
Master’s Thesis

Development of a Modular Software
Framework for Supporting Architects

During Early Design Phases

by
Johannes Bayer

July 31, 2017

supervised by
Prof. Dr. Andreas Dengel

and
Dr. Ing. Syed Saqib Bukari

Department of Computer Science
University of Kaiserslautern

Contents

1. Introduction 11
1.1. Early Design Phases in Architecture . 11

1.1.1. The Room Schedule Working Method 11

1.1.2. Search for Architectural References 12

1.1.3. Problems of the Traditional Workflow 12

1.2. Approach of this Thesis . 12

1.3. Contribution . 13

1.4. Structuring of this Thesis . 14

2. Background 15
2.1. Graphs . 15

2.1.1. Definition of a Graph . 15

2.1.2. Graph Matching . 16

2.1.3. Graph Databases . 17

2.2. Artificial Neural Networks . 17

2.2.1. The Perceptron as an Analogon to the Neuron 18

2.2.2. Multi Layer Perceptron . 19

2.2.3. Recurrent Neural Networks . 21

2.2.4. Long Short-Term Memory . 21

2.2.5. Bidirectional RNN . 24

2.2.6. Sequence Generation with ANN 25

2.3. Human Computer Interaction . 26

2.3.1. Usability . 26

2.3.1.1. Dimensions . 26

2.3.1.2. Measurements . 26

2.3.2. Human-Centered Design . 27

2.3.3. Intelligent User Interfaces . 27

3. Related Work 29
3.1. Floor Plan Pattern Generation . 29

3.2. Architectural User Interfaces . 31

4. Methodology 33
4.1. Room-Based Digital Conceptualization . 33

4.1.1. Abstractness of Rooms . 33

4.1.2. Abstractness of Links . 34

4.1.3. Physical Dimension of Walls . 34

3

4.1.4. Links viewed as parts of Rooms . 34
4.2. Semantic Pattern Matching . 35

4.2.1. AGraphML . 35
4.2.2. Semantic Fingerprints . 38

4.3. Iterative Human-ANN Design Collaboration 40
4.3.1. Stepwise Recreation of Architect’s Behavior 40
4.3.2. From Prediction to Generation . 41

5. Proposed Solution 43
5.1. The Archistant Framework . 43

5.1.1. WebUI . 44
5.1.2. Processing Layer . 44

5.1.2.1. Performing a Search . 45
5.1.2.2. Log Files . 45

5.1.3. Retrieval Systems in General . 45
5.1.4. Index-Based Retrieval . 46

5.1.4.1. Cypher Query Generation 46
5.1.4.2. Result Ranking and List Unification 46

5.1.5. Case-Based Retrieval . 47
5.1.6. VF2-Based Retrieval . 47
5.1.7. Augmentation Processor . 47

5.1.7.1. Generating Result AGraphMLs 48
5.1.7.2. Generating Room Maps 48

5.1.8. Analysis Module . 48
5.1.9. Boundary Tester . 49
5.1.10. Creativity Engine . 49
5.1.11. Neo4j Database . 50

5.2. The Archistant WebUI . 50
5.2.1. Requirements . 50
5.2.2. User Interface Elements and Concepts 51

5.2.2.1. The Editor . 51
5.2.2.2. Radial Menus . 52
5.2.2.3. Rooms . 52
5.2.2.4. Room Connection Elements 55
5.2.2.5. Load/Store Locally . 57
5.2.2.6. Undo/Redo . 57
5.2.2.7. Auto Link . 57
5.2.2.8. Explosion . 58
5.2.2.9. Glue . 58
5.2.2.10. Grid . 59
5.2.2.11. Ruler . 60
5.2.2.12. Creativity Function . 60
5.2.2.13. The Search Bar . 61
5.2.2.14. The Mapping View . 62

4

5.2.2.15. The Analysis View . 63

5.2.3. Technical Implementation . 63

5.2.3.1. The Room Class . 64

5.2.3.2. The Floorplan Class . 64

5.2.3.3. The FloorplanEditor Class 65

5.3. The Creativity Engine . 65

5.3.1. Requirements . 65

5.3.2. Representation of Floor Plans to ANNs 65

5.3.3. The Feature Vector . 66

5.3.4. The Feature Vector Sequence . 67

5.3.4.1. Tags . 67

5.3.4.2. Blocks . 68

5.3.5. Room Order . 68

5.3.6. Sample Preparation . 68

5.3.7. Sequencer Types . 69

5.3.7.1. Block Generation Sequencers 69

5.3.7.2. Block Transformation Sequencers 70

5.3.7.3. Vector Prediction Sequencers 71

5.3.7.4. Vector Correction Sequencers 72

5.3.8. The shallowDream Structure . 73

5.3.8.1. Programming the shallowDream Structure 74

5.3.8.2. Feature Vector Regeneration 74

6. Experiments 75
6.1. WebUI - Usability Study . 75

6.2. Retrieval Systems . 78

6.2.1. Quantitative Analysis - Stress Test 78

6.2.2. Qualitative Analysis - Result Adequacy Study 79

6.3. Creativity Engine . 80

6.3.1. Quantitative Analysis - Machine Learning Performance 80

6.3.2. Qualitative Analysis - Performance Case Study 84

7. Conclusion 87
7.1. Achieved Performance . 87

7.1.1. User Interface . 87

7.1.2. Retrieval Systems . 88

7.1.3. Creativity Engine . 88

7.2. Future Work . 88

7.2.1. User Interface . 89

7.2.2. Retrieval Systems . 89

7.2.3. Creativity Engine . 90

Appendices 91

5

A. Sample Floor Plan in Different Representations 93

B. LOGXML Sample File 97

C. WebUI User Study 101
C.1. Task Desprition for Participants . 102
C.2. Questionaire for Participants . 103

D. Learning Curves of Creativity Engine ANNs 109

6

Ich versichere hiermit, dass ich die vorliegende Masterarbeit mit dem Thema ”Develop-
ment of a Modular Software Framework for Supporting Architects During Early Design
Phases” selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel benutzt
habe. Die Stellen, die anderen Werken dem Wortlaut oder dem Sinn nach entnommen
wurden, habe ich durch die Angabe der Quelle, auch der benutzten Sekundärliteratur,
als Entlehnung kenntlich gemacht.

Ort, Datum Johannes Bayer

Abstract

Early design phases in architecture deal with the conceptualization of a building. During
these phases, a rough floor plan layout is designed by an architect based on a high-level
description given by a contractor or customer. Traditionally, these phases involve a lot of
monotone and repetitive labor. For example, manual research in architectural libraries
or dedicated magazines is carried out in order to retrieve reference concepts that may
serve as inspiration or to probe the feasibility of the project. Likewise, some aspects of
a floor plan design are highly creative and some parts remain rather predictable. One
established working method in architecture for turning a high-level description into a
specific floor plan layout is the so-called room schedule, in which a set of individual rooms
is the focus of interest.

Based on this room schedule working method, a smart framework is developed to
assist architects with their work: A sketch editor allows for specifying a floor plan
concept with a varying degree of abstraction, thus allowing the user to specify every
aspect of a floor plan concept as abstract of specific as desired. The sketch editor follows
the room schedule working method and aims to support the architect during the entire
early design phase.

Simultaneously, this sketch editor serves as an input tool for search queries with which
the user can search for similar floor plan concepts. The presented framework allows for
integrating an arbitrary number of such retrieval systems that utilize a dedicated floor
plan database. Currently, three different retrieval systems are integrated, one of them
is presented in greater detail here. These retrieval systems rely on so-called semantic
fingerprints, which are graph-based abstractions of floor plan concepts. Hence, sub-
graph matching is employed to these graph-based abstractions of floor plans. Likewise,
these semantic fingerprints allow the user to control the retrieval process. In order to
accomplish explainability in the result finding, a mapping function is incorporated in
the framework that calculates for all found results, how individual rooms in the search
query map to individual rooms in the search results.

Finally, the sketch editor is connected to a neural network-based predictor that gener-
ates automatic suggestions for solving creative problems. These suggestions may perform
entire design steps. This helps the user to avoid repetitive and predictable actions like
completing a floor plan layout. Likewise, it offers inspiration and provides templates
that can be refined by the user. In such a setting, the user and the artificial neural
network are in a loop, both manipulating the sketch.

In order to evaluate the proposed solution, individual aspects of the framework are
tested by different means to demonstrate their usefulness. The user interface is tested by
user study that compared it to the traditional approach. The retrieval system is tested
by both a stress test and qualitatively analysis. Finally, the design suggestion is both
evaluated by established means of artificial intelligence and examined qualitatively.

8

Zusammenfassung

Frühe Phasen architektonischen Entwerfens befassen sich mit der Konzeptualisierung
eines Gebäudes. Dabei wird ein grober Grundriss-Entwurf ausgehend von einer sehr
abstrakten Beschreibung entwickelt, welche üblicherweise vom Bauunternehmer oder
dem Endkunden stammt. Diese Phasen enthalten traditionell sehr arbeitsintensive und
monotone Aufgaben. So wird beispielsweise oft eine Literaturrecherche in Architektur-
Bibliotheken und spezialisierten Magazinen durchgeführt, um nach Referenzen zu su-
chen, die als Inspiration dienen können und die Machbarkeit des Projektes zeigen sollen.
Ebenso sind zwar manche Aspekte im Entwurfsprozess hochgradig kreativ, andere hinge-
geben eher vorhersagbar und trivial. Eine etablierte Arbeitsmethode, um eine abstrak-
te Projektbeschreibung in einen Grundriss-Entwurf zu überführen ist das sogenannte
Raumprogramm, bei dem eine Gruppe von einzelnen Räumen im Vordergrund steht.

Basierend auf dieser Raumprogramm-Arbeitsmethode wird ein intelligentes Frame-
work entwickelt, um Architekten bei ihrer Arbeit zu assistieren: Ein Entwurfsprogramm
erlaubt es, Grundrisse mit variablem Abstraktionsgrad einzugeben, wobei jeder Aspekt
des Entwurfs so abstrakt oder spezifisch wie gewünscht angegeben werden kann. Dieses
Entwurfsprogramm folgt der Idee des Raumprogramms und zielt darauf ab, den Archi-
tekten über die gesamte frühe Phase des Entwurfs zu begleiten.

Gleichzeitig dient dieses Entwurfsprogramm als Schnittstelle zu einem Suchsystem,
dass automatisch nach ähnlichen Entwürfen sucht. Das präsentierte Framework erlaubt
dabei die Integration einer beliebigen Anzahl von internen Suchverfahren. Zur Zeit sind
drei solche Module ins System integriert, von denen auf eines im Detail eingegangen
wird. Diese Suchverfahren basieren auf sogenannten semantischen Fingerabdrücken, wel-
che graphbasierte Abstraktionen von Grundriss-Konzepten darstellen. Folglich kommt
Subgraph-Matching beim Suchprozess zum Einsatz. Die semantischen Fingerabdrücke
können vom Nutzer gewichtet werden, um die Suche zu beeinflussen. Eine in das Frame-
work integrierte Abbildungsfunktion einzelner Räume der Sucheingabe auf Suchergeb-
nisse hilft dabei dem Nutzer, den Findungsprozess des Suchsystems nachzuvollziehen.

Schlussendlich ist das Entwurfsprogramm mit einer auf neuronalen Netzwerken ba-
sierenden Entwurfs-KI verbunden, um die automatische Lösung kreativer Probleme an-
zustreben. Dieser Mechanismus kann ganze Entwurfsschritte ausführen. Dies hilft dem
Nutzer, monotone Entwurfschritte zu vermeiden. Dies kann ebenfalls der Inspiration die-
nen und die vom Mechanismus erstellen Entwürfe können vom Nutzer verfeinert werden.
In dieser Situation sind Architekt und KI miteinander über den Entwurf verbunden.

