
anyOCR: An Open-Source OCR System for
Historical Archives

Abstract—Currently an intensive amount of research is going
on in the field of digitizing historical Archives for converting
scanned page images into searchable full text. anyOCR is a new
OCR system which mainly emphasize the techniques requires
for digitizing a historical archive with high accuracy. It is an
open-source system for the research community who can be
easily applied the anyOCR system for digitization of a historical
archive. The anyOCR system can also be used for contemporary
document images containing diverse, simple to complex, layouts.
This paper describes the current state of the anyOCR system,
its architecture, as well as its major features. The anyOCR
system supports a complete document processing pipeline, which
includes layout analysis, training OCR models and text line
prediction, with an addition of fast and interactive layout and
OCR error corrections web-based services.

I. INTRODUCTION

There has been a resurgence of interest in optical charac-
ter recognition (OCR) in recent years mainly for digitizing
historical archives all over the world. Commercial and open-
source OCR engines (like OCRous [1] and Tesseract [2])
have traditionally been optimized for contemporary documents
like books, letters, memos, and other end-user documents.
However, OCR engines for large-scale digitization of historical
archives differ in their requirements from such traditional
OCR systems mainly becasue of complex layouts. In addition,
OCR systems traditionally have usually been developed for
specific scripts and languages, and it is difficult to train them
for old scripts that can give high performance. There were
some efforts from the reseach community to handel the chal-
lenging case of processing historical document images [3]–
[5]. However, first of all these systems are not open-source.
Secondly and more importantly these system are limited to
give high performance for challenging historical document
images. These issues limit the usefulness of such existing OCR
systems for large scale digitization of historical documents.

The goal of the anyOCR system is to overcome these
limitations.

• anyOCR is an open source OCR system allowing easy
reuse of a complete OCR processing for any type of
historical documents by the research community.

• The particular open source license used by anyOCR, the
OpenContent License, simplifies usage and modifications.

• The system is designed from the ground up with multi-
lingual and multi-script recognition exists. .

• The system can easily handel diverse, complex and irreg-
ular layouts of historical document images

• The system relies on only a small number of interme-
diate representations and interfaces, most of them image

based, making it easy to integrate both existing and new
algorithms.

• The system is extensible.

The rest of this paper will provide an overview of the
architecture of the anyOCR system and the methods used in
it, as well as some other information of interest to potential
users or contributors to anyOCR. Please note that this paper
is not a review of end-to-end OCR pipeline; for example,
there are many worthwhile and competitive algorithms for the
whole OCR pipeline including preprocessing, layout analysis
and recognition, but this paper will focus on algorithms and
techniques that are actually developed and used within the
anyOCR system.

II. THE ARCHITECTURE OF anyOCR SYSTEM

The overall architecture of the anyOCR system is composed
of four major components: anyBaseOCR, anyOCRModel, any-
LayoutEdit, and anyOCREdit

• anyBaseOCR is responsible for a basic end-to-end OCR
processing including the following steps: layout analysis
(binarization, text and image segmentation and text-line
extraction), text line recognition using a trained OCR
model, and generation of text output in hOCR format.

• anyOCRModel is responsible for training a new OCR
model for any script and language that can be used in
the anyBaseOCR pipeline. The anyOCRModel training
framework is based on an unsupervised sequence learning
mechanism.

• anyLayoutEdit is responsible for interactively involving
user in the anyBaseOCR pipeline to correct the text line
segmentation errors as well as tagging logical labels with
them.

• anyOCREdit is responsible for correcting errors in the
OCRed text which is the output of a trained OCR
predictions. The error correction here is done not only
through involving user in a the correction process but also
understanding user error correction behaviour through
a machine learning approach for automating the post-
correction process.

The complete architecture of anyOCR system is shown
in the Figure 1. Each of the four major components of the
anyOCR system is described in detail in the next four sections,
respectively.



Fig. 1: anyOCR Architecture: a flow diagram of the anyOCR system. The anyOCR system consists of four major components:
anyBaseOCR for end-to-end OCR processing from document image to text, anyOCRModel for training new OCR model
in unsupervised manner for any script or language, anyLayoutEdit for interactively editing layout errors and labels, and
anyOCREdit for interactively and automatically correcting OCR errors.

III. anyBASEOCR - END-TO-END OCR PROCESSING
PIPELINE

The anyBaseOCR component contains a set of document
analysis methods that are usually required for a typical end-
to-end OCR pipeline for extracting text form a document
image. These methods includes binarization, text and image
segmentation, text line segmentation, text line recognition, and
producing OCRed text in hOCR format. The anyBaseOCR
processing pipeline is shown in the Figure 2. The technical
description of these methods are described here as follows.

