
Accelerated DNA-SLAM for RGB-D images

Mina Ameli1, Oliver Wasenmüller2, Mohammad Reza Soheili1, Jamshid Shanbehzadeh1 and Didier Stricker2

1Computer and Electrical Engineering Department,
 Kharazmi University of Tehran, I.R. Iran.

+98 (21) 88830891

{std_ameli, soheili, jamshid}@khu.ac.ir

2Augmented Vision Department, DFKI GmbH, German Research
Center for Artificial Intelligence, Kaiserslautern, Germany.

+49 (631) 205-75 3500

{oliver.wasenmueller, didier.stricker}@dfki.de

ABSTRACT
In the highly active research field of Simultaneous Localization
And Mapping (SLAM), RGB-D images have been a major interest
to use. Real-time SLAM for RGB-D images is of great importance
since dense methods using all the depth and intensity values
showed superior performance in the past. Due to development of
GPU and CPU technologies, the real-time implementation of the
mentioned algorithms is no longer an impassable problem. In this
paper, we present an acceleration approach for the DNA-SLAM
algorithm. We argue some possible challenges while converting the
CPU implemented algorithm to the GPU. Finally, runtime
evaluation and improvements are shown on the public CoRBS
dataset.

CCS Concepts
• Computing methodologies ~Motion capture
• Computing methodologies ~Vision for robotics
• Computing methodologies ~Parallel programming languages

Keywords
RGB-D images; Dense SLAM; Real-time; ToF Camera; CUDA;
DNA-SLAM; GPU-accelerated.

1. INTRODUCTION
Many Robotics and Computer Vision applications include
navigation and mapping, which needs to be performed in real-time.
Visual Simultaneous Localization And Mapping (SLAM) is the
problem of finding the location of the camera and simultaneously
creating a map of the environment, using only the information of
the captured images.
Proposed approaches for this purpose can be dichotomized into a
sparse and dense category. The former methods rely on the
extraction and matching of sparse visual feature points while the

latter category are dense, performing pixel-wise minimization of
photometric and/or geometric constraints for all intensity and depth
pixels.
While real-time sparse SLAM (as in [27]) and offline dense SLAM
(like in [30]) are quite mature, recently real-time depth mapping
(e.g. the works in [12], [13] and [24]) and visual odometry, the
problem of tracking the pose of the camera/robot (e.g. proposed
methods in [4], [9] and [28]) have become conceivable. There are
two important enabler and impetuses. The first is the opening up of
graphics processing units for general purpose computing and the
second is the advent of affordable RGB-D sensors.

One of the parallel computing platforms, which are often utilized
for dense SLAM methods are General-Purpose computing on
Graphics Processing Units (GPGPUs). In order to perform high
speed and often real-time processing on full-resolution images for
every frame, they actuate the enormous parallelism in graphic
cards. GPU-based programming, as an affordable and attainable
technology, has indisputable empowering role in recent dense
SLAM research [22].

Another above mentioned catalyst is the release of cheap RGB-D
sensors. They are capable of capturing RGB-D images containing
a synchronous color image and depth image. These cameras have
been widely applied and their release has resulted in great progress
in odometry and dense mapping in recent years [23].

The two common approaches for measuring depth data are Pattern
Projection and Time-of-Flight (ToF). Cameras with Pattern
Projection, such as Microsoft Kinect v1, Asus Xtion Pro, project a
known pattern into the scene and estimate the depth out of the
distortion of the pattern. Recently, ToF cameras, such as Microsoft
Kinect v2 [14] or Google Tango [15], resolve distance by
estimating the time emitted light takes from the camera to the
subject and back for each pixel in the image.

Indeed, the new Kinect v2 device is used more in many recent and
future research since they claim a higher accuracy in general and
there are publicly available datasets like CoRBS [2] using this
device. In addition, a rigorous evaluation and comparison of the
depth images of Kinect v1 and Kinect v2 is available in [3],
providing the basis for modeling the errors of the mentioned
devices. ToF cameras have a noise characteristic [3], which sources
are dark and glossy scenes, colors, large scene distances, pixels
close to the image boundaries, flying pixels close to depth
discontinuities, etc. In some experiments with ToF cameras by [1],
it was detected that the geometric consistency assumption for dense
motion estimation is often violated due to the sensor noise, leading

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or re-publish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
ICIGP’18, February 24–26, 2018, Kowloon city, Hong Kong.
Copyright 2018 ACM. ISBN: 978-1-4503-6367-9…$15.00.
DOI: http://dx.doi.org/10.1145/12345.67890

to inaccurate trajectories. Thus, Wasenmüller et al. proposed a
Dense Noise Aware SLAM (DNA-SLAM) to address this problem
by a sophisticated weighting scheme.