Das präsentierte Framework wird anhand einer Reihe verschiedener Experimente auf
seine Tauglichkeit untersucht. Die Nutzerschnittstelle wird durch eine Nutzerstudie un-
tersucht, das Suchsystem wird durch einen Stresstest und qualitativ untersucht. Die
Entwurfs-KI wird durch etablierte Methoden Der KI und qualitativ untersucht.

9

1. Introduction

Paper is dead without words,
Ink idle without a poem,
All the world dead without stories

– Tuomas Holopainen

1.1. Early Design Phases in Architecture

Figure 1.1.: Iterative Design Process using Sketches (adapted from [20]).

While late design phases in architecture are rather technical (like conducting a structural
analysis of a design or getting approval by building department), early design phases in-
volve a major part of the creative work. Several attempts have been made to model the
process of architectural design (e.g. [12], see [46] for an overview). As a general principle,
the process of design is usually carried out in an iterative manner (see fig. 1.1). In this
loop, the architect is the main actor and the sketch serves as an external memory exten-
sion only. The architect creates a sketch based on the actual design problem, experiences
and multiple other constraints (e.g. economic restrictions, rules of the art). After cre-
ating an initial sketch, the sketch is analyzed to spot problems regarding the mentioned
constraints (or at lest one of them is focused) and a refined version is generated. The
process continues until a useful result is created.

1.1.1. The Room Schedule Working Method

The room schedule is a top down working method that is influenced by the way a
building project is ordered by a contractor. A room schedule is a high-level specification
of a building that usually comes from the customer or contractor and describes only
a few aspects (e.g. ”residential building for one family with two bathrooms and three

11

bedrooms”). Formally, it can consist of a simple list of room functions, but there might
already also be other (not necessarily complete) restrictions like sizes of individual rooms
and connections between rooms (e.g. ”the kitchen should be placed next to the dining
room and this connection should be traversable”). Obviously, the latter is better to
be considered as a graph structure. Consequently, a room schedule is a rather vague
concept, that can not be described by one data structure (lists, graphs and sets might
however be appropriate for specific cases). Likewise, the degree of detail might range
widely. Given a room schedule, the architect’s task is to implement this specification
as a floor plan while obeying given restrictions (like the established building practices).
Different representations can be used in this stage, like so-called bubble diagrams in
which each room is represented by a circular tag and the connections between them are
indicated by lines. Likewise, free-style drawings can be used. This process is usually
iterative, i.e. starting from a certain stage that is drawn on a first sheet of paper, it
slightly refined on a second sheet, iterating until a certain stage is reached. In order to
simplify this process, semitransparent paper is used in stacks, so that after a new sheet
has been added, the existing sketch on the last sheet shines through the new sheet and
allows for easy copying of aspects that should be equal in the old and new version.

1.1.2. Search for Architectural References

Initially, Architects may seek for external inspiration in order to complete their task.
This process can be described as a research for references (or literature research). Such
references can often be found in specialized literature. These pieces of literature may
have solved a similar problem already, hence aspects may be reused for a given problem.
Often, multiple sources may serve as inspiration.

1.1.3. Problems of the Traditional Workflow

Nowadays, the literature research is usually conducted manually and involves the con-
sultation of different media (e.g. in specialized journals in paper form, sometimes only
accessible in dedicated places like libraries). This process is very labor-intensive and in-
volves monotone tasks like gathering the sources and evaluating them for significance for
the ongoing building project. Likewise, the initial sketching itself is also labor intensive.
Finally, paper-based drawings suffer from known problems: They have to be processed
(e.g. stored/copied/edited/moved) manually and they can only be accessed by a limited
amount of persons at the same time. When working with stacks of semitransparent
paper, the stack’s order can easily become messy and the process of redrawing by design
requires repetitive, monotone actions.

1.2. Approach of this Thesis

The entire mentioned workflow could benefit from automation and digital media: the
literature research for references that are needed is usually carried out in advance, the
sketching itself as a process of recording concepts as well as the iterative process of

12

interpreting and modifying of these sketches. In order to accomplish this, an end-to-end
system is developed that incorporated a set of functions to assist the human architect.

Sketches can be drawn in a dedicated user interface (UI). The UI is built with a
focus on allowing to formulate a sketch (and every aspect of it) as abstract or specific
as intended by the user following the room schedule working method. It starts with a
number of rooms that can later be assigned sizes, functions, wall layouts and window and
door positions. In general, the UI is room-oriented and uses established mouse/keyboard
or pen-based interaction devices.

The search system can be used for automatically conducting a search for similar refer-
ences based on the user’s input. This search is conceptually based on abstractions of floor
plans, the so-called semantic fingerprints. These abstractions mainly use mathematical
structures of graphs to model floor plans where each room is a node in the graph. These
hand-crafted semantic fingerprints embody architectural knowledge about the percep-
tion of floor plans in oder to make the similarity between floor plans computable. The
user controls this retrieval process by determining the importance of individual finger-
prints that are significant for him in the given situation. Different approaches were used
to implement such a retrieval systems. In order to let the user understand the results
and to reflect his/her work, the system explains the results by an illustrated mapping
that relates the sketched rooms to the rooms in the search results.

In order to assist the user furthermore in his/her work, the system provides a function
for proposing suggestions for different design steps. This function is implemented based
on neural networks, that have been trained on a database of complete floor plans. It has
to be invoked manually by the user, consequently the user still remains in control of the
process.

1.3. Contribution

The contribution of this thesis to the scientific community can be summarized as follows:

• Development of a modular end-to-end system and framework for supporting archi-
tects during early design phases

• Development of a web-based user interface (WebUI) for accessing the framework

• Development of an index-based floor plan retrieval system

• Development of algorithm for explaining search results by mapping rooms in queries
to rooms in results.

• Development of an design assisting system following the room schedule working
method based on recurrent neural networks

This work makes use of preliminary studies that have been conducted in the course of
the research project Metis, which has been funded by the Deutsche Forschungsgemein-
schaft (DFG). Likewise, the main part of the research conducted for this thesis was also

13

conducted in the course of the research project Metis. Metis [8] has been conducted as a
collaboration between the German Research Center for Artificial Intelligence (DFKI,[1])
and the Lehrstuhl für Architekturinformatik [7] at Technical University of Munich.

1.4. Structuring of this Thesis

The thesis at hand is structured as follows: After the current situation in the application
domain and its related problem have been described in this chapter, chapter 2 describes
the technical foundations used in the course of this thesis. Afterwards, similar work and
approaches related to this thesis are explained in chapter 3. Then, the very methods to
tackle the problem are outlined in chapter 4. After that, the proposed software solution
is described in chapter 5. Different aspects of this solution are evaluated by different
experiments in chapter 6. Finally, the gathered findings are summarized and the thesis is
concluded by an overall résumé and incorporation of an outlook on the topic in chapter 7.

14

2. Background

This chapter introduces the technical and scientific foundations that are used in the
thesis at hand. For each scientific branch that is utilized in this thesis, there is a section
in this chapter. The first section introduces the mathematical concept of graphs that
are employed in the floor plan retrieval function. Then, artificial neural networks are
introduced which are needed in the creativity engine for generating design proposals.
Finally, human computer interaction is briefly introduced as a scientific basis for the
design and more importantly the analysis of the WebUI as a user interface.

2.1. Graphs

Figure 2.1.: Illustration of an Unlabeled Graph Consisting of 5 Nodes and 6 Edges.

Graphs[21] are a mathematical construct (see fig. 2.1 for an example illustration). The
idea behind a graph is to model the relation between a set of objects. The objects in
such a model are referred to as nodes and the relations are referred to as edges.

2.1.1. Definition of a Graph

In the following, a graph is formally defined as follows: Let N = {n0 . . . nk} be a final
set of k nodes (nodes are also referred to as vertices in literature). Let furthermore
E ⊆ N × N be a subset of the Cartesian product of N with itself. Then G = (N , E)
is a graph. In this definition, the the nodes na and nb are considered to be connected if
(na, nb) ∈ E or (nb, na) ∈ E (or both).

Directed and Undirected Graphs In some situations, the relation expressed by a graph
is symmetric in a sense that both connected nodes are equally part of the relation (e.g.
when modeling similarity of entities). In other cases, the relations may have two different
roles (e.g. specialization of entities: a square is a kind of rectangle, but not vice versa).
A graph is referred to as undirected, if the following condition holds:

15

(na, nb) ∈ E ⇐⇒ (nb, na) ∈ E (2.1)

A graph is referred to as directed, if the following condition holds:

(na, nb) ∈ E ⇐⇒ (nb, na) /∈ E (2.2)

Labeled Nodes and Edges In a graph, each node and each label is considered to be
unique. Nevertheless, sometimes nodes and edges need to be equipped with additional
properties assigned to them (some of them may be identic for multiple nodes or edges).
This is realized by labeling functions. One labeling function lN : N → LN is used
to assign nodes label from a labeling set LN . Elements of such a set may again be
sets, so that a node can have multiple properties. Likewise, there is a labeling function
lE : N ×N → LE used for assigning edges different properties.

2.1.2. Graph Matching

Figure 2.2.: Illustration of Subgraph Matching of Unlabeled Graphs. The graph on the
left-hand side is a subgraph of the one it the right-hand side.

Graph matching deals with the generation of mappings between two graphs (see figure
2.2). Formally, in the course of the thesis at hand, a subgraph matching algorithm is an
algorithm that creates injective maps m : Nα → Nβ from the nodes of graph α to the
nodes of a graph β. The map has to preserve the graph structure of α in β:

(na, nb) ∈ Eα ∧m(na) = px ∧m(nb) = py =⇒ (px, py) ∈ Eβ (2.3)

Additionally, a subgraph matching may enforce same labeling of nodes and edges:

lNα(na) = ℵ ∧m(na) = px =⇒ lNβ (px) = ℵ (2.4)

lEα(na, nb) = ℵ ∧m(na) = px ∧m(nb) = py =⇒ lEβ (px, py) = ℵ (2.5)

VF2 and index-based methods exist as optimized implementations of such subgraph
matching methods.

16

2.1.3. Graph Databases

Graph Databases[13] store information and model the relations of different entities on
the basis of graphs. Neo4j [38] is an open-source implementation of such a database
concept. In order to access and manipulate graphs in Neo4j, a dedicated query language
called cypher. Cypher itself borrows many concepts and syntax elements from SQL, but
specializes in the querying and manipulation of graphs. In the course of this thesis, only
the querying features of cypher are utilized.

The syntax and semantics of cypher are illustrated by an example. Consider a database
that models tools for craftsmen. The following query can be used to learn all names of
the chemical elements that are contained in the nails that a hammer may treat:

Listing 2.1: Sample Cypher Query

MATCH (a:‘hammer ‘) -[e1: ‘treats ‘]->(b:‘nail ‘) -[e2: ‘contains ‘]->(

c:chemicalElement) RETURN DISTINCT c.Name;

Résumé on Graphs Graphs are a tool for modeling relations. Their properties have
been intensively studied in literature and different algorithms (e.g. for graph matching)
are available as practical implementations.

2.2. Artificial Neural Networks

Artificial neural networks (ANNs) are a biologically motivated approach in the field of
artificial intelligence (AI). There is a wide range of different kinds of ANNs described in
literature, some of them are pointed out in more detail below. Generally, ANNs mimic
the behavior of neurons of biological organisms. More precisely, the interaction between
these units is of most interest here. An ANN usually has a fixed number of inputs and
outputs (often described as a vector) and neural units in between. In the neural network,
units are connected to each other by so-called weighted connections. The weights of these
connections influence how the neural units communicate. These weighted connections
are initiated with random values when creating the ANN and adapted during a training
process in order to a imprint a desired behavior to the neural network. After such a
training process, the ANN can be deployed in a productive situation, where it is used to
inference from input. In the following, a trained neural networks is referred to as model.

