEbrid is illustrated.
It projects the result of hEYEbrid’s pipeline, the cropped corneal image with the pupil center, to the current

scene image. The mapping is done as in the method from above based on a planar projection. As we cannot
guarantee that the spatial relationship between the corneal and scene camera is fixed, the correspondence
is computed for each pair of corneal and scene frames. In particular, the cropped corneal image is used as a
template image that we try to find in the observed image of the scene camera stream. We use a natural image
feature approach that computes the homography matrix H if enough matches are found. The matrix describes
a bidirectional mapping between the corneal and the scene camera’s image plane. The pupil position that was
already mapped on the corneal image is further transformed to gaze position in the scene image by applying the
transformation matrix. This concept is similar to the standard approach of head-mounted eye trackers. But in
contrast to performing a user calibration, 3C-hEYEbrid is continuously doing a frame-based calibration to update
the relationship between the cameras, without actively including the user. 3C-hEYEbrid does not account for any
image corrections (e.g., distortion) and does not rely on 3D eye pose estimation, like in [2]. Hence, it is more
lightweight and faster.
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Fig. 6. The extension 3C-hEYEbrid connects the result of hEYEbrid ’s processing pipeline with the scene image to project the
pupil center into the scene image plane.

3.3 Implementation
Both approaches are implemented using a monocular Pupil Labs Pro mobile eye tracking headset (2014 version3)
of which the eye camera was extended by a corneal camera. Figure 7 illustrates the building steps to integrate
hEYEbrid into the head-mounted device. We used a Logitech C270 webcam to capture corneal images with a
maximal resolution of 1280 x 960 pixels at 30Hz. The original housing and the glue around the lens were removed
to manually adjust the focus, so as to enable macro shots. This camera covers a 60° field of view and has a fixed
focus of 4 mm. The cropped corneal images have a varying resolution after slicing the pupil region. Depending
on the eye pose (i.e., the location of the pupil) the resolution ranges from 200 x 200 pixels to 300 x 300 pixels.

We reused the default infrared camera of the Pupil Labs eye tracker, but removed the housing. This camera can
record images with a maximal resolution of 640 x 480 pixels at 30 Hz. We designed a new mount to position both
cameras in front of the user’s eye. It preserves the basic possibility to rotate the eye cameras and adds the option
to be moved in front of the eye to position the cameras, so that the pupil is best covered. Both cameras are fixed
with screws and placed at an angle of 150° to each other. Hence, it is guaranteed that the cameras do not move
and can be placed close to the eye (around 25 mm), while still capturing the pupil and its movements.
The joint between the frame and the custom mount is lockable with a screw, so the mount and the cameras will
not move without further effort. Consequently, the relationship between eye, cameras and scene is rather fixed
and re-adjustments are done no more than for other head-mounted eye tracking devices. The custom mount was
designed with Autodesk Fusion 3604 and printed by a Formlabs Form2 3D printer5 using transparent synthetic
resin (GPCL02). All parts together (IR + corneal camera + custom mount) have a weight of 14 grams (compared to
the 4 grams of the original Pupil Labs eye camera), and are therefore still comfortable to wear. The total weight
is comparable to the default monocular device, as we removed the scene camera for hEYEbrid. The total size is
58× 28.25× 14.40mm (width x height x depth) compared to 46.20× 10.60× 7mm of the original eye camera. Hence
it does not disturb the user’s field of view any more than the usual device. For 3C-hEYEbrid, we attached the

3https://pupil-labs.com/blog/2014-01/new-pupil-pro-headset-capture-software-0-3-7/
4http://www.autodesk.com/products/fusion-360/overview
5http://formlabs.com/3d-printers/form-2//
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Fig. 7. Building steps to integrate hEYEbrid into the Pupil Labs head-mounted device. The corneal camera is affixed to a
custom mount together with the device’s IR camera. The mount is movable and rotatable.

device’s default scene camera, a Logitech c920, capturing frames of 1920 x 1080 pixels at 30Hz. It has a 90° field of
view with an auto-focus lens (shown in Figure 7) and a weight of about 80 grams.

Fig. 8. Integration of hEYEbrid and 3C-hEYEbrid into the PUPIL framework. The Capture software is able to record data,
whereas the Player is used for analysis and gaze computation of the different approaches.