In this paper, we present a GPU-based extension for DNA-SLAM
to accelerate this algorithm. First, we review number of
publications that have been released over the last few years for real-
time RGB-D SLAM. Then, after explaining DNA-SLAM
approach, we argue some possible challenges while converting the
CPU implemented program to the GPU. Finally, runtime evaluation
on the public CoRBS dataset using Kinect v2 (ToF) is provided
showing improved results.

2. RELATED WORK
In this section, we review numerous works on real-time RGB-D
SLAM, according to the categories mentioned in the introduction.
First, we will discuss CPU-based and then GPU-based
implementations.

There are publications on SLAM that only take the advantages of
RGB-D images to be executed in real-time and use CPU
implementation. Among sparse methods, the approach of
Engelhard et al. [17] can be mentioned, in which they use SURF
features for point-wise correspondence and in next step, estimate
the position by RANSAC and finally use ICP and pose graph solver
respectively for refinement and optimization of the pose.

Regarding dense methods, two main primitive works are
Steinbrücker et al. [4] and Audras et al. [18] which minimize the
photometric error between consecutive RGB-D frames and perform
in real-time. Following, Kerl et al. [6] extend their approach by
weighting photometric errors according to the t-distribution and
published as the well-known DVO algorithm. Wasenmüller et al.
[1] extended this concept to the noise characteristic of ToF cameras.
Klose et al. [19] present a motion estimation approach based on
second-order minimization that performs in real-time. Furthermore,
evaluation and comparison over the algorithms, which minimize
photometric errors, is available in [19] and provides a
categorization of them. Ma et al. [25] as a dense method, used
frame-to-plane alignment beside frame-to-keyframe approach for
tracking, in order to reduce drifts and still performs in real-time.

On the other hand, some proposed works use both catalysts, i.e.
they are GPU-based RGB-D SLAM. Lee et al. [16] present a
sparse solution that achieves odometry by feature extraction and
RANSAC and subsequently optimize the estimation with ICP. In
order to accelerate the execution time, they compute feature
extraction and ICP step in parallel.

As one of the basic work on dense methods can refer to
KinectFusion by Newcombe et al. [13], which is extended in
numerous publications. Kintinuous by Whelan et al. [11],
developed KinectFusion using camera odometry estimation method
and also creating a high-quality map. Then, in [10] they proposed a
GPU-based implementation of visual odometry algorithm that
provides real-time operation of their earlier work Kintinuous. Roth
et al. [29] also expand KinectFusion, in order to enabling camera to
roam freely in mobile robotics and similar applications. As more
example of GPU-based dense RGB-D SLAM, we can mention
ElasticFusion by Whelan et al. [31]. They used dense frame-to-
model for odometry and windowed surfel-based fusion with model
refinement.
To sum up, in the ideal case, the solutions should perform in real-
time with high accuracy but there is almost always a tradeoff
between accuracy and execution time. In contrast to all related

works, there is still lack of a real-time method to deal with noise
characteristic of Time-of-Flight cameras with high accuracy. To
fulfill this purpose, in this paper, we accelerate DNA-SLAM [1],
the noise aware approach which especially designed for ToF RGB-
D cameras. Details and the results are discussed in the following.
3. BACKGROUND
In this section, we explain two specified components of this paper
including the original DNA-SLAM algorithm [1] and CUDA
programming.