17

2.2.1. The Perceptron as an Analogon to the Neuron

Figure 2.3.: Comparison of a Simplified Neural Cell to the Concept of a Perceptron.
Contains material from [9].

Neurons are information processing cells that exist in a wide range of biological organ-
isms. Neurons possess several projections that can roughly be divided into axons and
dendrites. Both connect a neuron to other neurons. While dendrites mainly carry the
receiver devices of a neuron, axons propagate signals and the axon terminals transmit
the cell state signal to other neurons. These inter-cell connections are referred to as
synapses. Roughly speaking, the cell state can be described as either activated or in-
activated. Whether or not the cell is activated is determined by the incoming signals,
where each incoming signal can contribute either to raising the likelihood of an active
cell state (activation) or lowering this probability (inhibition).

Perceptrons mimic the information processing capabilities of neurons (see fig.2.3). The
output of each perceptron is calculated by an activation function applied to the weighted
sum of inputs (r is the number of input connections to the perceptron):

a = factivation(
r∑
i=0

wixi) (2.6)

Usually a static 1 signal is added to the set of inputs. Doing so enables to output a 1
as in output in cases where a 1 is desired as an output despite all inputs are 0.

There are several ways to choose the activation function. Generally, the functions
should be limited to either [0, 1] or at least [−1, 1] and saturate for x < −1 and x > 1 to
mimic the idea of a neuron with an inactive and an active state. As pointed out below,
the function also has to be differentiable. So the most common activation functions are:

18

factivation(x) =
1

1 + e−x
(2.7)

and

factivation(x) =
e2x − 1

e2x + 1
(2.8)

These two activation functions differ mainly in their output range. While 2.7 has an
output interval of [0, 1], the function 2.8 has an output range of [−1, 1]. Which function
is used mainly depends on the application, both can be used for training. Activation
functions are usually monotonic and have a threshold, at which they transition from one
state to the other. This threshold is implemented by the weighted connection from the
static 1 to the summation of the perceptron.

2.2.2. Multi Layer Perceptron

Figure 2.4.: The Multi Layer Perceptron. The input (green) is propagated from left to
right. Apart from connections to the preceding layer, every perceptron has
a connection to a static unit, serving as adaptable threshold.

The multi layer perceptron (MLP) consists of a stack of layers of perceptron units, in
which the outputs of every layer are fed into the subsequent layer (see fig. 2.4). Hence,
there is a full interconnection between the preceptron units of each layer, while the
perceptron units of each layer are not connected to each other. The number perceptrons
in each layer as well as the number of layers themselves are arbitrary, and appropriate
values for these so-called hyperparameters are usually determined by trial-and-error
experiments. Likewise, the number of MLP net inputs and output perceptrons is usually
determined by the application.

Every connection is equipped with a so-called weight determining the influence an
outgoing perceptron has to the ingoing. Since two consecutive are assumed to be fully
connected, their connections are usually described by a weight matrix. The inputs of
the MLP are usually expected to be ranging between zero and one.

19

Backpropagation The weights of an ANN are usually initialized with random values.
During the training process, these weights are altered so that the forward function of
the ANN approaches the desired function. One commonly used algorithm to accomplish
training is the so-called backpropagation [29] (BP) algorithm. At this point, BP training
is shown for MLPs.

Figure 2.5.: Direction of Propagation and Backpropagation.

In order to apply BP, an input is propagated forward through the MLP (see figure
2.5). During forward propagation, for every perceptron inside the MLP the activation a
and derivative d of the activation function at the same argument are calculated (an,k is
the activation of the k-th perceptron in the n-th layer, Kn is the number of perceptrons
in layer n):

an,k = factivation(

Kn−1∑
i=0

wn,k,i · an−1,i) (2.9)

dn,k = f ′activation(

Kn−1∑
i=0

wn,k,i · an−1,i) (2.10)

The BP starts at the last layer, where its error is calculated from the difference of the
layer’s output and the target values that are known from the ground truth. The error
is then propagated back through the layers by the following recursive equation:

δn,k = dn,k ·
Kn+1∑
i=0

wn+1,i,k · δn+1,i (2.11)

The error δn,k is now used to calculate the weight update ∆wn,k,i, which is added to
the existing weights:

20

∆wn,k,i = −µ · δn,k · an−1,i (2.12)

2.2.3. Recurrent Neural Networks

Figure 2.6.: A Recurrent Neural Network. The second layer is equipped with a recurrent
connection. In each time step, the recurrent connections feed the outputs of
the previous time step into the recurrent layer.

MLPs always map an input vector of fixed length to an output vector of fixed length.
That makes is difficult to handle input of varying size. To overcome this problem,
recurrent neural networks have been introduced that are scanning over an input of
variable size in a series or time steps. In order to incorporate knowledge from previous
time steps, at least one hidden layer needs interconnections to it previous activation (see
figure 2.6).

Backpropagation Through Time So far, the BP algorithm has been introduced for
the training of MLPs. In order to apply BP to RNNs, the recursive connections of the
RNN have to be resolved in a way that the RNN appears as a normal MLP to the BP
algorithm. For that purpose, the inputs of the recursive connections at a certain time
step t are replaced by copies of the recursive connection’s outputs one time step back in
time. This process (also referred to as unfolding in time, see figure 2.7) is iterated from
time step t back to the first time step. The BP algorithm can now be applied as if the
RNN was an MLP. This proceeding is referred to as backpropagration trough time [28]
(BPTT). In order to train an entire sequence, BPTT is repeated for all time steps.

2.2.4. Long Short-Term Memory

One of the main motivations for the development of LSTM[31] was the discovery of the
vanishing gradient problem 2.8: Consider an RNN has to store a value over a great
amount of time steps. Before training, all weights are initialized with random values.
During training, a weight may approach 1, but even a small derivation from 1 results in
a vanishing of the stored value during propagation. Likewise, when applying backprop-
agation in situations with many time steps, the error signal decays over time [30]. More

21

Figure 2.7.: Unfolding an RNN in Time. Doing so allows for applying the standard BP
algorithm.

Figure 2.8.: Illustration of the Vanishing Gradient Problem.

precisely, by equation 2.11 the error signal at the perceptron at a certain layer is usually
smaller than the error signal at the perceptron in the next layer. Hence, only small error
signals are present in the first layers which makes them harder to train. Likewise, when
using BPTT while dealing with large sequences the error signals in the first time steps
are hard to train.

In this thesis, the LSTM implementation of the ocrolib [19] is used (see figures 2.10
and 2.9 for an overview). This implementation makes use of the two activation functions
introduced above:

22

Figure 2.9.: Long-Short Term Memory Cell as Implemented in OCRolib. The initializa-
tion constraints and the cell state recursion are omitted. The Inputs passed
to each gate of the LSTM cell consists of a static one value, the actual in-
puts passed to the LSTM layer as well as the outputs of all LSTM cells in
the LSTM layer from the previous time step. The figure makes use of the
Z-transform notation [44] (z−1) used in signal processing to indicate time
delays.

f(x) =
1

1 + e−x
(2.13)

and

g(x) = h(x) =
e2x − 1

e2x + 1
(2.14)

The key idea of the LSTM is to provide a connection with a fixed weight equal to
1 within the recursion in order to allow for storing values for an unlimited amount of
time steps within the cell state. Cell states are one central point of recursion, but the
cell output also has a recursion. The cell state controls the output, but also the input is
taken into account here. The cell state may be influenced by the input gate and the cell

23

Figure 2.10.: Long-Short Term Memory with 2 cells and 3 inputs as implemented by
OCRolib. The initialization constraints and the cell state recursion are
omitted.

input. Cell input and input gate mainly differ from each other in the fact that the cell
state also controls the input gate while it doesn’t control the cell input. The forget gate
however was introduced after the original LSTM was released. Its purpose is to reset the
cell state from time to time, avoiding an unbound growing of the cell state values [25].
For that purpose, the forget gate can erase the previous cell state completely (simply
because its activation is a factor with which the cell state is multiplied).

As a consequence from the structure, the number of LSTM cells and inputs are inde-
pendent, but the number of cells determines the number of outputs of the LSTM layer.
Consequently, in order to have a number of outputs different from the number of LSTM
cells, an additional layer is required; for example a perceptron layer or an MLP.

2.2.5. Bidirectional RNN

In its simplest form, an RNN scans a the input data in one direction (most intuitively
forwards in time or along an space-related axis). In the following, the computation steps
are referred to as time steps, although the scanned data are not necessarily related to
a physical time domain (e.g. when considering a image data). Consequently, at each

24

Figure 2.11.: Bidirectional Recurrent Network. The BiDiRNN consists of a forward net-
work (F), a backward Forward (B) and a unifying network (below F and
B). This figure is an adaptation from [49].

time step, only information up to that time step is available to the network. For some
applications, information from future time steps would be helpful to solve a problem.
As a makeshift, the target value of the RNN could be shifted back in time by n time
steps, resulting in the availability of the n future time steps in every point of time. As
pointed out in [49], this strategy only works for a limited amount of time steps. In order
to solve this problem (and hence allow for an availability of the input information of all
time steps in all computation steps) the bidirectional recurrent network structure has
been proposed (see figure 2.11) for an overview). In this structure, there is an RNN for
each direction of time. The outputs of both RNN have to be merged by a third neural
network, for example an MLP (one layer is usually sufficient).

2.2.6. Sequence Generation with ANN

Neural networks can be used to generate sequences. One approach to accomplish this
goal is to train a neural network to predict the next element of a sequence. Such a
predictor is trained of a set of existing sequences, always aiming to compute the nth
element of a sequence given the fist n−1 elements of that sequence. Now, the trick is to
iteratively predict an element and then feed the predicted element back into the model’s
input [27].

Résumé on Neural Networks Neural networks are a powerful method for automatically
generating systems that solve a given problem. One of their most significant feature is
to automatically recognize relations and therefore to be applicable without the need to
externally incorporate knowledge about the problem to be solved. However, they often
need to be provided with a database of pairs with known input and output in order

25

acquire the intended behavior.

2.3. Human Computer Interaction

Human computer interaction (HCI) deals with the design and analysis of computer
interfaces that are handled by human users. HCI focuses on the needs of users, hence
the user interface (UI) should be designed in a way that it respects the needs of the
user. The International Organization for Standardization (ISO, [4]) deals with different
aspects of HCI in its norm 9241. HCI is a interdisciplinary research field that touches
many other fields like psychology, ergonomics and computer graphics.

2.3.1. Usability

One of the main goals of HCI is to provide tools that enables the designer to maximize the
usability of a UI. There are multiple definitions of usability in literature that incorporate
different aspects (or so-called dimensions) that describe usability. Different dimensions
are considered to be decoupled [24], despite the fact that measures that are intended to
affect one dimension also might affect others.

2.3.1.1. Dimensions

Despite different definitions of usability exist (e.g. [50],[41]), this thesis uses the definition
of usability by the International Organization for Standardization. The ISO standard
9241-11 defines usability under the following dimensions [33]:

• Effectiveness: This term describes how well a user can perform a certain task at all
using the UI. If the UI lacks effectiveness, the user is unable to accomplish tasks
using the UI.

• Efficiency: This term described how efficient a user may operate the system. Effi-
ciency is related to resources, often time is the main resource of interest.

• User’s Satisfaction: This term simply describes how satisfied a user is when using
the system.

2.3.1.2. Measurements

In order to assess the usability of a software, measurements and metrics for each di-
mension have to be defined. Usability is often measured in the course of a dedicated
experiment in which test users are executing a previously defined task on the examined
UI while their behavior is captured by several means. Often participants of such experi-
ments are also interviewed after the actual experiment (e.g. a questionnaire is used). In
such a setting, effectiveness might be assessed by measuring the degree to which a user
completes the well defined sample task. Efficiency might be captured by rather trivial
mathematics and observations (e.g. time measurements to complete a task or counting

26

of clicks the user made to complete the task). The user’s satisfaction however might be
harder to measure. Questionnaires may serve as an important information source here.