We integrated hEYEbrid and 3C-hEYEbrid into the Pupil Labs open source eye tracking platform, version 0.8.76.
The modified devices are thus usable with laptops and desktop computers. We followed the best practices to
extend the software7 and implemented two new plugins for the Pupil Labs Capture and Player software, as
6http://github.com/pupil-labs/pupil/releases/tag/v0.8.7
7https://docs.pupil-labs.com/#plugin-guide
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shown in Figure 8. The first extension we made is needed to integrate the new type of images from the corneal
camera. It is similar to the existing plugin for IR images, in that it allows you to choose the camera source and to
change its parameters (e.g., resolution, brightness, exposure time). The main purpose is to give direct feedback,
i.e. the corneal image is overlaid with the pupil information, that is the ellipse and its center. We integrated
the information about the corneal images into the software’s interprocess communication. Hence it is possible
to record the data of hEYEbrid, such as image data and coordinates of the mapped pupil, in conformity with
Pupil Labs’s logging and message format. The second extension is made to play back recorded data while using
hEYEbrid or 3C-hEYEbrid. We integrated additional functionalities to visualize the corneal images as well as their
cropped version. All computed gaze points are highlighted in a different color depending on the approach. The
built-in mechanism for AR marker tracking is also enabled for corneal images. For instance, it is possible to label
and track objects. Finally, the user is able to export recorded data as CSV files for further processing and analysis.

We actively made use of all extensions for the analysis of the user study. All described software components are
developed in Python v2.7.6. By default, the Pupil Labs software is able to manage camera streaming via pyuvc8
(based on libuvc) and provides a toolkit for a graphical user interface through pyglui9 (based on OpenGL). For
image processing (e.g., feature tracking and matching, homography computation), methods of the OpenCV 3.2
library10 are used. For simple image manipulations (e.g., flipping and slicing), we use numpy11, as it provides fast
array processing.
For pupil tracking, we used the software’s built-in pupil detector[22] (implemented in detect_2d.hpp). It

implements dark pupil tracking and is based on edge detection, contour tracking and ellipse fitting.

Fig. 9. Setting up the eye cameras by computing the transformation between the infrared and corneal image planes. Image
features are extracted and matched to compute a homography matrix, used to map a point from one image into the other.

Tomap the pupil position onto the corneal images, the relation between both cameras was computed beforehand.
This was done by estimating a homography matrix, needed for a bi-directional projective transformation between
8https://github.com/pupil-labs/pyuvc
9https://github.com/pupil-labs/pyglui
10http://opencv.org/
11http://www.numpy.org/
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the IR and corneal image planes, as described before. Figure 9 depicts the one-time mapping computation. We
captured images of the IR and corneal camera focusing on a printed image (size: 22 × 15mm), revealing lots of
features. Both images are scaled to a resolution of 640 × 480 pixels. The homography matrix H is computed
by first doing a feature detection using the scale-invariant SIFT algorithm[31]. In a second step, the image
and the extracted features are matched with a 2-nn Brute-Force matcher. This simple matcher computes the
distance between two features of two images, using the Hamming distance, and returns the two best matches.
The resulting matches are used to find the homography matrix, by computing the perspective transformation,
using the functions provided by OpenCV (cv2.findHomography()). Note that this procedure is only done once,
during the construction process of the head-mounted device. As long as the cameras are fixed to each other, the
procedure does not have to be repeated.
For 3C-hEYEbrid, the Pupil Labs eye tracker’s scene camera is used to retrieve the scene images. The homography
matrix between the cropped corneal and scene image planes is computed as described above. We also use the
methods for SIFT and a 2-nn Brute-Force matcher provided by OpenCV.
All extensions needed to integrate hEYEbrid and 3C-hEYEbrid with the Pupil Labs framework will be made
publicly available, together with the 3D models to build the hardware prototype.

4 EVALUATION
We conducted a controlled user study to assess the validity of hEYEbrid’s approach and its gaze estimation
accuracy in comparison to an existing state-of-the-art eye tracking approach and 3C-hEYEbrid. We collected data
using the head-mounted device that was described above. With this it is possible to record data from a Pupil Labs
eye tracker, hEYEbrid, and 3C-hEYEbrid simultaneously and compare the gaze estimation accuracy.

4.1 Experimental Design
We used a within-subject 3 x 1 design with the independent variableMode, i.e. the method used for gaze estimation.
We chose the following three different modes for gaze computation: hEYEbrid and 3C-hEYEbrid implemented as
described above. In addition we used a state-of-the-art monocular Pupil Labs head-mounted eye tracking device
(version 2014). We calibrated the Pupil Labs eye tracker for each participant separately. For this a 9-point marker
calibration, standing in front of a 15-inch laptop screen, was performed using the built-in procedure of the Pupil
Labs software. It is important to note that we did not record any calibration for hEYEbrid and 3C-hEYEbrid, as
both methods are calibration-free.