3.1 DNA-SLAM
Dense Noise Aware SLAM (DNA-SLAM) [1], performs a
weighting approach to specifically address noise characteristics of
ToF RGB-D cameras. The basic idea behind this work is computing
an individual weight for each single pixel based on its reliability in
dense motion estimation. The camera motion is estimated
according to the photometric and geometric consistency
assumptions, following the state-of-the-art works [5], [10] and [21].
By experiments on ToF RGB-D images, Wasenmüller et al. [1]
found a violation on geometry consistency assumption for many
pixels in ToF cameras leading to inaccuracies in motion estimation.
In their experiments they detected that the local depth derivative is
a good indicator for the location and magnitude of the violation.
Thus, they transform the derivative together with the photometric
and geometric residual into a sophisticated weighting function. In
the same concept with [4], [6] and [21] papers, the equation for
estimating camera motion 𝜉, using minimization of the residuals ri
for entire n pixels is

 2 min ()(())
n

i i
i

arg w r r
ξ

ξ ξ= ∑ , (1)

where w is the mentioned weight that is assumed as t-distribution
of the derivative residuals in computation.

A detailed discussion about preliminaries and how to solve this
minimization equation is provided in original paper [1]. An
overview of the algorithm is depicted in Figure 1: after pre-
processing step on RGB-D input images, camera motion estimation

Figure 1. Overview of DNA-SLAM algorithm [1]. After

preprocessing step, iterative motion estimation is performed
on RGB-D pairs. Detail is described in the DNA-SLAM

algorithm section.

is computed with four serial tasks, consisting of compute residuals,
compute weight, compute scale and solve equation system
respectively, in two loops.
The external loop contains building pyramid representation of the
image in order to utilize coarse-to-fine strategy for ensuring small
camera motions. As demonstrated in Figure 2., in this process they
used four levels of pyramid, which RGB and depth image pairs (Ii,
Di) are subsampled by halving the RGB-D pairs resolution. The
camera motion estimation starts in the coarsest level first and is then
used as an initialization to finer levels.

The inter-loop is composed of the above mentioned tasks to
perform iterative re-weighted least square in order to solve the basic
motion estimation formula in Equation 1. They worked in the same
concept of the state-of-the-art algorithms [6], [25] and [26] and
minimize the photometric and geometric error, which is defined in
the residuals. Residuals are used for both weighting and motion
estimation purpose. Detailed information on residual definition can
be referred to the original paper.
Compared to state-of-the-art algorithms, while DNA-SLAM is
applicable with Kinect v1 datasets, shows superior accuracy on ToF
cameras like Kinect v2, drifts are reduced and results are closer to
ground truth. But, in order to gain around 100ms execution time for
performing motion estimation in real-time, requires an
acceleration.

3.2 CUDA Programming
Compute Unified Device Architecture (CUDA) is a parallel
computing technology and API model, released in 2006 by
NVIDIA. This platform provides ease of programming on
Graphical Processing Units (GPUs), and numerous CUDA
accelerated libraries are available for wide range of Computer
Vision applications.

Every CUDA program is performed in a general procedure. After
allocating space in device memory, first, required data should be
transformed from Host memory to GPU global memory. Next,
CPU instructs the process to GPU. Then, GPU execute parallel in
each core. And finally, results should be transformed back from
GPU memory to Host memory and free the allocated memory
space. So all GPU-based applications, also use the CPU for
performing subsidiary tasks include initializations, launching the
kernels and post-processing.
Fundamental building block of a parallel program is consisting of
threads. We usually need thousands of concurrent threads to gain

the best possible performance on a device, so, for better data
association, threads are grouped into blocks. Aggregation of blocks
form grids, which same blocks in a grid contain the same number
of threads. To prevent poor memory management, the suitable
number of threads per block that determine the number of blocks
and grids, is of great importance based on length of data [9].

Other important preliminary aspect in CUDA programming is to be
familiar with different memory systems within the GPU, because
memory throughput can generally dominate the program
performance. In fact, perception above three class of storage consist
of registers, global memory and shared memory, result in
maximum utilization of each type [9].

Since the GPU has its own challenges, the optimum GPU-based
algorithm, is not necessarily the best in the CPU and vice versa. So,
there are different standard patterns for parallel algorithms, which
imply on the access pattern of reading and writing from/on memory
locations. The patterns include Map, Reduce, Gather, Scatter, Scan,
Search and Sort.
We introduce three related patterns here. Map convey the scheme
of pattern, in which a function should be applied on a data array.
This pattern is straightforward in implementation; each thread
operates on an indexed data of array with no collision in parallel.
Reading multiple data items to a single location of the memory, is
the procedure of Gather pattern. In comparison, writing a single
data item to multiple locations, is Scatter pattern. Reduce, point to
the pattern, in which a binary associative operator should be applied
on a list of linear values and result would be written on a single
location of the memory. Common operators are summation,
multiply, max and min. We will briefly discuss about the effect of
these three patterns on gaining better performance, in the program
pattern subsection.