2.3.2. Human-Centered Design

The term usability is part of the human-centered design approach [34], which aims to
systematically create UIs that fits the needs of the human end-user. Human-centered
design has been normed under the ISO standard 9241-210 (formerly ISO 13407). Human-
centered design involves an iterative design process, an early involvement of the end-users
as well as other parties involved in the product’s lifecycle and a focus on the needs,
abilities and tasks of the user [33],[26].

Apart from that, descriptive guidelines for developing UIs exist, e.g. [51]. In fact,
many facets of user-centered design are heuristics that try to prevent the developers of a
UI to make certain mistakes (or correct them) rather than offering prescriptive rules to
generate a UI given a certain problem. For example, cognitive walkthroughs and heuristic
evaluations rather try to organize the evaluation process. Likewise, experiments with
users try to spot problems with a UI prototype.

2.3.3. Intelligent User Interfaces

In many software systems that employ artificial intelligence, the AI part is relatively
separated from the user interface. The field of intelligent user interfaces (IUI) deals with
the design of software systems, in which UI and AI are tightly coupled.

Résumé on HCI HCI is a discipline that deals with the constructions of appropriate
user interfaces for human users. Different theoretical frameworks for describing user
interaction and designing interfaced have been proposed, but many of them remain rather
descriptive. Hence, design rules rather guide the developer during the design process
instead of proposing specific solutions for the general design problem. Nevertheless, these
tools can be useful in the course of an user interface design to avoid known problems.

27

3. Related Work

The question, to what extend architects can be supported in their creative work during
early design phases by algorithms and therefore by software solutions has already been
investigated in literature. From the architectural theory point of view, the matter to
what degree creative work can be conducted (or at least supported) by the means of
formal description has been investigated. From the computer science point of view,
different software strategies for supporting architects in certain aspects of design have
been proposed. However, most of these approaches only cover some of the problems an
architect encounters during early design phases. This chapter reviews the existing work
similar to the approaches made in this thesis. Likewise, complementary views to the
fields touched by the thesis at hand are given.

3.1. Floor Plan Pattern Generation

Or et al. [43] focuses on the understanding of 2d floor plan images and the subsequent
3d model generation from it. This work could be used in future to help populate a
dedicated database.

Fernandez [22] deals with the general problem of automated object design related to
the spatial allocation problem, and touches the application of floor plan design.

Lee [36] investigates how MLPs can be used to recreate the design process of a certain
style, more precisely the Neo-Plasticims by Piet Mondrian. More precisely, the author
trained an MLP to generate finished pictures of that style given given raw sketches.
Finally, the author points out the influence of Mondrian to architects and applies floor
plan sketches to the MLP model to illustrate structural similarities. As one limitation of
MLPs, both the sketches and the final output images have to be of a fixed size. Likewise,
the resulting MLP model is only capable of generating images of the mentioned style.
Nevertheless, the author illustrated how a chain of rather complicated design steps can
be performed by ANNs in principle.

Afonso et al. [11] investigate how insights from system theory (more precisely phase
space analysis) can be used for the generation of residential buildings. The rationale
from the system theory used is the fact that in certain phase spaces between chaotic
regions and periodic regions there is a region of self-organization. This region can be
employed for purposes of architectural pattern generation. The authors emphasize that
system theory provides a new way, architecture can be contemplated:

29

“Design can be inspired by this random nature, as nature is not designed
with strict parameters, but it may evolve from a core of generative expressions
of code. Architecture in fact could be conceived in a similar way the generative
randomness develops into complex organisms, from the very bottom processes.
This particular organizing principle - from code to shape - in Nature systems,
acts along this paper only as an inspiration to the design process.” [11]

Functionally, the presented work generates 3D structures given a set of requirements.
In the course of the work, a kind of controlled randomness is employed. Methodically,
they used the following algorithm: given a set of (two) previously generated units and
an algorithm for joining two units geometrically, they constructed an evolutionary al-
gorithm. As a fitness function, they simply asked a human user so select favorable
settings. Thereby, the user decides about which of the generated joinings should procre-
ate. For generating geometric assemblies of connected units to let the user from, they
employed randomness for determining the joining parameters. This process is iterated
over multiple steps so that the resulting structures grow over time.

As one big advantage, the algorithms puts the user in the loop, hence give him control
the process. However, the obtained results appear to be somewhat artificial and raises
the question of actual applicability.

Alexander [12] generally tries to describe the process of design. The author makes use
of graphs to model restricting agents occurring in a design process (e.g. economics in the
production process, overall product performance, environmental impacts of the product
or different user needs) and the relations between them. The author emphasizes that
even in simple products these graphs and the related problem solving are of enormous
complexity since each of these agents is related to a great amount of other agents. The
author concludes that since the complexity has increased over the time, single human
beings are no longer capable of solving problems nowadays:

“The intuitive resolution of contemporary design problems simply lies be-
yond a single individual integrative grasp.” [12]

The author considers the presented method rather a visualization tool for the com-
plexity of a design problem than an actual tool for solving it. However, due to the
stated complexity of design, the presented methods based on logic and mathematics
offer a reasonable tool to cope with this issue in the author’s opinion. Nevertheless, the
author argues that the introduction of a formal, graph-based abstraction level ensures
the avoidance of biases caused by language and experience.

Merrell et al. [37] present an end-to-end approach for generating floor plans and 3D
models of residential buildings by using bayesian networks [42]. In their 3D visualiza-
tions, they allow for different style flavors. This work mimics the existing work flow
of an architect: starting with a high level description of the required rooms, creating
a connection graph based on that, generate the room layouts and finally a 3D model.

30

The general workflow of this system (as well as the modeling of rooms) appears to be
appropriate to solve the specified problem. However, the work itself is restricted to res-
idential buildings and the bayesian networks approach requires manual modeling that
(at least partly) has to be redone when the approach should be applied to another type
of building.

Richter [46] deals with the applicability of case-based reasoning (CBR) to design in
architecture. The author assumes that the case-based reasoning technology is generally
applicable to the problem, but none of the existing approaches in the past has actually
been successful regarding widespread, productive use. The author points out that a lack
of a universal understanding of the CBR technology and the neglection of theoretical
constraints as well as the oversimplification of the problem contribute to failures of
those attempts. Generally, [46] considers itself also as a guideline for upcoming CBR
implementations and provides concepts and additional constraints for applying CBR to
architecture as well as intensive theoretical investigation of this approach.

3.2. Architectural User Interfaces

In late design phases, computer aided design (CAD) software systems are already in
widespread use.

Huang et al. [32] focus on helping the user to optimize the energy consumption of a
building.

Bhavnani et al. [17] analyzes real world interaction between human users and CAD
software and the efficiency of this. The authors state that this interaction is often
significantly below maximum efficiency and remark that some users tend to replicate
drawing procedures from the analogue world. As one reason for such a behavior the
authors analyze manuals of CAD software and find that these books tend to explain
individual commands of the CAD software rather in detail than delivering a complete
picture of an efficient workflow. Nevertheless, the quality of the end product is not
necessarily affected by that suboptimal behavior. The authors therefore argue that the
relevant knowledge needed for an efficient workflow should be conveyed explicitly to the
user and that automated feedback messages should be employed to hint the user to his
suboptimal behavior. The authors finally conclude that optimizing CAD systems needs
special attention:

“The CAD productivity problem, as we have demonstrated, has to do with
deeper mechanisms that can plague the proper use of any new technology or
medium. If the CAD productivity phenomena is ignored or explained away
by the nature of what CAD systems do, then we are doomed to repeat their
mistakes. If, on the other hand, we understand that a new technology often
requires reformulating old tasks, then we can spend more time in making that
knowledge explicit and minimally disruptive.” [17]

31

Moelle [40] investigates how architects could use software systems in early design
phases and analyzes the weaknesses of existing CAD systems for the architectural domain
and outlines different approaches for early design support. Regarding the acceptance of
such system, the following is emphasized:

“The author comes to the conclusion that improving interaction with the
CAAD-system is crucial, in order for them to be used in the design process.
[...] Only if the human user interface can be handled truely intuitively, will
building models be accepted by designers in the early phases of design.” [40]

32

4. Methodology

This chapter outlines the concepts that are employed in the proposed solution of the
thesis at hand to solve the problems described above in a high-level fashion. Each
subsection here describes the concepts relevant to different parts of the proposed solution.
Firstly, section 4.1 describes concepts of the user interface (UI). Secondly, section 4.2
explains the concepts of the floor plan search engines. Finally, section 4.3 describes the
functional principles of the design proposal functionality.

4.1. Room-Based Digital Conceptualization

As a basic functionality for an architectural design-supporting user interface, a function
for entering floor plan concept is required. In order to follow the room schedule working
method, the editor tool must primarily be an editor for individual rooms. Hence, rooms
are the objects to be manipulated. In contrast to space-oriented editors, walls are always
considered a part of a single room only. If a room is moved, all surrounding walls move
accordingly.

4.1.1. Abstractness of Rooms

In order to support the user during the entire conceptualization process, floor plans
have to be entered in a varying degree of abstractness. Currently, two main degrees of
abstractness are defined:

1. Abstract (or Bubble) Mode. The room is simply characterized by its distinct
existence.

2. Specific Wall Geometry (or concrete) Mode. The room is characterized by a poly-
gon describing its surrounding walls.

Both modes have to visualized in distinct manners in order to avoid confusion. As a
general strategy, abstract rooms are displayed as circular geometric objects (therefore
they are also referred to as bubbles) while specific rooms always have a polygonal shape
(where no arcs are allowed). To emphasize the difference even more, the surrounding
edges should have different styles. However, these two levels allow for further refinements.
In the bubble mode, already a function and a size can be assigned. Likewise, the property
of whether or not the room has a window can be assigned. Finally, the room can be
connected to other rooms. When switching to the specific wall geometry mode, all these
properties should be adopted as they stand for convenience. As a first problem, the
size usually changes after the user defined a wall polygon. This issue is mitigated by

33

the fact that the size of the polygon can be considered a more precise approximation of
the user’s wish regarding the room’s area size. Having a specific wall geometry, further
refinements are possible. The links of a room to other rooms can be refined by assigning
holes in the wall that specify these connections.

4.1.2. Abstractness of Links

The requirement for supporting a varying degree of abstractness imposes several prob-
lems: Connections between rooms of different abstractness levels need to be supported.
In fact, even two rooms with different levels of abstractness should be supported for max-
imum flexibility. Consequently, connections also bear different levels of abstractness. In
the course of this thesis, three levels of abstractness have been considered theoretically:

1. A room is connected

2. A room is connected via a specified wall

3. A Room is connected via a specified ’hole’ in a wall

While these different abstractions appear to be reasonable in terms of flexibility, of-
fering all these possibilities can cause the user to be confused. Since the second option
appeared to be rather neglectable, only the first and the last are kept. Apart from that,
specific rooms can be connected via abstract links. Passages are the default link type.

4.1.3. Physical Dimension of Walls

Following the room-oriented concept, walls are primarily surrounding borders of a room.
In order to allow for convenient arrangement of rooms, the rooms should be movable
seamlessly around the drawing area. Nevertheless, in the final floor plan, rooms need
to be systematically arranged are separated by physical walls. For convenience of the
user, specific wall geometry rooms can snap with each other. However, when the two
wall polygons snap, the thickness of the wall is implicitly set to zero. This problem
generally arises from walls considered a room-related borders only. This problem could
be resolved by specifying thicknesses for different walls. However, since the editor only
needs to be used for early design phases, the problem is disregarded here, defaulting to
the zero-thickness solution.