4.2 Task & Procedure
We implemented a gaze pointing task, in which each participant had to focus on 15 targets in total (10 tangible
and 5 on screen), as shown in Figure 10. The instructor named an object (e.g., book), that the participant then had
to look for. When the object was found, the participant had to focus on the center of a visual marker (indicated
by a red dot) that was attached to the object. For on-screen targets, the participant had to look at a red circle
every time the instructor named the target projection. Looking at the target was verbally acknowledged by the
participant. Only then, the sampling was started, which lasted eight seconds for each target. During the task, the
participant was able to freely move around. Figure 10 shows the schedule of the procedure. In the beginning of
the experiment, we calibrated the Pupil Labs eye tracker. After this, each participant had to perform the task
three times. Between the tasks half of the participants first took off and put back the head-mounted device (used
to record each mode) and finally re-calibrated the Pupil Labs eye tracker. The other half of the participants did
this the other way around, to counterbalance it.

We collected all the data, i.e. the raw video data from the infrared, corneal and scene camera, as well as information
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Fig. 10. The study protocol showing the procedure of the experiment as well as the gaze targets used for the gaze pointing
task.

about the pupil tracking, its mapping and the computed gaze values for each approach in parallel at 30Hz. This
was possible as we integrated all modes into one device. We captured 240 samples per object (8 seconds x 30 Hz),
leading to a total of 3,600 samples per task (240 x 15 targets). As we only recorded after the acknowledgment of
the user – when she started to fixate at the target center – we did not have to discard samples to account for
the time that was needed to search for the object. Thus, we recorded 10,800 samples per participant (3,600 x 3
sessions), leading to a total number of 216,000 samples for each mode (Pupil, hEYEbrid and 3C-hEYEbrid ).

4.2.1 Apparatus. Figure 11 shows the study setup in a 360° picture. We set up a 4m2 (200 x 200 cm) square
area, in which the participants were able to freely walk around. We did so to simulate a more realistic setting, in
which people are moving around. Eight large tables (each 100 x 200 cm), forming four blocks of 200 x 200 cm,
were arranged around this area. We used ten tangible objects, each different in size and form, of which seven
were placed on the tables. The order of the objects’ positions remained the same during the complete experiment.
To track the objects and mark the gaze target, each object was equipped with an AR marker with a red dot at its
center. Therefore, we printed ten AR markers – five of size 5 x 5cm and five 10 x 10 cm – and attached them onto
the objects. The small markers indicated that the object had to be picked up by the user, using their hands. In
addition we used a projected screen with a size of 210 x 160 cm (diagonal: 264 cm), that had a resolution of 1280 x
1024 pixels. Five additional targets were shown on the projected screen represented as red circles (diagonal: 40 px
= 6.4 cm). The distribution of the on-screen targets is shown in Figure 11. Note that only one on-screen marker
was shown at a time.

To validate the approach of hEYEbrid, we computed the gaze estimation accuracy and compared it against
the values for 3C-hEYEbrid and the Pupil Labs eye tracker. This eye tracker provides a gaze estimation accuracy
of 0.6° with a precision of 0.08° [22]. Other prominent state-of-the-art devices, such as the SMI Eye Tracking
Glasses 2, achieve a slightly better accuracy of 0.5° [54]. Since Pupil Labs provides an open source development
framework, it perfectly fits the purpose of our research. To compare the results obtained by each approach, we
computed the gaze estimation error in degrees of visual angle. This error describes the difference between the
gaze target (indicated by the red dot of an AR marker or by a red on-screen circle) and the computed gaze point
according to the mode. The smaller the error, the more accurate the mode. In the case of the Pupil Labs eye
tracker and 3C-hEYEbrid, we used the scene camera image as a basis to compute the distance between the gaze
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Fig. 11. The study setup showing the distribution of the tangible objects (attached with AR markers) in the room and a
participant gazing at the book. In addition the projection including all targets is shown.

point and the center location of the gaze target (AR marker or on-screen target). For hEYEbrid, we used the AR
marker or on-screen target reflected on the corneal image and computed its distance to the pupil center. For
marker detection and tracking, we used Pupil Labs’s built-in marker tracking plugin that is based on ArUco12.
For the analysis, i.e. the marker tracking and the computation of gaze accuracy, we used the player software
including the custom plugins, as described above. We were able to detect the markers without problems in the
scene and the corneal images. To convert the raw pixel distances to the degree of visual angle, the pixels per
degree have to be estimated. For Pupil and 3C-hEYEbrid, we used the field of view of the scene camera (90°). For
hEYEbrid, we use 30° for the field of view of the pupil, as reported in [2, 35].