4. ACCELERATION APPROACH
The DNA-SLM [1], as a sophisticated dense noise aware approach,
requires an acceleration to execute around 100ms. Since having
dense data and working on list of linear values in each step of this
algorithm, in order to accelerate the original DNA-SLAM, we
implement motion estimation function by CUDA programming.
According to Figure 1., we have two nested loops with inter-loop
dependencies of the tasks: Compute Residuals, Compute Weights,
Compute Scale and likelihood part of Solve Equation System
blocks, which perform on intensity and depth images and also list
of linear values. We implement these tasks with CUDA

Table 1. Average execution time of different reduction

methods

Methods Average 1 Total mean
time(s)

Pure CPU 0.150 2.161

atomicAdd 0.230 3.445

Pure CUDA 0.120 1.845

Thrust reduction [7] 0.310 4.447

Thrust reduction by key
[7]

0.270 3.969

1 Average execution time of each 50 frames in seconds on
exemplary selected E1 image sequence of CoRBS dataset [2].

Figure 2. Coarse-to-fine strategy in DNA-SLAM [1] in order
to ensure small motion estimation between two consecutive

images. Each image tuple (intensity and depth) is represented
as a pyramid with four levels.

programming. We confront several challenges that are likely to
occur in other similar applications. First, we express them as the
general issues and then explain them in the concept of DNA-
SLAM.

4.1 Challenges
In this part, we briefly mention several challenges that might occur
in some applications and some of them may prevent gaining best
results. Also some guidelines which should be followed in order to
achieve optimum performance are described.

4.1.1 Program Pattern
Acceleration of GPU-based implementation in contrast with CPU
code is highly related to the pattern of the program. Both Gather
and Scatter patterns, in case of locality and repeated access, will
perform faster. Reduction pattern can almost be referred as the most
time consuming one, because of the atomic characteristic of its
operations. Atomic operations are those where hardware performs
a barrier point at the entry of it and only can be guaranteed the
completion of the single operation without any other thread
interruption. In fact, it occurs as the race condition, in which
sequence of execution for the threads makes a difference in the
results without no barrier. The updated generation GPUs support
faster atomic operations [9], different approaches have been
proposed to address faster solution. Also a nicely discussed
approaches issued this matter for reduction pattern is presented in
[20], which explores the algorithms trade off and compare their
execution time.

4.1.2 Serial vs. Parallel
One of the possible paralleling approaches beyond the performing
concurrent threads in GPU computing, is executing functions in
parallel like in [16], which they compute feature extraction and ICP
step in parallel. In fact, we can use task-based parallelism, beside
data-based parallelism. The concept that can relatively be used, is
dynamic parallelism, a CUDA extension, which enables a kernels
to perform and synchronize nested tasks that provides easier
paralleling approach for task-based parallelism purpose. Regarding
to carrying out the execution of processes simultaneously, is taking
into consideration the dependency between input and output of
each function, is especially significant. Dependent tasks must be
performed in serial and there is no chance for serialization.

4.1.3 Shared Memory
Data reuse requires the use of shared memory into consideration.
To ensure coalesced access to the global memory, i.e. avoid
redundant access to global memory, leading to decrease of the
wasted global memory bandwidth. Shared memory is held in
common for the threads of a block. Besides limitation of this

resource, that can not be sophisticated for applications with high
demand level of data reuse, some sort of programs, do not have any
reusable data to take advantages of this facility and for every single
task, data would be updated entirely.

4.1.4 Floating Point Precision
Floating point precision performance is of great importance for
particular utilizations in order to achieve the eligible accuracy for
the numerical results. In experiments regardless of hardware and
compiler differences on preserving semantics of floating points,
there are different floating point standards in CPUs and GPUs. On
the GPU devices with compute capability 2.0 and above, the single
precision is 32-bit and double precision is 64-bit. On the other hand,
some CPUs support 80-bit extended precision. Consequently,
during calculations on floating points you would likely to get small
differences even if using double precision. Fully-descripted
information on issued related to floating point is available in [8].