4.1.4. Links viewed as parts of Rooms

As implied above, connectors are needed as part of individual rooms to make up links.
Hence, a link between two rooms is decomposed into a pair of connectors, where one
connector belongs to each of the two room. Abstract links (i.e. links consisting of two
abstract connectors) may change their type more easily since the user is not bothered
with their internal representation. But with specified holes in a wall, the question
arises, how the type of link has to be interpreted when different types of connectors are
used. To overcome this problem, different connection types are determined by the pair

34

of connector types that make the link up. As a general principle, different connector
types are considered to be of different degree of separation, i.e. a wall separates two
rooms more than a passage. Generally, the link types (and likewise the connector types)
defined in 4.2.1 are regarded. The Tab. 4.1 defines how link types are derived from pairs
of connector types.

Connector Types Wall Entrance Door Passage

Wall Wall - - -

Entrance - Entrance Entrance Entrance

Door - Entrance Door Door

Passage - Entrance Door Passage

Table 4.1.: Connector types of a link determine its type. Forbidden combinations are
indicated by a ’-’ symbol. For example, a connection that is a hole in the
wall of one room (passage) and a door to the other room make up a door
connection.

4.2. Semantic Pattern Matching

Floor plans need to be brought in a formal pattern in order to be stored and to be
processed. Likewise, metrics for assessing similarity needs to be established in order
to search for similar floor plans (retrieval). In the following, this problem is solved by
considering a floor plan as a graph. In such a graph, each node is a room of the floor
plan. Hence, labels (properties) of a node describe a room’s features and the connections
between the nodes describe the relation between the corresponding rooms. A first task
is to determine alphabets of labels for nodes and edges to describe these properties. In
the course of this thesis, this problem is solved in AGraphML.

Graphs allow not only for storing the floor plans in a simple way, but also to apply
subgraph matching as a powerful and well researched tool for retrieval purposes. The core
idea is that two floor plans are similar if their corresponding graphs match. Nevertheless,
this idea has to be defined more precisely in order to be applicable in real-world scenarios.
Given a full graph of a floor plan with a variety of node and edge labels, abstractions
have to be found that allow for an effective application of subgraph matching. These
abstractions are referred to as semantic fingerprints in the following. Graph based
fingerprints mainly differ in the restriction of labeling of nodes and edges. In any case,
they embody knowledge manually defined by experts in the field of architecture about
aspects that characterize a floor plan.

4.2.1. AGraphML

The Architectural GraphML (AGraphML) file format has been developed to describe
floor plans in a simple manner. AGraphML is a specification of GraphML [18] (which
is in turn a specification of XML [52]). AGraphML been developed in the course of

35

Name Comment

ROOM Used if function not further specified or no other function fits.

BATH

LIVING Can also be used for dining.

SLEELING

KITCHEN

STORAGE Can also be used for attics and utility rooms.

WORKING Used for offices and workshops.

PARKING

CORRIDOR A room that is connecting rooms. Fallback for stairways.

TOILET

EXTERIOR Can be used for balconies or terraces

CHILDREN

Table 4.2.: Node Types in AGraphML.

Name Description Traversable

WALL Two rooms share one or more walls. Within the con-
necting wall segments, there are no holes.

No

ENTRANCE Two rooms are connected by a reinforced door. Usu-
ally used to separate apartment units.

YES

DOOR Two rooms are connected by a simple door. YES

PASSAGE Two rooms are connected by a doorless hole in a wall. YES

Table 4.3.: Edge Types in AGraphML.

a collaboration between TU Munich and DFKI. The first version of AGraphML has
been described in [35]. After the first AGraphML standard was developed, it has been
extended in the course of this thesis to serve further needs (some attributes of the original
specifications are not actively used in the thesis at hand). A sample floor plan with a
correllated AGraphML file is shown in fig. A.1 and fig. A.1, respectively.

The key idea of AGraphML is that floor plans are modelled as graphs: each room is
represented by a node, a connection between two rooms is represented by an edge. Since
GraphML already defines a basic graph structure, the AGraphML specification simply
consists of a set of attributes, which a graph, a node and an edge can bear (see Tab. 4.4,
Tab. 4.5 and Tab. 4.6). Furthermore, edge types (see Tab. 4.3) and node types (see
Tab. 4.2) are defined. For describing the geometric attributes (polygons and points) of
rooms, AGraphML makes use of the so-called well-known text convention [5] [6].

The choosen format is rather crude. The set of room functions does not cover all types
of rooms in real-world scenarios. In the following, the tag windowExist is equated with
the property of a room to have natural light, although there are cases in which a room
with natural light may not have a window (e.g. in the presence of a light shaft) or a

36

Name Type Description Mandatory

imageUri String No

imageMD5 String No

validatedManually Boolean No

floorLevel Float No

buildingID String No

ifcUri String No

bimServerPoid Long No

alignmentNorth Float No

geoReference String No

Table 4.4.: Graph Attributes in AGraphML.

Name Type Description Mandatory

name String User-defined Room
Name, not to be con-
fused with GraphML’s
Node id.

NO

roomType String One of roomType NO

center String WKT Point YES

corners String WKT Polygon NO

windowExist Boolean YES

enclosedRoom Boolean NO

area Float YES

Table 4.5.: Node Attributes in AGraphML.

Name Type Description Mandatory

sourceConnector String WKT Linestring NO

targetConnector String WKT Linestring NO

hinge String Either LEFT or RIGHT NO

edgeType String One of edge type YES

Table 4.6.: Edge Attributes in AGraphML.

37

room with a window does not have access to natural light (e.g. laboratories).

4.2.2. Semantic Fingerprints

The semantic fingerprints presented here have been developed in the course of the Metis
project at DFKI and TU Munich.

(a) Room Count (b) Edge Count (c) Room Graph

(d) Room Types (e) Adjacency (f) Accessibility

(g) Full Room
Graph

(h) Natural Light

Figure 4.1.: Overview Over the Individual Fingerprints.

The following semantic fingerprints (see also fig. 4.1) have been chosen as a basis for
the retrieval systems of the the Archistant framework:

Room Count This fingerprint simply measures the amount of rooms in a floor plan. It
is therefore expressible as a positive integer number. Hence, the room count fingerprint
of two floor plans are equal if their total room count is equal. The type of rooms, their
connections and other properties are disregarded here.

38

Edge Count The edge count fingerprint behaves like the room count fingerprint except
that is measures the total number of connections between the rooms of a floor plan. The
edge count is therefore also simply a positive integer number.

Room Graph The room graph fingerprint is a graph with unlabeled nodes and unla-
beled edges. For each node in a floor plan, there is one unlabeled node in its room graph
fingerprint. for each connection between two rooms, there is one unlabeled edge between
their corresponding nodes.

Room Types The room types fingerprint is a multiset of room function labels.

Adjacency The adjacency fingerprint is a graph with labeled nodes, and unlabeled
edges. For each room in a floor plan, there is one node in its adjacency fingerprint which
bears the same function label as that room. For each connection of rooms in the floor
plan, there is one unlabeled edge in the fingerprint.

Accessibility The accessibility fingerprints aims to model how a person can move be-
tween the individual rooms of a building. Hence, wall connections are disregarded here
and the remaining edge types are expressed explicitly. The accessibility fingerprint is
a graph with unlabeled nodes and labeled edges. For each room in a floor plan, there
is one unlabeled node in its accessibility fingerprint. For each traversable connection
between two rooms, there is a labeled edge between the corresponding nodes bearing the
connection’s type.

Full Room Graph The full room graph fingerprint is a graph with labeled nodes and
labeled edges. For each room in a floor plan, there is a labeled node in the full room
fingerprint, bearing the room’s function as a label. For each traversable connection
between two rooms, there is a labeled edge between the corresponding nodes in the
fingerprint.

Natural Light The natural light fingerprint is a multiset of boolean values, where the
amount of false entries equals the amount of rooms without natural light and the amount
of true entries equals the amount of rooms with natural light.

39

4.3. Iterative Human-ANN Design Collaboration

Figure 4.2.: Screenshot of the Archistant WebUI.

Just like the human architect iteratively modifies a sketch to develop a design to solve a
problem (as pointed out in chapter 1), an artificial neural network for pattern generation
iteratively transformes input to an output, that is consequently appended to the input
to serve as a new input (as described in section 2.2.6). The idea is now to couple both
processes, resulting in an interactive development process with both an ANN and a
human designer in a loop (see fig. 4.2). In such a process, the AI becomes an agent
interactively working with the human architect. However, the human user remains the
head of the loop by putting him in charge of triggering the AI. The AI itself is an
embodiment of human knowledge since the ANN is trained on a database of examples
that have been created by human beings. Hence, asking the AI to apply a certain
improvement to the equals in asking a couple of human architects to perform the job.
Simply put, the AI embodies human knowledge and the human might use the AI as an
extension of his own mental capabilities, just like paper has been just for this job in a
traditional setting.

4.3.1. Stepwise Recreation of Architect’s Behavior

So in order to apply ANNs to the problem of design assistance, an ANN has to be trained
on a corpus of existing floor plan designs. More precisely, the floor plans in that corpus
have to be decomposed into pairs of input and output in order to train the ANN and
later to be recalled into productive use. Generally, a more crude (or abstract) version of
a floor plan is transformed in a more sophisticated (specific) one. One way to accomplish
this is making use of the the room schedule working method (described in 1.1.1). A floor
plan is decomposed into two descriptions of different abstraction levels, where the first
is used as input for the ANN and the ladder is used as output. This strategy results in

40

a model that can carry out a single design step. Consequently, multiple models have to
be trained, one for each design step.

4.3.2. From Prediction to Generation

Another strategy is to interpret a floor plan as a single sequence of elements (or actions)
that successively make up the floor plan. Such sequences that mimic the architect’s
behavior can be used to train a sequence predictor. Such a sequence predictor can be
used to precisely instruct the AI to predict desired aspects of a floor plan (similar to
text completions technologies in office software does).

Generally, an input created by the user serves as initial sequences and is iteratively
augmented by predicting single steps and appending them to the existing sequence.
Nevertheless, one action might be encoded by multiple input vectors, requiring for a
method to abort the process if the desired step is complete. This can be accomplished
by dedicated stop symbols. Likewise, it is sometimes requires to lead the predictor
in a certain direction. This is accomplished by start symbols, that carry no specific
information. In order to save symbols, start and stop symbols can be interleaved.

41

5. Proposed Solution

This chapter outlines the proposed software solution that was created in the course of
this thesis in detail. This software solution implements the concepts described in chap-
ter 4. More precisely, the room-based digital conceptualization (section 4.1) is realized in
the web-based sketch editor that is referred to as WebUI. The semantic pattern matching
(section 4.2) is starting point for the retrieval systems that helps the user to get similar
floor plan concepts. Finally, iterative Human-ANN design collaboration (section 4.3)
is implemented in the creativity engine, that generates design suggestions. The soft-
ware solution proposed here serves as the foundation for the experiments described in
chapter 6. This software has also been made public under the name Archistant [2].

5.1. The Archistant Framework

Figure 5.1.: The Archistant Framework (Creativity Engine omitted).

The Archistant framework (see fig. 5.1) consists of a number of different modules, which
are connected by WebSocket connections and that exchange floor plan concepts in the
form of AGraphML Files.

43

5.1.1. WebUI

Figure 5.2.: Screenshot of the Archistant WebUI.

The WebUI module (see fig. 5.2 for a screenshot) makes up the interface with which
the user communicates to the system. It is the only client-side module and runs inside
common web browsers (it is optimized for Firefox [3]). It is written in HTML5/Javascript
and makes use of the jquery library [45]. The WebUI consists of the editor (in which
the user can create search requests) and the search bar (which can be used to search for
similar floor plans and to analyze the results). The Archistant WebUI is explained more
detailed below (see 5.2).

The WebUI’s task is to generate search queries and creativity requests and provide
them to the PL. Likewise, is displays the results of these messages.