A. Binarization

anyBaseOCR contains a percentile based binarization
method [6] that is suitable for various different types of
grayscale documents from properly scanned to camera-
captured having non-uniform illuminations. The binarization
method in anyBaseOCR takes into consideration the back-
ground statistics based on percentile filters. The binarization
method starts with estimating the background at each location
in the image,i.e., a whole new image is created having only
the background of the image based on percentile.The threshold
in this method is adapted in accordance with the background
properties of the image. The original image has a domain
of all gray level values, i.e., [0,255] and the background
image estimated for each value based on percentile filters at
every location has a domain of only two levels,i.e.,0,255. The
thresholding is done in a way that if the pixel value in original
image is less than ’t’ times the pixel value in background
estimated image, then the corresponding pixel value in the
output image is labelled one, where t is the parameter used to
determine that whether a pixel is foreground or background,
depending on the similarity of the pixel, and the background,
which has been estimated using percentile filter; otherwise it

is labelled zero. A sample binarization result can be seen in
the Figure 2.

B. Text and Image Segmentation

Bloomberg [7] presented a multiresolution morphology
based text and image segmentation method. It is a simple and
script independent text and non-text segmentation method. It
performs well for halftone mask segmentation, for which it
was designed, but most of the time fails to accurately segment
drawing type non-text elements such as line art, drawings
etc. The anyBaseOCR contains the improved version of mul-
tiresolution morphology based text and non-text segmentation
algorithm that was described in [8]. This improved version can
handle halftones as well as drawing type non-text elements.
A sample result after removing image part from the document
using the above text and image segmentation method is shown
in the Figure 2.

C. Text Line Segmentation

anyBaseOCR contains an improved version of Gaussian
smoothing based text line segmentation method from OCRo-
pus [1]. It first estimates the ”scale” of the text by finding
connected components of individual letters in the binary image
and calculating the median of their dimensions. Then column
separators in binary image are found using convolution and
thresholding with some post-processing steps like removal of
two column separators that are too close to each other in the
same horizontal line and extension of column separators to
the first and last rows of the image with a condition that
no character is crossed in between on the extended path. At
first vertical white spaces on binary image are found and then
the rest region is labeled in order to form smooth text region
using filtering. Then using Gaussian and uniform filtering, the



Fig. 2: anyBaseOCR Processing Pipeline: anyBaseOCR component is equipped with all the methods that are typically required
for converting a document image into text: binarization, text and image segmentation, text line segmentation, text line recognition
and output in hOCR format.

Fig. 3: anyOCRModel Training Pipeline: First text lines and
unique symbols are extracted from the scanned data. These
symbols are then clustered. After a language expert has iden-
tified the resulting clusters, semi-correct ground truth data for
each text line is generated. In a second phase a LSTM-based
OCR model is trained using the clustering output (using the
OCRopus software suit). The trained model can then be used
to generate better ground truth data for iterative retraining.
When no better OCR model can be trained or gains become
too small (e.g. less than 1%), training should be stopped.

column edges (gradients) are found in the binary image by
setting a certain threshold in accordance with the scale of the
image. The smoothened text region and the column edges are
combined to get column separators. In the next step, out of
the total column separators, only selected number of column
separators with dimension greater than min value are selected.
The finally obtained column separators are then combined with
the initially obtained text region (through white space method)
in order to find more precise text only regions in the binary
image. All the gaps/holes within the text regions are filled up
and thus final text only regions are obtained. Finally, in order
to find text lines, at first, box-map (bounding box) is found by
setting two thresholds. f the area of the slice list lies in between
the threshold areas, then that slice is labeled one, otherwise it
is labeled zero- it helps in removing noise. Then a clean image

is obtained by multiplying the two image arrays of box-map
and the given binary image, keeping only the desired text. On
this cleaned image, the y-derivative of a Gaussian kernel is
applied to detect the top and bottom edges of the remaining
features. It then blurs this horizontally to blend the tops of
letters on the same line together. The areas between top and
bottom edges are blurred and treated as text line regions and
termed as line seeds. A sample text line segmentation, where
each segmented text line region is enclosed in a red-colour
rectangle can be seen in the Figure 2.