4.3 Participants
In total 20 participants (5 female) between 23 and 38 years old (M=28.8 years, SD=3.31) participated in the data
collection. All participants were recruited from a local university campus and had normal or corrected-to-normal
vision; none reported any form of visual impairments (e.g., color blindness).

4.4 Results
We first computed the overall gaze estimation error for all three modes across all tasks and all objects. Using hEYE-
brid gave the lowest error (M=2.19°, SD=0.92°), followed by Pupil (M=3.09°, SD=2.26°), and 3C-hEYEbrid (M=4.05°,
SD=1.04°). We performed a one-way ANOVA on the gaze estimation accuracy across all three modes and found
a significant difference (F(2,17) = 7422.22, p = 0.000). To further assess this finding, we computed three paired
independent-samples t-tests on gaze estimation error. We found a significant difference in gaze estimation error
between hEYEbrid and Pupil (t(48)=-4.11, p<0.001). No significant difference was found between 3C-hEYEbrid and
Pupil (t(48)=-0.45, p=0.65) and hEYEbrid and 3C-hEYEbrid (t(48)=-0.87, p=0.38).
We subsequently analyzed the gaze estimation error for the different target groups – on-screen and tangible

objects. The lowest error was achieved for the on-screen targets using the hEYEbrid mode. Table 1 lists these
results for each mode.
Independent-samples t-tests were conducted and we found the same results for the tangible target group as
for the overall results. hEYEbrid and Pupil differed significantly according to gaze estimation error (t(48)=-3.06,
12http://www.pupil-labs.com/blog/2013/12/036-release.html
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hEYEbrid 3C-hEYEbrid Pupil

M SD M SD M SD

tangible 2.22° 0.91° 4.26° 1.12° 3.27° 2.22°

on-screen 1.64° 0.28° 2.17° 1.21° 2.84° 1.38°
Table 2. Means and standard deviations for the computed gaze estimation errors for all modes on the two target groups.

p<0.05), as well as hEYEbrid and 3C-hEYEbrid (t(48)=-1.3, p<0.05). No significant difference was found between
3C-hEYEbrid and Pupil. For the on-screen markers, we were able to measure a significant difference in gaze
estimation error between hEYEbrid and Pupil (t(48)=-2.93, p<0.05). We found no significant difference between
3C-hEYEbrid and Pupil or hEYEbrid and 3C-hEYEbrid.

We were further interested in the impact of the calibration of the Pupil eye tracker. We compared the gaze
estimation accuracy of all three modes for each task separately. The tasks differ in the procedure that was done
before doing the gaze pointing task (shown in Figure 10). Figure 12 summarizes the results. It shows the mean
gaze estimation error for all three modes after the initial calibration of the Pupil eye tracker (shown in the first
bar group). In the second group the mean gaze error after a re-calibration of the Pupil eye tracker is shown.
In the third group the mean gaze estimation error of the different modes after a simulated calibration drift, i.e

Fig. 12. Mean gaze estimation error for each mode for each of the three gaze pointing tasks. Each column shows the mean
gaze estimation for each mode after the procedure done before the gaze pointing task, i.e. after the initial Pupil calibration,
the Pupil re-calibration and taking off the device and putting it back on.
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after taking the device off and putting it on again, is shown. Note that we conducted no re-calibration of the
Pupil eye tracker in the gaze pointing task after this procedure. We noticed the lowest error for hEYEbrid after
the initial Pupil calibration (M=2.16°, SD=0.72°), the re-calibration of the Pupil eye tracker (M=2.09°, SD=0.79°)
and the simulated calibration drift (M=2.36°, SD=0.80°). We conducted independent-samples t-tests for all pause
combinations for each mode. We noticed a significant difference in gaze estimation error between re-calibration
(M=2.61°, SD=2.03°) and taking off/putting back the device (M=3.95°, SD=1.85°) for Pupil (t(48)=-3.27, p<0.05). We
did not find further significant differences for the other combinations and modes.

5 DISCUSSION
Our results show that combining the corneal reflection within the pupil together with the pupil center in a
hybrid approach achieves an average gaze estimation accuracy of 2.19°, compared to 3.09° for Pupil and 4.05° for
3C-hEYEbrid. This supports our initial assumption that the pupil center, mapped from the infrared eye image on
the reflected environment (i.e the corneal image), converges with the actual gaze point in the real scene.