5.1.2. Processing Layer

The Processing Layer (PL) is the central hub of Archistant. All communication be-
tween the individual modules of Archistant is processed by the PL. However, the Neo4j
database is connected to multiple Archistant modules. The PL appears as a WebSocket
server to the WebUI and as a WebSocket Client to all other modules. The PL is written
in Java8.

The PL allows for multiple connected clients (usually WebUI instances) simultane-
ously. Likewise, the PL can connect to multiple retrieval systems. The list of systems
the PL connects to is given as command line parameters when invoking the PL. Hence,
the PL expects these systems to be available when it starts.

44

5.1.2.1. Performing a Search

When a client (e.g. the WebUI) sends a search request to the PL, the PL forwards
this search request to all attached retrieval system. It then waits until all retrieval
system sends their result lists. After that, the PL unifies these result lists to a single
list (while discards redundancies) and sorts the unified list according to the confidence
scores determined by the retrieval systems. As a next step, this unified result list is then
handed to both the AP and the AM separately (if one of these systems is not available,
the transmission to the regarding module is skipped). If the AP is connected, the PL
waits until the augmented list is returned by the AP and then sends this list to the client.
Otherwise, the non-augmented list is sent directly to the client. After the (augmented or
non-augmented) result list has been sent to the client, the analysis information provided
by the AM is send to the client as soon as the AM returns it (but never before the result
list has been transmitted to the client).

5.1.2.2. Log Files

The PL logs most of the communication, like search requests, results and user’s feedback
to the results. These log files are stored in an dedicated XML format (which is simply
called logxml). The log files are intended to describe the behavior of the user and the
system for analysis and improvement purposes. Consequently, the exact times of user
requests and server responses. In general, for each connecting WebUI instance one log
file is created and all relevant of the instance are logged into this file. An example for
such a file can be found in appendix B.1.

These log files are later used for automatic analysis by the boundary tester module.
Apart from that, they could be used in future for automatically assess the quality of the
results of the overall system as well as individual retrieval systems. Furthermore, they
could be used for automatic improvements of the system (e.g. by automatically adding
user’s search queries as entries to the database for later retrieval or by applying machine
learning to find out what results are most appropriate in a certain situation based on
the user’s feedback).

5.1.3. Retrieval Systems in General

A floor plan retrieval system in Archistant is a system which - given a query floor plan
concept (along with a list of fingerprint weights) - returns a list of floor plans similar to
to the query. A retrieval system is directly connected to the PL and appears to it as
a server based on the [23] protocol. A retrieval system is provided an AGraphML file
that has been generated by the WebUI along with a set of semantic fingerprint weights.
Such a search request is syntactically a XML structure. Based on this information,
the retrieval system returns a set of hyperlinks to image files, that contain thumbnails
representing the results. Each of these thumbnails also has to be referenced by the Neo4j
database (as pointed out in subsection 5.1.11).

A fingerprint weight indicated the importance of a fingerpirnt to the user and is
implemented as a floating point number ranging from 0.0 to 1.0. A fingerprint that is

45

assigned a weight greater than 0.5 is considered to be mandatory, i.e. such fingerprints
must match for a database entry in order to be selected as retrieval result.

5.1.4. Index-Based Retrieval

Figure 5.3.: Overview of the Index-Based Retrieval.

The Index-Based Retrieval Module (IB, see 5.3) searches for floor plans similar to a given
query by using an so-called index-based matching algorithms. There is a wide range of
different index-based techniques available, and the IB effectively uses a Lucene-based
index since it queries a Neo4j database, which uses such a indexing. Generally, the IB
shows a subgraph matching behavior: a result’s fingerprint is considered to match the
(graph-based) fingerprint of a query if the graph of the query’s fingerprint is a subgraph
of the result’s fingerprint. Neo4j uses Lucene as indexing technology, what motivated
the name of the IB retrieval. The IB is written in Java8.

5.1.4.1. Cypher Query Generation

After the query has been converted from AGraphML to an internal graph structure,
cypher queries are generated from this internal structure. By design, the chosen cypher
queries effect a subgraph matching behavior.

5.1.4.2. Result Ranking and List Unification

Based on the logic of cypher query matching, a query’s fingerprint either matches an
database entry’s fingerprint or not. Hence, there is no partial matching when considering
a single fingerprint. Consequently, the final ranking can be described as:

rrank =
∑
r∈FP

FPweight (5.1)

46

5.1.5. Case-Based Retrieval

The case-based retrieval system has been developed by Viktor Ayzenshtadt. It is ex-
plained in detail by [15],[14].

5.1.6. VF2-Based Retrieval

The VF2-based retrieval system has been developed by Qamer Uddin Sabri. It was first
described in literature by Sabri et al. [47].

5.1.7. Augmentation Processor

Figure 5.4.: The Augmentation Processor.

The augmentation processor (AP, see fig. 5.4) enriches search results from the retrieval
modules by additional information. A result as provided by a retrieval system simply
consists of an URL pointing to a thumbnail image. These thumbnail images are uniformly
used by all retrieval systems and are referenced by the Neo4j database. Therefore, the
AP generates additional information by querying the Neo4j database. There are two
kinds of information with which an result is enriched: The result’s AGraphML file and a
map, which links rooms in the query to rooms in the result. The AP is written in Java8.

47

5.1.7.1. Generating Result AGraphMLs

Figure 5.5.: AGraphML Generation in the Augmentation Processor.

AGraphML files are constructed by querying the Neo4j server (see section 5.1.11). This
is done in three steps (see fig. 5.5):

Resolving the Storey Vertex First of all, the storey imageURI is used to determine
the vertex ID of the database entry that represents the floor plan of interest. For
every imageUri referenced by the Neo4j database, there is a storeyvertex (node) that
organizes the graph structure of the related floor plan.

Retrieving Information about Node Properties Secondly, information about the rooms
in the floor plan are retrieved by querying the database for all rooms that are connected
via a stroreyedge to the storeyvertex node with the id of interest.

Retrieving Information about Room Connections Finally, the connections between
all nodes that have been found in the last step are retrieved. With all these information
present, the final AGraphML file can be constructed.

5.1.7.2. Generating Room Maps

The room map generation utilizes Neo4j’s graph matching capabilities.

5.1.8. Analysis Module

The Analysis module (developed by Qamer Uddin Sabri) maps result sets into a two-
dimensional space, which axes can be controlled by the user.

48

5.1.9. Boundary Tester

Figure 5.6.: Boundary Tester System Configuration.

The Boundary Tester module (BT, see fig. 5.6) is used to systematically stress-test
the capabilities of the retrieval systems. It consists of a module which generates search
queries and an evaluation script.

5.1.10. Creativity Engine

The creativity engine (CE) assists the user during conceptualization by generates design
suggestions. As a module, it receives creativity request messages from the WebUI that
have been conducted by the PL. It is written in Python and makes use of the OCRolib
[19]. The CE is explained in more detail in section 5.3.

49

5.1.11. Neo4j Database

Figure 5.7.: Screenshot of the Web Interface of the Neo4j Database Showing a Typical
Entry of the Project’s DB.

A Neo4j database is used to organize the (see. fig. 5.7) floor plans as search results in the
Metis project. These DB entries uniformly uses image URIs that are transmitted by the
retrieval systems. These image URIs point to thumbnail images used in the WebUI. Each
database entry corresponds to a storeyvertex. Each room of the database entry points
with a storeyedge to the storeyvertex. The types of the room nodes themselves as
well as the connections between the room nodes carry the types as defined in AGraphML.

5.2. The Archistant WebUI

5.2.1. Requirements

Apart from the methodology of digital conceptualization mentioned in section 4.1, the
following requirements are regarded in the implementation of the Archistant WebUI:

Description The WebUI serves the purpose of assisting the architects to develop a
building concept (apart from that, laymans should also in principle be able to use the
software). This involves the need to draw and edit rooms as well as their connections.
The WebUI is designed based on the room schedule working method and the idea of
iterative refinement of rooms during the sketching process. An emphasis is put on the

50

idea that each element of a room should be expressible as abstract or specific as desired be
the user. Likewise, aspects should be allowed to be reworked. Furthermore, the interface
should be easy to use, fitting the human user and his/her cognitive abilities. All functions
should be self-explanatory, and the software should be usable with little explanations
from the outside. The software should be usable in both keyboard/mouse environments
and pen-based digital devices. The WebUI should allow for polygonal room layouts.
Despite that, it should not allow for free-style drawings (allowing for free-style drawings
brings in a range of different additional problems that do not actually contribute to the
very topic investigated in this thesis). The WebUI should be room-oriented and related
to the room schedule approach.

Simplifications/Restrictions The WebUI is restricted to the generation of 2d floor
plans for single-storey buildings. However, this work intends to be used for any type
of building. Multiple storey buildings are approximated in the course of this thesis by
using an AGraphML for each storey. As another simplification, specific wall geometries
are described in polygons, restricting walls to be straight. Hence, no arc-shaped walls
are allowed here. The access of all mentioned functions should be as intuitive and fast
as possible. Consequently, the amount of buttons to be clicked to activate any function
should be limited and the buttons should be visualized so that their function is easily
visible. For that purpose, icons should be used when possible.

5.2.2. User Interface Elements and Concepts

This subsection describes all functions visible to the user as well as the workflow intended
by the WebUI.

5.2.2.1. The Editor

The editor part of the WebUI allows for sketching floor plan concepts. These concepts
may serve as search queries for reference searches. Likewise, they can stand alone. In
the following, several aspects of the WebUI editor are described. The WebUI editor is
room-oriented, hence room are the central element of the interface (many other programs
are rather space-oriented, i.e. given space is divided into rooms by the program).

51

5.2.2.2. Radial Menus

(a) No Selection (b) RM Root But-
tons after Room
Selection

(c) Opened RM of
Room

Figure 5.8.: Interaction with the Radial Menu.

Radial menus (RM) [48] are the key interaction element of the WebUI. Whenever it is
possible, the same functions are placed at the same position. For example, the delete
function (indicated by a bold x) is always accessible at the right lower position of the
RM. The basic interaction behavior with a room can be described as follows (see fig.5.8):
If no room is selected, no RM are shown at all. If a room is focused by the user, then
all RM root buttons related to that room and its RCEs are shown. This allows faster
access to the functions, rather than forcing the user to first access the room itself before
accessing the desired RCE. Generally, there is a trade-off in showing RM root buttons:
a lesser amount of buttons force the user to make unnecessary clicks on other buttons.
Too many RM root buttons may overwhelm the user and occlusion becomes more likely.
After clicking on a RM root button, all other RM root buttons disappear and the selected
RM opens. The user can now select a function; some buttons may carry a submenu.

5.2.2.3. Rooms

Rooms are the central element of the WebUI editor. Rooms have several properties. One
of the central concepts of the WebUI is to allow to specify (and respecify) each property
of a room as abstract or specific as desired.

Abstract and Specific Rooms After a room has been created, it does not have a
polygon of walls yet. This state is referred to as abstract mode or bubble mode. In this
mode, some of the properties may already be assigned. If walls have been specified by
the room shape tool, the room is referred to as specific or concrete wall geometry mode.

52

In order to emphasize the difference between them, the borders of abstract rooms are
thicker and more grayish than the ones of specific wall geometry rooms.

In both modes, a room can be moved seamlessly on the drawing surface individually.
However, if a room has been assigned a wall polygon, the walls (edges of that polygon)
snap with the walls of other rooms.

(a) Wall Shape Ex-
tension

(b) Circle of Life Ex-
tension

Figure 5.9.: Submenus of the Room’s RM.

Radial Menu of Rooms Not all functions are directly available in the room’s RM. The
connection function is not available if there is only one room in the floor plan. Likewise,
the function for drawing concrete RCEs is only available in the concrete mode. There
are two submenus in the RM of a room (see fig. 5.9). These submenus try to organize
functions of similar type (all functions regarding the wall polygon; all functions regarding
the room’s life cycle like procreation and destruction).