4.1.5 Data Transfer
The last but not the least important factor is data transfer. Data
transfer between CPU and GPU is a really time critical action,
specially by increasing amount of data in scale of million above,
spent time on transferring data is processing time	 lost. So, one of
the most important factor to gain optimum performance is
minimizing the transfers of data between CPU and GPU.

4.2 Accelerated DNA-SLAM
Given the mentioned contents in above sections, we implement
GPU-based motion estimation function of DNA-SLAM [1] by
CUDA programming. As presented in Figure 1. Compute
Residuals, Compute Weights, Compute Scale and likelihood part
of Solve Equation System blocks, are the main components of this
conversion. We will concern each of the challenges respectively:
All functions have Reduction pattern and we had examined four
different reduction methods contain of atomic defined function of
CUDA for summation (atomicAdd), faster parallel reduction of
Kepler GPUs and two reduction methods of well-known Thrust
library [7], leading to different execution times. In comparison,
faster parallel reduction of Kepler GPUs, using Kepler’s shuffle
instructions, gained the best performance. The average execution
time of each approach is available in Table 1. Pure CUDA implies
for Kepler shuffle method.

We had two nested loops with inter-loop dependencies of the tasks,
that input of each step is related to output of the prior task, so we
were not able to take advantage of task-based parallelism and all
the methods are using data-based parallelism. Consequently, we
had limitation in using dynamic parallelism since having serial
dependent functions.

Table 2. Rotational drifts in deg/s on exemplary selected E1
sequence of CoRBS dataset [2].

Errors CPU GPU

RMSE 1.426480 1.430815

Mean 1.287833 1.289820

Median 0.021025 0.020910

STD 0.613457 0.619353

Min 0.043994 0.043237

Max 3.331796 3.399846

Table 3. Translational drifts in m/s on exemplary selected E1
sequence of CoRBS dataset [2].

Errors CPU GPU

RMSE 0.034953 0.034825

Mean 0.031289 0.031152

Median 0.030043 0.029902

STD 0.015580 0.015525

Min 0.000938 0.000975

Max 0.064148 0.064503

In addition, except constant variables, we had bounded data reuse
to gain better performance above shared memory. Also time critical
action of data transferring for solving small equation system in the
CPU is the other restriction for our acceleration approach. Since
operations on small size data would yield poor performance in GPU
rather than CPU, and using equation solver libraries in CUDA for
the short equation system is more time consuming, we had data
transformation in this part of the iteration. As the final matter,
having only once memory allocation for iterative loop, had the great
impact on performance.

5. EXPERIMENTS
In this section, comparison of results between the CPU and GPU
implementation is discussed. First, we introduce the used dataset
and then, results are presented. All the experiments were
implemented on an Intel Xeon CPU W3520 with 2.67GHz and the
NVIDIA GeForce GTX 780 Ti graphic card supporting GPU
programming with CUDA platform and computational capability
of 3.5.
5.1 Dataset
We have evaluated the implemented algorithm on the public
Comprehensive RGB-D Benchmark for SLAM (CoRBS) dataset
[2], the only available dataset using Microsoft Kinect v2 [14].
Twenty image sequences of CoRBS benchmark is consist of four
different scenes, which are Human, Desk, Electrical Cabinet and
Racing Car. Different characteristic is concerned for each scenes
trajectory, so it can be applied for diverse scenarios and
applications. The Electrical Cabinet scene cover the most
challenging geometric characteristic. The ground truth trajectories
are acquired by an external precise motion capture system.

5.2 Results
Evaluations are based on accuracy and speed of performed
implementation. Accuracy measurement is determined by the
rotational and translational drifts which are presented in Table 2.
and Table 3. respectively in deg/s and m/s with six different
measures (RMSE, Mean, Median, STD, Min and Max). There is a
small difference between CPU and GPU errors amount, because of
different floating point precision, that discussed heretofore.
Table 4. contains evaluation of execution time in second that we
prepare a visual chart in Figure 3. for better demonstration. There

is different improvement for each image sequences. In result of
analyzing, we discovered, there is a relation between length of data
and acceleration improvement. In E1 and E5 sequences, valid
pixels of the images are more than D1 and H2 sequences. As CUDA
programming is guided for massive parallelism, better performance
is acquired for more massive data. We gain almost 20%
acceleration for these datasets.
As depicted in DNA-SLAM algorithm overview in Figure 1.
motion estimation building block consist of two loops within four
serial dependent modules. As mentioned in challenges section, we
confront the situation that could not parallel these modules to gain
better results. Also, the patterns of our program, limited us in using
shared memory in achieving foremost performance.
Applying the more powerful GPU and everyday fast progress of
GPGPUs technology and proponing new facilitated methods for
CUDA programming, definitely will lead to better result for this
work and similar researches.