With hEYEbrid, we are able to achieve a higher gaze estimation accuracy than existing approaches using corneal
reflections in a mobile system. Takemura et al. [63] built a wearable device using a mobile phone. Their approach
is based on corneal images and a model-based tracking approach for gaze estimation. They evaluated their system
in a static single display scenario (24-inch screen), in which the participant’s head was fixed at a distance of 70
cm from the screen. There, they were able to achieve 9.5° gaze estimation error on average.
Nitschke et al. [35] also built a head-mounted device using a corneal imaging camera. To realize gaze estimation
they rely on 3D eye pose estimation. Similar to [63], they evaluated their approach in a single-display scenario
(23-inch screen), in which participants were sitting 60 cm away from the monitor. They were able to achieve a
gaze estimation error of 2.51°.
With hEYEbrid, we developed a method that enables accurate gaze estimation in a mobile and pervasive interaction
setting. In our evaluation, we set up a realistic environment using a screen as well as tangible objects as gaze
targets. Thus we simulated a more dynamic yet realistic setting. We intentionally choose this kind of accuracy
evaluation, instead of doing a simple 9-point accuracy test on a screen. Nevertheless, we implemented a similar
accuracy test by including the screen as one of the gaze targets in the task. Note that we performed even better
than Pupil using marker tracking for gaze estimation on a screen, since we achieved an average gaze estimation
error of 1.64°compared to 2.84°. We noticed an even larger error for Pupil on the tangible gaze targets of 3.27°. This
error stems from the 9-point calibration itself, which is a mixture of operator and system-controlled procedure. It
was done on the laptop screen only once. We did not validate the calibration to account for correction. We did
so to create a realistic baseline for comparison. In doing so, we underline the drawback of this type of calibra-
tion, as already shown in [45], and highlight the advantage of hEYEbrid. How error-prone and uninfluenceable
the calibration process is can be also seen on the results during the task after initial calibration and after the
re-calibration of the Pupil Labs eye tracker. We noticed a better gaze estimation accuracy for the latter of the two,
although the participants did the same gaze pointing task in both cases.
Furthermore, the developed method can be considered as an advance in comparison to existing approaches
that realize high gaze estimation accuracy [25]. This approach relies on an active user calibration that has to
be renewed at regular time intervals. hEYEbrid is not influenced by a calibration drift caused by taking off the
head-mounted device.

We did not found a significant effect on gaze estimation for hEYEbrid when taking off the device and putting
it back on. However, we noticed a slightly worse result. This may be caused by minimal changes in the image
quality of the corneal images or less accurate pupil tracking. This also has a negative effect on the results for
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3C-hEYEbrid, as it builds on the output of hEYEbrid. As expected, the Pupil Labs eye tracker achieves much worse
results caused by the simulated calibration drift, which invalidates the mapping function (as shown in [26]).

3C-hEYEbrid uses the two eye cameras plus an additional scene camera and is able to compute the gaze in
the scene by matching the corneal image onto the scene image. Note that the detection of objects via AR markers
and the display tracking via natural features is performed in the scene images. It achieves less accurate results
than the other methods, except for the on-screen targets. In this case an average gaze estimation error of 2.17°was
achieved, compared to 2.83° for Pupil and 1.64° for hEYEbrid. A possible explanation is that 3C-hEYEbrid relies on
natural feature tracking to update its frame-based calibration. To match the pupil center into the scene image, it
needs to compute the homography matrix between the corneal and scene camera images. Hence the method
does two transformations (from IR to corneal and from corneal to scene images) that might introduce errors.
Note that we also did not account for any corrections of the images; for instance, we did no undistortion of
corneal images. The study was conducted in a minimally furnished room. Therefore the image features were very
limited, except when looking at the projected screen, as it showed feature-rich content. Thus our setup shows the
limitations of 3C-hEYEbrid by design. However, when enough features are available, this method also performs
well, indicated by the good results for the on-screen targets (2.84° on average). Nevertheless, this approach relies
on three cameras, of which the scene camera especially is an issue, as it can cause discomfort for other people.
In our experiment we showed the applicability of our approach in a mobile indoor lab setting. Although we did
not enforce constraints such as remaining seated and keeping the head still, we controlled the correct initial setup
of the device (i.e. correct camera-eye distance). Consequently the results show the potential of using hEYEbrid in
indoor settings, such as retail stores, shopping centers or airports. We also believe, that the concept is usable in
outdoor settings to a certain extent. The current implementation calls for at least stable lighting conditions (e.g.
sun or partially cloudy).