Figure 5.10.: Room Size Adjustment in WebUI.

Room Size The size of a room can be altered by an adjustment function (see fig. 5.10).
This function is mainly intended to be used in bubble mode, but also available in the
specific mode.

53

Figure 5.11.: Wall Shaping Tool of the WebUI.

Room Shape One of the most important properties of a room is the room’s polygon
of surrounding walls (or corners). It can be assigned by the room shape tool. With
this tool, the user can draw a polygon by iteratively clicking on points of a ball grid
(see fig. 5.11). The shaping tool incorporates a set of smart properties to ease the
drawing process: If the user decides to make the current wall longer or smaller, the
regarding point can directly be selected and the redundant point is discarded directly.
Erroneous points can be erased, if the next to last point is selected. The drawing process
is completed when the user clicks on the first point of the polygon for a second time.

Figure 5.12.: Wall Shifting Tool of the WebUI.

Wall Shifting After a wall polygon has been defined for a room, single walls can be
seamlessly shifted (see fig. 5.12)

Room Function The room function (or room purpose) may be set by a group of buttons
accessible in the room’s main RM. The individual room function types are indicated by
different colors of the room’s area (e.g. yellow for living rooms). All of these colors are
pastel-like.

54

5.2.2.4. Room Connection Elements

A room connection element (RCE) is an object which represents the part of a wall,
door, a window, a passage or an entrance related to a single room. A pair of two
interconnected RCEs makes up a connection between two rooms. An RCEs exists either
in the RCESet of a room’s point, or the abstract RCE list of a room. In the first case, the
RCE is concrete, meaning that the RCE is physically determined in the room, having
a certain size and position. In the second case, the RCE is referred to as abstract.
An abstract RCE describes the connection between two rooms without specifying its
physical dimensions. Abstract RCEs are an instance of the idea to specify aspects of a
floor plan as abstract or specific as desired. An abstract RCE may serve as a reminder
for the users that a connections already exist in a concept but still has to be implemented
completely.

The implementation in the WebUI is a tradeoff between understandability and freedom
of flexibility. A third layer of abstraction would be possible on the wall level: in such
a case, the wall on which an RCE will be placed is already determined, but its actual
position is not. Such an abstraction would be helpful in some cases. However, the chosen
implementation already confuses some of the users.

In the current implementation, windows cannot be used for connecting rooms. They
are however considered RCEs since they share many properties with other, non-window
RCEs.

(a) Wall (b) Door (c) En-
trance

(d) Passage

Figure 5.13.: Link Type Visualization and their Radial Menu. This RM is only available
in case of both RCEs are abstract. The different line types shown here
indicate the link type and also apply in other situations.

Radial Menu of Links with two abtract RCE A link between two abstract allows for
an arbitrary type definition by the user (see fig. 5.13). They can be transformed into

55

each other and deleted.

(a) Door Left (b) Door Right (c) Entrance Left

(d) Entrance
Right

(e) Passage

Figure 5.14.: RMs of Different Non-Abstract RCEs. The different kind of RCEs are
transformable into each other by the RM.

Radial Menus of Doors/Passages/Entrances All different kinds of non-abstract RCEs
have the same RM. They are transformable into each other by dedicated buttons (see
fig. 5.14). Apart from that, a non-abstract RCEs can be altered in size, moved, deleted,
and connected.

Figure 5.15.: RM of Windows.

56

Radial Menus of Windows Since windows are RCEs that do not connect rooms in
the current implementation of the WebUI, the RM of non-abstract windows are rather
simple. They only allow for altering position and size of the related window.

5.2.2.5. Load/Store Locally

The WebUI has been designed that after its files have been loaded to the client browser
(which is completely done after the WebUI started), the most parts of the editor can be
used without server interaction. Consequently, an offline usage is possible (and might
be amplified in future by packing the WebUI in dedicated applications). In order to
underline this usage and for the convenience of the user, AGraphML files representing
the WebUI’s editor content can be stored to and loaded from client’s local file system.

5.2.2.6. Undo/Redo

For the convenience of the user, the WebUI incorporates a linear UNDO [39] and REDO
function for most functions.

5.2.2.7. Auto Link

(a) Desnapped
Rooms

(b) Snapped
Rooms

(c) Auto-
Linked
Snapped
Rooms

(d) Desnapped
Auto-
Linked
Rooms

Figure 5.16.: Workflow of Auto Link Function.

The room-oriented approach comes with the disadvantage that connecting elements like
doors and passages need to be defined in both rooms that are linked by them. Without
any compensation, this leads to a massive overhead or repetitive work in the user’s
workflow. This could be avoided by assuming that an non-window RCE in a wall that
is snapped to the wall of a second room is automatically replicated to the other room
and connection is made up between these two RCEs. But in order to allow for both a
maximum of control over the sketch and to avoid unnecessary interactions, a dedicated,
manually triggered auto link function (see. fig. 5.16) is used. It only takes into account

57

non-abstract RCEs in snapped walls that are not connected and aims for the following
work flow:

1. After defining abstract rooms (and connections between them), the user succes-
sively defines wall geometries for the individual rooms. The rooms can still be
moved around and remain unsnapped.

2. The user defines non-abstract RCEs (replacing the abstract ones), where one RCE
for each link is defined only (i.e. if two rooms are connected via a door, only one
door with adjusted dimensions needs to be added in one of the rooms).

3. The user snaps together all rooms of the sketch.

4. The user triggers the autolink function.

5. The user triggers the explosion function to check the connections

6. The user trigger undo to restore the intended room positions

5.2.2.8. Explosion

The WebUI provides an explosion function that spreads apart a floor plan by moving
the centers of the rooms away from each other. The main purpose of the explosion
function is to easily check the connections of a floor plan for inconsistencies. By using
the explosion function and afterwards using the undo function such a review can be done
with two clicks rather than manually tearing the floor plan apart and putting it together
again.

In some situations, the connections can hardly be seen after an explosion. In order
to mitigate this issue, the center of explosion can be altered. If no room is selected, the
center of explosion is simply the center of the drawing surface. Is a room is selected, the
room’s center becomes the center of explosion.

5.2.2.9. Glue

In order to move groups of rooms simultaneously (and to consequently retain their
relative positions), the so-called glue mode has been incorporated into the WebUI. When
turned on, all rooms that are snapped to the focused room (as well as rooms that are
snapped to them) are moved together with the focused room.

58

5.2.2.10. Grid

Figure 5.17.: Mismatch of Drawing Grid to an Existing Room.

Allowing for seamlessly moving rooms and the restriction that new room layouts are
drawn on a fixed grid comes with the problem that new rooms may not fit to the layout
of existing ones (see fig. 5.17). To point this out: room layout polygons are created with
the shaping tool, which always uses the same fixed grid. After a room shape was created,
the room can be moved arbitrarily. Likewise, the resize function and the wall shifting
function allow for continuous altering. As a result, the corners in the drawing area does
not necessarily match the grid after further user interaction. In order to mitigate that
issue, a switchable grid is incorporated into the WebUI. When activated, rooms snap to
the grid rather than to each other.

However, the problem could also be solved in other fashions: Besides the fixed grid,
one grid for each room could be used. But this would lead to a rather chaotic, pseudo-
free-style grid. Likewise, the fixed grid could be shifted and scaled so that it meets
the corners of existing rooms. But multiple rooms could conflict here, and the conflict
would be needed to be resolved either by the user (leading to an overhead in the user’s
interaction) or by an automatic strategy (that could fail to meet the user’s expectations).
The chosen solution is far from being perfect since the user has to move the rooms to
grid manually. Nevertheless, the behavior is predictable for the user in comparison to
the other mentioned approaches.

59

5.2.2.11. Ruler

Figure 5.18.: WebUI Ruler Visualization.

Rulers (see fig. 5.18) are a switchable function that allows for accurate measuring and
analyzing the proportion of walls and RCEs. Currently, the metric system is used (i.e.
lengths are expressed in meters, areas in square meters). If a wall contains no RCEs, its
entire length is displayed on the ruler. If RCEs are present, there are multiple rulers per
wall, one for each segment of RCE or space between RCEs and wall endings.

5.2.2.12. Creativity Function

The creativity function invokes the creativity engine described in 5.3 and is represented
as a button on the left of the WebUI’s editor. After the button is pushed, the current
sketch is transmitted to the creativity engine, and the results are received by the WebUI.
The content of the editor is then replaced with the design suggestions coming from the
creativity engine. Therefore, the entire process is performed after a single click by the
user and can likewise be undone by the respective function.

60

5.2.2.13. The Search Bar

Figure 5.19.: Screenshot of the Archistant WebUI Search Bar.

The search bar allows for triggering a search, adjusting the weights of individual fin-
gerprints as parameters of the search, contemplating the retrieval system’s results and
giving feedback about satisfaction for each result and to invoke the mapping view. Like-
wise, an import function allows to load a result’s AGraphML into the editor. Finally,
the function for showing the analysis view is located here.

Fingerprints that have been chosen by the user to be mandatory are indicated by
a bold font (see fig. 5.19). Fingerprints that have been selected non-mandatory are
indicated by a non-bold, white font. Fingerprints that have not been selected at all are
presented in a grey, non-bold font.

61

5.2.2.14. The Mapping View

Figure 5.20.: WebUI Room Mapping Window [47].

In order to enable the user to comprehend the retrieval systems result finding process, a
dedicated mapping view is integrated into the WebUI (see fig. 5.20). This full screen view
allows for comparing the entered floor plan to a selected search result. Both floor plans
are rendered in the background, and an overlay allows to see the semantic fingerprints of
both floor plans. The mapping (displayed in red arrows) shows the mapping as generated
by the AP. All of the mentioned elements can be switched on and of by dedicated buttons,
the type of fingerprint can be altered by a slider. An also switchable mapping info box
displays how the AS has found the mapping.

62

5.2.2.15. The Analysis View

Figure 5.21.: WebUI Analysis View.

The analysis view (see fig. 5.21) shows the data coming from the analysis modules in
a two-dimensional plot. It is intended to help the user finding correlations between
search results and to skim through result lists more efficiently. It can be activated
and deactivated by a dedicated button in the search bar. The analysis view shows the
individual search results visualized as points that are arranged inside the two-dimensional
plot. The formula that controls this visualization can be adjusted by sliders. The
visualization makes use of a dedicated ploty [10] library.

5.2.3. Technical Implementation

In the following, some key points of the technical implementation of the WebUI editor
are revealed. Several constructs of the WebUI code are referred to as classes for the
sake of simplicity. Technically, JavaScript does not have proper classes rather than
prototype-based pseudo classes.

63

5.2.3.1. The Room Class

Figure 5.22.: Different attributes of the Room class make up an exemplary wall polygon
with five points. All labeled dimensions are direct attributes of the Room

class.

One of the most important aspects of the Room class is how the points of the wall polygon
are represented (see fig. 5.22). These polygons are stored in an local coordinate system of
the Room instance. This local coordinate system is transformed into the global coordinate
system of the floor plan for rendering and interaction purposes. For this transformation,
an instance of the Room class carries an anchor point that determines the translation
between the room-local coordinate system and the global floor plan coordinate system.
Likewise, a room’s points are scaled by making use of the bounding box members of
that room. The Room class provides a rendering function for displaying the instance on
a canvas.

5.2.3.2. The Floorplan Class

The Floorplan class encapsulates all functionality related to the management of a floor
plan. For that purpose, it owns a list of instances of the Room class. Furthermore, it is
responsible for the management of the connections between the individual rooms. The
Floorplan class provides a rendering function that draws the connections between the
individual rooms and calls the rendering method of the aggregated Room instances.