6. CONCLUSION
This paper presented an accelerated implementation of DNA-
SLAM algorithm, a Dense Noise Aware SLAM approach, which
specifically addresses noise characteristics of ToF RGB-D
cameras. For acceleration purpose, we use CUDA programming
approach and review some possible challenges that occur during
converting CPU code into GPU implemented one. That includes
different kinds of program patterns, the capability of parallelization
of the tasks, limitation of shared memory usage, different floating
point precision and data transfer bottleneck.

We evaluate the results by using public CoRBS dataset using
Kinect v2 device. The results of execution time show almost 20%
improvement for datasets with more valid pixels, compared to the
original DNA-SLAM algorithm [1]. Also, there is a small
difference between rotational and translational errors due to
different floating point standard precision of CPU and GPU.

Summarized, applying the more powerful GPU and also the
necessities along with the fast progress of GPGPUs technology,
which is supporting new facilitated methods for CUDA
programming definitely will consequence in better result for this
work and other researches in the same context.

7. ACKNOWLEDGMENTS
This work was carried out in the context of a research cooperation
between the Augmented Vision department of DFKI, Germany,
and Kharazmi University of Tehran, Iran. We would like to give a
special gratitude to Stephan Krauß for his suggestions.

Figure 3. Comparison of CPU and GPU implementation
execution time in second, on selected sequence of the CoRBS

dataset [2].

Table 4. Comparison of execution time in second, on selected
sequence of the CoRBS dataset [2].

Dataset CPU GPU Improvement

D1 0.11216 0.10704 1.04x

H2 0.11534 0.09872 1.16x

E1 0.15355 0.12087 1.27x

E5 0.15736 0.12606 1.24x

8. REFERENCES
[1] Wasenmüller, O., Ansari, M. D. and Stricker, D. 2016. DNA-

SLAM: dense noise aware SLAM for ToF RGB-D cameras.
In Asian Conference on Computer Vision Workshop (ACCV
workshop). (Springer, 2016).

[2] Wasenmüller, O., Meyer M., and Stricker, D. 2016. CoRBS :
Comprehensive RGB-D benchmark for SLAM using Kinect
v2. In Winter Conference on Applications of Computer
Vision (WACV). http://corbs.dfki.uni-kl.de/.

[3] Wasenmüller, O. and Stricker, D. 2016. Comparison of
kinect v1 and v2 depth images in terms of accuracy and
precision. In Asian Conference on Computer Vision Vision
Workshop (ACCV workshop). (Springer, 2016).

[4] Steinbrücker, F., Sturm, J. and Cremers, D. 2011. Real-time
visual odometry from dense RGB-D images. In IEEE
International Conference on Computer Vision Workshops
(ICCV Workshops).

[5] Kerl, C., Sturm, J. and Cremers, D. 2013. Robust odometry
estimation for RGB-D cameras. In IEEE International
Conference on Robotics and Automation (ICRA).

[6] Kerl, C., Sturm, J. and Cremers, D. 2013. Dense visual
SLAM for RGB-D cameras. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

[7] Thrust: (CUDA toolkit) www.docs.nvidia.com/cuda/thrust/.

[8] Whitehead, N. and Fit-Florea, A. 2011. Precision &
performance: Floating point and IEEE 754 compliance for
NVIDIA GPUs. rn (A+ B), 21(1).

[9] Cook, S. 2012. CUDA programming: a developer's guide to
parallel computing with GPUs. Newnes.

[10] Whelan, T., Johannsson, H., Kaess, M., Leonard, J. J. and
McDonald, J. 2013. Robust real-time visual odometry for
dense RGB-D mapping. In IEEE International Conference
on Robotics and Automation (ICRA).