6 MOBILE HEYEBRID
The results of the conducted user study showed that connecting an infrared eye and a corneal camera in a hybrid
approach is suitable for user-calibration-free gaze estimation. Thus, we designed and implemented a mobile and
wearable eye gaze tracking system that can be used to conduct eye-tracking experiments in the wild and to build
interactive systems. For this, we connected the head-mounted device, equipped with the two eye cameras, to a
mobile phone. We developed a hEYEbrid mobile application that is able to drive the two eye cameras. Moreover,
it takes care of the pupil tracking as well as the mapping of the pupil from IR to corneal images, as described
earlier. Basically, one can spontaneously start to use the system in everyday life settings. The application is able
to record the camera streams as well as the information about the pupil positions, which can be imported into
the Pupil Labs player software for later analysis and processing.

Figure 1 illustrates the application’s interface, which we designed to be easy to use. It guides the user through
the setup of the system, showing the required hardware parts (the mobile phone and the head-mounted device).
The main screen of the application is divided into three expandable views, integrated in a list view. The control
view is used to inform the user about the connection and tracking state. Here, several plugins can be activated,
like gaze estimation on screens. Two more views – the IR and Corneal views – show the camera streams and
give direct feedback about the processing, i.e. the pupil tracking and mapping. This is of great importance, as it
provides the user the ability to adjust the eye-camera distance to get sharp corneal images, which at the same time
results in the optimal mapping. In this way we overcome one of the aformentioned limitations. The application
can be easily extended by several functionalities which make use of the computed gaze point and the corneal
reflection.
Besides the hEYEbrid mode, we also implemented mobile versions for 3C-hEYEbrid and Pupil Labs monocular
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eye trackers. With a fully equipped head-mounted device, i.e. three cameras (infrared, corneal and scene) one can
decide which mode to use. However, keep in mind that only hEYEbrid and 3C-hEYEbrid are calibration free in
that they only need to establish a camera mapping once unlike the Pupil Labs eye tracker.

6.1 Applications
Mobile calibration-free gaze estimation opens up the space for a variety of application cases. We distinguish
between the usage of hEYEbrid as an analysis tool and an input device.
Coming back to the introduction, there is increasing interest in the integration of gaze tracking in AR and VR
devices. Both the reflection of an AR glasses’ screen (e.g. HoloLens) as well as that of a VR headset’s display are
visible on the corneal images. The availability of information about where a person is looking in tasks such as
industrial maintenance will be of great benefit to guide a worker, for example. A virtual reality headset offers the
ideal conditions to integrate hEYEbrid, since nothing other than the screen content (i.e. the VR environment) is
reflected on the human cornea. Moreover, the distance between the VR headset’s display and the eye is fixed,
thus we do not have to deal with blurry corneal images due to defocus. However, the current camera clip would
have to be scaled down to fit into a headset. Possible use cases range from foveated rendering [47] to hands-free
interaction.
hEYEbrid also enables the creation of interactive applications at pervasive scale. A person’s gaze, which is
available all times, can be shared with connected devices in the environment. Gaze estimation on public displays
can be used to enable the development of interactive screens. A person’s gaze can be used as a direct or indirect
input modality to control the screen by pointing, or support the user in reading text on a public display, like in [28].

Besides utilizing hEYEbrid for creating gaze-based interfaces, corneal images can be analyzed to gain insights in
human cognitive processes. That is, hEYEbrid enables gaze estimation for real-life in-the-wild scenarios. The
mobile system can be used to conduct user studies in a lightweight manner. Multiple persons can be equipped
with the system, to collect a large amount of data in parallel. This data can be analyzed post-hoc for different
application use cases, such as landmark extraction [29] or activity analysis [18, 57]. Since our daily behavior is
reflected on our eyes, corneal images can serve as a basis for camera-based lifelogging [27]. If a person is fixating
an object, this behavior is reflected in the corneal image. For example, such information can be used for attention
measurements.

To demonstrate the potentials of hEYEbrid, we integrated two example plugins: gaze estimation on public
displays, and automatic object detection, reflected on the user’s eye within the area of the pupil. Both example
applications are shown in the video figure.

6.2 Implementation
The architecture of the final mobile prototype is shown in Figure 13. It consists of two main components on the
hardware side: (1) the head-mounted device and (2) a Nexus 6P phone, running Android 7.1, to drive the device.
All cameras are attached to a USB 2.0 hub that is directly connected to the phone via USB-C. There is no need
for an extra power source to power two cameras. However, to run 3C-hEYEbrid or a Pupil Labs eye tracker, an
additional power source has to be used. Running the application on the phone, its battery lasts for approximately
five hours. Note that during this measurement, Bluetooth, WIFI and GPS were also enabled. We will explain the
software architecture only for hEYEbrid in the following. The other modes are developed in the same manner.
The software architecture of the Android application consists of three main parts: (1) the backend to process
all images, (2) the frontend for live visualization and to control the app, and (3) the plugins to add advanced
functionalities. The hEYEbrid application mode is developed as a native Android application, based on the Android
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Fig. 13. Architecture of the mobile system usable with hEYEbrid, 3C-hEYEbrid and a Pupil Labs eye tracker. The hardware is
made up of a head-mounted device containing two or three cameras, depending on the mode. The software side contains
three main parts.