D. Text Line Recognition and hOCR

For each segmented text-line image, anyBaseOCR uses a
trained OCR model for predicting its text. The mechanism for
training a line-based OCR model for any script or language is
described in the anyOCRModel Section IV. After recognizing
each text line, the results are composed in a “hOCR” (HTML-
OCR) format, which does not only contain recognized text
form a document image but also contain the layout information
for each text-line in the document image. A sample OCRed
output in hOCR format is shown in the Figure 2.

IV. anyOCRMODEL - UNSUPERVISED SEQUENCE
LEANING BASED OCR TRAINING FRAMEWORK

Institutes and libraries around the globe are preserving the
literary heritage by digitizing historical documents. However,
to make this data easily accessible the scanned documents
need to be transformed into search-able text. State of the
art OCR systems using Long-Short-Term-Memory networks
(LSTM) have been applied successfully to recognize text
in both printed and handwritten form. Besides the general
challenges with historical documents, e.g. poor image quality,
damaged characters, etc., especially unknown scripts and old
fonds make it difficult to provide the large amount of tran-
scribed training data required for these methods to perform
well. Transcribing the documents manually is very costly in
terms of man- hours and require language specific expertise.
The unknown fonts and requirement for meaningful context
also make the use of synthetic data infeasible. Recently an



Fig. 4: anyLayoutEdit: A web-based tool for editing the text
line segmentation results mainly to correct the segmentation
errors, wrong reading order as well as assigning logical labels
to the segmented elements. This tool provide a fast way of
correcting layout segmentation errors through user interaction
and using them in the anyBaseOCR pipeline.

anyOCR model training framework is proposed [9] that cuts
the required input from language experts to a minimum and is
therefore easily extendible to other documents. This approach
combines the strengths of segmentation-based OCR methods
utilizing clustering on individual characters and segmentation-
free OCR methods utilizing a LSTM architecture. In this
anyOCR model training framework unsupervised clustering
for segmentation-based approach is used in tandem with a
LSTM based segmentation-free approach to provide an OCR
system for documents where no training data is available.
The anyOCRModel uses that framework for training a high
performance line-based OCR model for medieval historical
documents without using any form of manually transcribed
training data form LSTM. The anyOCRModel training frame-
work is shown in Figure 3.

V. anyLAYOUTEDIT - WEB-SERVICE FOR INTERACTIVE
LAYOUT EDITING TOOL

anyLayoutEdit has been developed to overcome the wrong-
segmented lines from text line extraction step in anyBaseOCR.
It has the ability to merge the segments of the same line,
separate the merged lines, delete a line segment and recreate
it. It could also used to start defining the lines from the scratch
in a binarized image. We know that even if the text line
segmentation is fully correct but with wrong reading order,
then the final OCR text looks like a gibberish text. Therefore,
another important feature in the anyLayoutEdit tool is that user
can also re-defined the reading-order of page that might not be
perfectly calculated by the anyBaseOCR text line segmentation
utility. In addition, this tool gives the possibility to label the
segmented lines so that each line would get a logical label, for
example heading, main-body text, side-notes text, paragraph,
image, drawing, etc., which definitely put a great positive
impact on the final OCRed output in the similar layout as exist
in the document image. This tool is designed as web-service
so it could be used as interactive tool by the user to spot

Fig. 5: anyOCREdit interactive Web-Based User Interface that
facilitates user in fast and automatic ways of OCR error
correction

the elements in the document. After finishing the editing (i.e.
mainly correcting text line errors in segmentation and reading
order as well as labelling of different elements in the document
image) the tool will generate correctly separated images for
each line with their reading order and logical labelling The
output from the anyLayoutEdit system is perfectly aligned
with the formats used in the anyBaseOCR pipeline. So it
clearly means that no extra work is required after editing
text lines using the anyLayoutEdit web-service. Some of the
features of anyLayoutEdit web-service are show in Figure 4.

VI. anyOCREDIT - WEB-SERVICE FOR INTERACTIVE AND
AUTOMATIC OCR ERROR CORRECTION

Currently an intensive amount of research is going on in
the field of digitizing European cultural heritage for converting
scanned page images into searchable full text. Researchers are
mainly trying to adapt existing optical character recognition
OCR tools for this purpose. However historical document
images and their text differ significantly from modern book
images and their text mainly because of following features
(or one can also say degradations): historical fonts includ-
ing ligatures, historical spelling variants, somewhat displaced
characters (resulting from historical printing processes), fuzzy
character boundaries due to ink creep into the paper over time,
paper degradation resulting in dark backgrounds, blotches,
cracks, dirt, and bleed through from the following page. Even
the existing state-of-the-art OCR system (both commercial and
open-source ones) result in mainly because of these features.
Therefore the correction in OCRed text is needed to handle
both historical spellings as well as true OCR errors.