[11] Whelan, T., Kaess, M. Fallon, M. F., Johannsson, H.,
Leonard, J. J. and McDonald, J. 2012. Kintinuous: Spatially
extended kinectfusion. In Advanced Reasoning with Depth
Cameras RSS Workshop on RGB-D.

[12] Wasenmüller, O., Meyer M., and Stricker, D. 2016.
Augmented Reality 3D discrepancy check in industrial
applications. In IEEE International Symposium on Mixed and
Augmented Reality (ISMAR).

[13] Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D.,
Kim, D., Davison, A. J. Kohi, P., Shotton, J., Hodges,
S. and Fitzgibbon, A. 2011. KinectFusion: Real-time dense
surface mapping and tracking. In IEEE international
symposium on Mixed and augmented reality (ISMAR).

[14] Microsoft: (Kinect v2)
www.microsoft.com/enus/kinectforwindows/.

[15] Google: (Tango) www.google.com/atap/project-tango/.  

[16] Lee, D., Kim, H. and Myung, H. 2012. Gpu-based real-time
rgb-d 3d slam. 9th International Conference on Ubiquitous
Robots and Ambient Intelligence (URAI).

[17] Engelhard, N., Endres, F., Hess, J., Sturm, J. and Burgard W.
.2011. Real-time 3D visual SLAM with a hand-held RGB-D
camera. In Proc. of RGB-D Workshop on 3D Perception in
Robotics at the European Robotics Forum.

[18] Audras, C., Comport, A., Meilland, M. and Rives, P. 2011.
Real-time dense appearance-based SLAM for RGB-D
sensors. In Australasian Conf. on Robotics and Automation.

[19] Klose, S., Heise, P. and Knoll, A. 2013. Efficient
compositional approaches for real-time robust direct visual
odometry from RGB-D data. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

[20] van den Braak, G.J., Nugteren, C., Mesman, B. and
Corporaal, H., 2011, August. Fast hough transform on GPUs:
Exploration of algorithm trade-offs. In International
Conference on Advanced Concepts for Intelligent Vision
Systems. Springer, Berlin, Heidelberg.

[21] Gutierrez-Gomez, D., Mayol-Cuevas, W. and Guerrero, J.J.
2016. Dense RGB-D visual odometry using inverse depth.
In Robotics and Autonomous Systems, 75.

[22] Whelan, T., Kaess, M., Johannsson, H., Fallon, M., Leonard,
J.J. and McDonald, J. 2015. Real-time large-scale dense
RGB-D SLAM with volumetric fusion. In The International
Journal of Robotics Research, 34(4-5),

[23] Yoshida, T., Wasenmüller, O. and Stricker, D. 2017. Time-
of-Flight Sensor Depth Enhancement for Automotive
Exhaust Gas. IEEE International Conference on Image
Processing (ICIP).

[24] Newcombe, R. A., Lovegrove, S. J., and Davison, A. J. 2011.
DTAM: Dense tracking and mapping in real-time. In IEEE
International Conference on Computer Vision (ICCV).

[25] Ma, L., Kerl, C., Stückler, J. and Cremers, D. 2016. May.
Cpa-slam: Consistent plane-model alignment for direct rgb-d
slam. In IEEE International Conference on Robotics and
Automation (ICRA).

[26] Meilland, M. and Comport, A.I., 2013, November. On
unifying key-frame and voxel-based dense visual SLAM at
large scales. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 3677-3683.

[27] Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D.
and Burgard, W. 2012. An evaluation of the RGB-D SLAM
system. In International Conference on Robotics and
Automation (ICRA).

[28] Meilland, M., Comport, A.I. and Rives, P., 2011. Dense
visual mapping of large scale environments for real-time
localisation. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).

[29] Roth, H. and Vona, M., 2012, September. Moving Volume
KinectFusion. In BMVC. Vol. 20, No. 2, 1-11.

[30] Huang, A.S., Bachrach, A., Henry, P., Krainin, M.,
Maturana, D., Fox, D. and Roy, N., 2017. Visual odometry
and mapping for autonomous flight using an RGB-D camera.
In Robotics Research. Springer International Publishing.

[31] Whelan, T., Leutenegger, S., Salas-Moreno, R., Glocker, B.
and Davison, A. 2015. ElasticFusion: Dense SLAM without
a pose graph. Robotics: Science and System.