SDK 25. The backend parts are developed in C++ and included via Android’s native development kit (NDK),
version 7. To stream both camera streams at once over USB, we use libuvc, a cross-platform library for USB video
devices. In particular we include an existing library, wrapping libuvc13, for usage with Android. This library
allows us to set the available camera settings (e.g., frame rate, resolution, brightness) and to control the bandwidth
factor. The IR camera frames are streamed with a resolution of 640 x 480 pixels, corneal images with a resolution
of 1280 x 960 px, both at 30Hz. For image processing we use the Java native interface to realize the pupil tracking.
We included PUPIL’s built-in pupil detector (defined in detect_2d.hpp) and all its dependencies. For this, we
had to include specific versions of Eigen14 and TBB15 for Android. The method returns an ellipse describing the
pupil structure. This is transformed onto the corneal image applying the homography matrix that was computed
beforehand during construction. For the projection we make use of the OpenCV 3.2 library for C++. Finally, the
backend offers a callback delivering the pupil center and the cut-out corneal image.
The frontend implements three views in different panels. We chose a list-like visualization of the views and
included the ExpandableLayout library16 to smoothly expand and collapse the views. We used Android’s Material
design for all UI components.

13https://github.com/saki4510t/UVCCamera
14http://eigen.tuxfamily.org
15https://www.threadingbuildingblocks.org/tbb-mobile
16https://github.com/cachapa/ExpandableLayout
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To integrate advanced functionalities, the application provides interfaces to the backend and frontend usable by
plugins. We implemented two example plugins: For gaze estimation on displays, we use a similar approach to
GazeProjector [25]. The idea is to compute the spatial relationship between the head-mounted device and the
surrounding displays. In contrast to existing approaches [70], we use the cropped corneal image as a template, to
look for on the display’s content. In both images key features are extracted using AKAZE [1] and matched using
a 2-nn Brute-Force matcher. To estimate the spatial relationship, the found key feature pairs are used to compute
a homography matrix. For the algorithm, the screen’s content is streamed via screenshots from the display to the
mobile application. For this a script has to be executed on the computer connected to the display. It resizes the
screenshots to 480 x 360 pixels and pushes them onto the mobile phone. The mobile application sends back the
estimated gaze position to use this for further processing.
For object extraction, we use the YOLO17 framework for real-time object detection [48] based on neural networks.
We use the pre-trained weight file (yolo.weights) that is already available within the framework and the standard
configuration (yolo.cfg). To speed up the processing, the cropped corneal images are sent as batches to a server
that does the processing. After a successful object detection, the result with the highest detection probability,
closest to the pupil center, is sent back to the mobile phone.
The main software part (i.e., the backend) runs at 25-30 fps on the Android phone (Nexus 6P). The gaze estimation
plugin has to do some more complex computations (e.g., feature matching) and thus runs at 25 fps. The object
detection plugin is only limited by the transfer rate of the images to the processing server, as YOLO is able to
process the stream at up to 90 fps. Hence the plugin runs at at 25-30 fps as the main program.
We are going to make the Android application publicly available through GitHub including a guide and necessary
files to re-build the hardware.

7 LIMITATIONS
Apart from its numerous advantages over state-of-the-art eye tracking systems, hEYEbrid also comes with some
limitations. Our concept of gaze estimation requires two cameras, bundled into one enclosure that is mounted
in front of the user’s eye. The construction may interfere with the field of view. However, using a dedicated
hardware prototype with both cameras on one board and smaller cameras could reduce its total size. This would
make the head-mounted device even smaller, lighter in weight and more comfortable.
Further, we used AR markers for object detection in our experiment, to robustly track the objects. Nevertheless,
we believe that with a higher resolution eye camera, objects are able to be detected via feature tracking or a
trained classifier.
Currently, computing the mapping between the infrared and corneal camera image plane is the biggest limitation.
As described above, we rely on a homography matrix that computes a planar mapping in 2D. If the distance
between the camera and the user’s eye changes to a great extent, the mapping will become more incorrect.
However, we handle this limitation in the following way. To compute the homography matrix we record images
from both cameras at a fixed distance with sharp focus. Consequently, we obtain an optimal mapping in this
setting. When putting on the device, the camera is placed in such a way, that the focus is also sharp. Hence,
the distance between cameras and eye is nearly the same as during the mapping step. The good results of our
experiment after taking off and putting back on the device support this assumption. In a totally uncontrolled
environment the user has to make sure to place the camera at a focused distance from the eye. It would be possible
to support that procedure by computing the current focus value of the corneal image (e.g. by using depth sensors).
In this way it might be possible to guide the user in placing the camera at the right distance from the eye.
Besides camera-eye distance, eye-object distance is the second source of blurry corneal images. That is, if the
user is focusing at an object at a far distance, its representation on the corneal image is rather unsharp, caused by