We have developed anyOCREdit utility that contributes in
two-folds for OCR error correction of historical text. Firstly a
web-based interactive user interface (UI) is developed which
helps user to perform manual error correction faster than
traditional style. The interactive UI contains three panel: (1)



Fig. 6: anyOCR System is made fully available for the research community. It contains documentation, source-code and
hands-on experience videos. The snapshots of the anyOCR website containing all these details are shown in the figure.

the toolbar for uploading a zip folder that contains a set of
scanned images and their erroneous OCRed text, (2) the image
viewer where on hovering over the image a zooming lens
appears underneath the image that contains an enlarged version
of the surrounding area to the cursor to facilitate the viewing
of small characters or damaged parts of the page, which
facilitates the fast way of locating and correcting the OCR
errors in the text editor, and (3) the text viewer for editing.
Secondly, on top of the interactive UI, we have also integrate a
Statistical Machine Translation (SMT) based automatic OCR
error correction technique, which does not necessary require
training data, with the interactive UI. The integrated SMT
based automatic OCR error correction approach further accel-
erate the whole process. The interactive UI after integrating
SMT based OCR error correction is show in Figure 5.

VII. THE anyOCR SYSTEM AVAILABILITY,
DOCUMENTATION AND HANDS-ON EXPERIENCE

To access the tools that are developed in anyOCR system
and practically know how to use them, a website has been
created which contains the following:

• Documentations as PDF files for each of the tools
anyBaseOCR, anyOCRModel, anyLayoutEdit, and any-
OCREdit) that explains the complete logic behind them.

• Hands-On experience videos are recorded for each of
these tool that clearly show how to install each them and
how to use/run all of their functionalities.

• The source code of these tools as a single project is fully
available on a GitLab repository.

• Additionally, an Ubuntu Virtual Machine is set up where
all of these tools are pre-installed and ready which is also
made available for research community.

pdf files that explain the the logic behind the tools. Videos
snapshots are also available there, that shows some use cases
of the tools. The source code of the project is wholly available
on a GitLab repository.

The snapshots of the anyOCR system website that contains
all of the above mentioned resources are shown in Figure 6.

VIII. CONCLUSION

The presented anyOCR open-source system is a collection
of processes that are required for a complete end-to-end
OCR pipeline. The system contains not only the state-of-the-
art document layout analysis techniques (i.e. anyBaseOCR
utility), but also contains a fully unsupervised OCR training
framework (i.e. anyOCRModel) which can be trained easily
for any script and languages, and on top of that interactive
web-services for correcting layout and OCR errors (these are
anyLayoutEdit and anyOCREdit utilities, respectively). These
advanced features make it perfectly suitable for extracting
text from historical document images together with their
usage for contemporary document images. All the utilities are
made available for reseach community with documentation
and hands-on experience tutorials, which help the research
community to use these utilities with ease. Furthermore, an
Ubuntu based virtual machine (VM) containing all the pre-
installed utilities is also provided to the community. Last but
not the least, the research community can further developed
these utilities.

REFERENCES

[1] “OCRopus,” https://github.com/tmbdev/ocropy.
[2] “Tesseract,” https://github.com/tesseract-ocr.
[3] A. Garz, M. Liwicki, and R. Ingold, “HisDoc 2.0: Toward Computer-

Assisted Paleography, Manuscript Cultures,” vol. 7, 2015.
[4] M. Wuersch, R. Ingold, and M. Liwicki, “Sdk reinvented: Document

image analysis methods as restful web services,” in 2016 12th IAPR
Workshop on Document Analysis Systems (DAS), April 2016, pp. 90–95.

[5] “Aletheia,” http://www.primaresearch.org/tools/Aletheia.
[6] M. Z. Afzal, M. Krämer, S. S. Bukhari, M. R. Yousefi, F. Shafait, and

T. M. Breuel, Robust Binarization of Stereo and Monocular Document
Images Using Percentile Filter. Springer International Publishing, 2014.

[7] D. S. Bloomberg, “Multiresolution morphological analysis of document
images,” vol. 1818, 1992, pp. 648–662. [Online]. Available:
http://dx.doi.org/10.1117/12.131480

[8] S. S. Bukhari, F. Shafait, and T. M. Breuel, “Improved document image
segmentation algorithm using multiresolution morphology,” vol. 7874.

[9] M. Jenckel, syed Saqib Bukhari, and A. Dengel, anyOCR: A Sequence
Learning Based OCR System for Unlabeled Historical Documents, 2016.