17https://pjreddie.com/darknet/yolo/
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the mirror properties. Consequently our current implementation has a certain working distance. Using cameras
with auto-focus may help to circumvent this limitation. Another possibility is to use neural networks that are
specifically trained on such blurry images to handle these cases.
We have little knowledge about the long-term accuracy of hEYEbrid. The experiment took thirty minutes at
maximum per participant, caused by longer pauses between the tasks. Consequently the presented results are
representative for a usage time within half an hour. It is noteworthy that the homography matrix between both
cameras was not updated during the complete experiment, which lasted over several days.
Also, hEYEbrid has difficulties working in dark environments, as nearly no information will be reflected on the
cornea. Installing cameras with a higher ISO sensitivity could help to make information visible on the corneal
images, even in darker settings. Also, changes in lighting might affect the video quality of corneal images and
thus the processing. Since the human pupil is sensitive to light, a bright environment will have a miotic effect
(i.e. shrinking of the pupil). This directly influences the size and resolution of the extracted corneal image by
hEYEbrid. However, the approach might still work, as we rely only on the pupil center that gives us the gaze
point in the reflected environment. The extracted field of view will be smaller, but sufficient to map the gaze on
smaller objects (e.g. a mobile phone), whereas it will be insufficient for large objects (e.g. cars, buildings).
In summary it makes sense to explore cameras with different properties and configurations, especially to make it
robust for outdoor usage. Note that when integrating a camera that offers capabilities like auto-focus, auto-iris
and high ISO sensitivity, the complete device will get more expensive. Nevertheless, we believe that hEYEbrid is a
promising concept for user-calibration-free gaze estimation in pervasive settings to enable spontaneous gaze-based
interaction as well as eye-tracking experiments in the wild.

8 CONCLUSION & FUTURE WORK
In this paper, we presented hEYEbrid, an approach for calibration-free and very accurate gaze estimation in
pervasive settings. In contrast to existing systems, hEYEbrid combines the images from an infrared eye and a
corneal camera in a hybrid approach and works without any prior user calibration. Hence, its accuracy is not
influenced by calibration drifts. The concept is integrated into Pupil Lab’s open-source eye-tracking framework,
by adding a corneal camera to the head-mounted device and developing plugins for the capture and player software.

We conducted a user study in which we used a mobile setup to evaluate hEYEbrid’s gaze estimation accu-
racy against a state-of-the-art Pupil Labs eye tracker and 3C-hEYEbrid, an extended version using the scene
camera as additional image information. We found that our approach performs better than the well-established
Pupil Labs eye tracker. In addition, it compares well to existing approaches based on corneal imaging. The results
are very promising and underline the potential to realize mobile gaze-based interaction in everyday life settings.

As a first step towards this vision, we built a mobile and wearable system which is able to react in real time.
This system, which consists of a head-mounted device (with the two eye cameras) and an Android phone, is
usable in different application settings. Researchers can profit from this device, as they can use it for eye-tracking
experiments in unconstrained environments. Besides, the device can be used to build gaze-based interfaces
in pervasive settings. We developed two example applications to showcase the potential of hEYEbrid. But, as
discussed in the limitation section above, there is lot of room for future work to resolve current issues and
improve the approach. The next step is to evaluate the system in an in-the-wild study. We plan to equip multiple
persons with the device and ask them to use it during the day while doing several activities indoors and outdoors.
Thereby we want to investigate the long-term usage on the one side and the influence of environmental factors
(e.g., lighting). In addition we would like to test prototypes with cameras having different properties to resolve
the issue of defocus and unsharp images. Finally, having a system that can be used in fully unconstrained settings
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for long-term data recording, will bring further insights into people’s gaze behavior, and create novel interactions
that could benefit from such a device.
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