64

5.2.3.3. The FloorplanEditor Class

The FloorplanEditor class is responsible for the interaction between the user and
the Floorplan class. This class makes up the entire editor part of the WebUI. It is
instantiated once, directly after the start of the WebUI. Hence, it is responsible for
the display of user interaction elements like buttons, which it renders on an HTML
canvas. Likewise, it triggers the rendering of the Floorplan class on that canvas after
modifications are made (e.g. by the user). It carries the current floor plan as one member
and a list of floor plans as the history of the editor.

5.3. The Creativity Engine

5.3.1. Requirements

The creativity engine (CE) should assist the user in any phase of his work. This includes
the proposal of entire design steps, the completion of design steps and the augmentation
of design steps.

5.3.2. Representation of Floor Plans to ANNs

A floor plan needs to be brought into a dedicated format in order to be processed by
neural networks. Since recurrent neural networks are used, this format is a sequence of
feature vectors that are fed one after another into the model. The format should occupy
less storage, i.e. the feature vector itself and the sequence length should be as small as
possible. In the following, the ANN representation is outlined. The ANN representation
mimics the workflow of an architect interacting with the WebUI and is used in any
scenario later.

65

5.3.3. The Feature Vector

Figure 5.23.: The Feature Vector as Used in the Tight RNN Encoding. Left: The logical
channels that are mapped to the vector. Right: The actual feature vector
components; each vector element is represented by a different symbol.

The actual feature vector used in the tight encoding scheme comprises of a fixed number
of elements. As a logical abstraction and for the sake of simplicity, the feature vector
can be considered as organized into different so-called channels (see fig. 5.23). Each
channel carries a piece of information and can correlate with a number of feature vector
elements but every feature vector element is assigned to a single channel only.

Originally, a larger feature vector with 1-hot encoding has been considered. Numbers
in that channel have been encoded by using multiple feature vectors and the decimal
system and feature vector sequences were organized similar to XML (with tag opening
and closing symbols for each tag). However, this 1-hot encoding scheme led to feature
vector sequences matrices round 9 times larger than the ones considered here. Hence,

66

the chosen feature vector sequences are referred to tight encoding.

5.3.4. The Feature Vector Sequence

This subsection describes how a sequence of feature vectors makes up the description of
a floor plan. An illustration for such a sequence for a sample floor plan can be found in
fig. A.2.

5.3.4.1. Tags

Figure 5.24.: Feature Vectors of Different Tag Types (Channel View with Omitted
Blank). An empty channel space indicates that all corresponding feature
vector elements are zero.

A tag is the smallest unit of a feature vector sequence. Currently, there are three different
kinds of tag types (see fig. 5.24 for an overview). Every tag starts with a feature vector
that carries no information but the tag types itself.

Room Defintion Tags Room definition tags define a room identified by an ID along
with the room’s center (expressed as a 2d-point in the euclidean space), the room’s
function and the hasWindow flag. This tag type always occupies 2 feature vectors.

Room Connection Tags A room connection tag defines a connection between two
rooms by referring to their IDs and specifying the connections type. This tag type
always occupies 2 feature vectors.

Room Layout Tags A room layout tag defines a room’s surrounding walls by succes-
sively stating the corner’s points. This tag type occupies c+ 1 feature vectors, where c
is the number of corners of the room.

67

5.3.4.2. Blocks

Blocks are parts of feature vector sequences which consist of tag sequences of the same
kind. In the current implementation, there are 3 different blocks, that appear in the
following order:

1. The Room Definition Block

2. The Room Connection Block

3. The Room Layout Block

5.3.5. Room Order

Two different approaches for the room order are proposed: A random order and a sorted
order based on the room’s center position. The latter can be mathematically described
as:

a � b ⇐⇒ (ax < bx) ∨ ((ax = bx) ∧ (ay < by)) (5.2)

This order relation orders the rooms based on their center position, primarily taking
into account the x ordinate and regards the y ordinate in case of x ordinate equivalency.

The random room order tries to mimic the user’s behavior in which the order in
which the rooms are drawn cannot be determined a priory (advantage). The random
room order is harder to compute and inherently brings problems in predicting missing
tags in block 1 (disadvantage).

The sorted room order leads to a better predictability of tags in block 1, but fails to
mimic the user’s typical behavior. The mentioned advantages and disadvantages only
affect tag prediction inside block 1. In the following, the sorted room order is used.

5.3.6. Sample Preparation

During the process of converting the floor plans from a database (where they are stored as
a folder of AGraphML files) into a set of feature vector sequences, some details have to be
regarded. For example, all 2D points in a floor plan (like room centers and wall polygons)
have to be converted to the [0, 1]2 space used in the feature vectors. Furthermore, the
scarcity of manually generated database entries urges for generating multiple samples
used for training out of a single database entry. To be more precisely, the converting
process must be capable of generating multiple different ANN representations for a single
database entry, that are fed into the ANN during learning. But also during inference,
issues come up. For example, by the time the user requests a creativity suggestion, the
room’s individual layouts are not yet completed. Nevertheless, the room center points
have to be mapped to the [0, 1]2 used in the feature vectors without the knowledge of
the final and total dimension of the floor plan. In all cases, the floor plan should fill the
[0, 1]2 space rather effectively.

Generally, different operations are applied when converting a floor plan concept into
a feature vector sequence:

68

• Rotation. This is done by an angle that is a multitude of 90 degrees (the resulting
samples should be processable more easily and human users don’t rather expect
design suggestions not to be askew). A rotation by an arbitrary angle has also
been considered, but in order to minimize the random sources and to meet the
expectation of even room orientation, random multitudes of 90 degree angles have
been chosen. As an disadvantage, the amount of samples that can be created from
a single data base entry is more limited.

• Scaling. The set of points are scaled by a randomized factor that is restricted so
that the larger dimension (either x or y) fills the [0, 1] space by 80 to 100 percent.
When no wall polygons are present, an additional margin is added in order to
simulate the polygons that are added in future conceptualization.

• Translation. Within the possible space, the floor plan points are translated by a
random vector.

• Noise. Room centers are noised additionally in oder to mimic the user’s behavior
(normally, users don’t draw the rooms exactly at the final centers when doing a
first, rough bubble sketch).

5.3.7. Sequencer Types

In this thesis, the process of mapping the sequence of feature vectors to a pair of input
and output sequences is referred to as sequencing. Models trained on different sequencing
methods are distinguished as different sequencers.

5.3.7.1. Block Generation Sequencers

(a) Input (b) Output

Figure 5.25.: Intended Behavior of Block Generation Sequencers for Block 3 on Floor
Plan Sample.

69

Block generation sequencers are provided the first n blocks of a floor plan concept as an
input and return the n+1th block as output afterwards (see fig. 5.25). Block generation
sequencers possess the following features:

• For each block, a model can be trained individually. Therefore, the problem is
decomposed into multiple sub-problems. If a new block is added to the software
system, the trained models for the existing blocks may remain usable.

• Input and output are clearly divided from each other.

• A model may take all information from the previous blocks into account while
building the new block.

Nevertheless, the block generation sequencers have the followings drawbacks:

• Each model may only perform one single task.

• Multiple models must be stored.

• The model has to store a lot of information.

5.3.7.2. Block Transformation Sequencers

(a) Input (b) Output

Figure 5.26.: Intended Behavior of Block Transformation Sequencers for block 3 on Floor
Plan Sample. The input is repeated multiple times to minimize the amount
of time steps information have to be stored.

In order to overcome one of the drawbacks of the block generation, a variation of the block
generation sequencers, the so-called block transformation sequencers are introduced.
They are similar to the information contained in input and output, but the way they are
presented differs: the information-containing part of the output it generated while the

70

input is read. More precisely, the input is repeated multiple times so that the output
can fit in (see fig. 5.26). Such a setting makes the use of BIDI structures mandatory in
order to make the problem computable.

5.3.7.3. Vector Prediction Sequencers

(a) Input (b) Output

Figure 5.27.: Intended Behavior of Vector Prediction Sequencers on Floor Plan Sample.
The output is a one step to the past shifted version of the input. The
resulting gabs are simply filled by blank vectors.

Vector prediction sequencers try to predict the nth feature vector of a feature vectors
sequence given the first n feature vectors of that sequence (see fig. 5.27). Idealized they
possess the following features:

• One single model is (when trained well) capable of performing a multitude of
functions (generation of different blocks).

• The model may take information from a part of a block into account, allowing for
additional functions like completion of a block or prediction of a new part of a
block.

Nevertheless, the vector prediction sequencers have the followings drawbacks:

• If there is a new block added to the existing software system, a new model has to
be trained.

• When using in iterative structure for generating new content, the error in a pre-
diction is again fed into the model for further predictions, resulting in an increase
of errors over time.

71

This type of sequencer only makes sense in the context of forward networks and should
not be applied to BIDI RNN structures since they could simply copy the content from
the present time step towards one step in the past.

5.3.7.4. Vector Correction Sequencers

(a) Input (b) Output

Figure 5.28.: Intended Behavior of Block Transformation Sequencers on Floor Plan Sam-
ple. The input is noised and the model aims to remove the noise, thus
recovering the original feature vector sequence.

Vector correction sequencers take a noised version of a feature vector sequence and try
to generate one free of noise (see fig. 5.28). For that reason, the feature vectors are
blended with random vectors (their maximum lengths are parameterized).

This type of sequencer can be used in two different fashions: Firstly, vector correction
sequencers may be used for enhancing the result of other predictors. Secondly, the vector
correction sequencers may be used to generate new parts of a feature vector sequence
by appending random vectors to a incomplete vector sequence and apply the vector
correction sequencer.

72

5.3.8. The shallowDream Structure

Figure 5.29.: The shallowDream Structure. This structure extends feature vector se-
quences from vector prediction sequencers and allows the incorporation of
sequence parts from the outside.

Inferencing from block generation, block transformation and vector correction sequencers
is rather trivial since the input is clearly defined and the main challenge is to cut off the
blank vectors from the result. However, in order to extend feature vector sequences from
vector prediction sequencer models, the most simple approach is to iteratively generate a
new vector by feeding the existing sequence into the model and appending the new vector
to the existing sequence. In order to be applicable, several points have to regarded:

• The input sequence has to be fed into the ANN as it is, disregarding the ANN’s
ouput.

• Without compensation, errors inflicted by the ANN are fed back into it over and
over again. This causes an accumulation of errors over time.

• The process has to be stopped at a certain point of time.

The shallowDream structure (see fig. 5.29) tackles these issues by regenerating the
feature vector, watching for dedicated and parameterized stop symbols and injecting the
existing input (which is referred to as concept) into the ANN; simultaneously disregard-
ing the ANN’s output. The name shallowDream is chosen in referring to Alex Graves’s
metaphor of a dreaming person [27], with the extension that this person’s dreams are
influenced by inputs from the outside.

73

5.3.8.1. Programming the shallowDream Structure

By using different concepts and stop symbol combinations, the shallowDream structure
allows for performing multiple functions using the same ANN model. A list of possible
functions is given in tab. 5.1. In other words, different types of (input) concepts and
stop symbols program the model for a behavior.

Function Concept Stop
Symbol

Add a Room Given a Set of
Room Definitions

n Room Definition Tags + { { or <

Create All Room Connections Block 1 + < (

Complete Room Connections Block 1 + n Room Connection Tags + < (

Create All Room Layouts Block 1 + Block 2 + (

Table 5.1.: Overview of different functions that a vector prediction sequencer can perform
given different input concepts and stop symbol combinations.

5.3.8.2. Feature Vector Regeneration

In order to regenerate the feature vectors that are coming out of the LSTM for further
processing (output and feed-back), different techniques are considered. More precisely, a
regeneration functionality is needed that takes one vector at a time step and generates a
new vector for the given one. However, this regeneration functionality is not necessarily
a map in a mathematical sense, since it may have an internal memory that takes older
feature vectors in consideration.

None Regeneration The most primitive idea is to simply output the given input feature
vector.

Vector-Based Regeneration The vector-based regeneration is a map in the mathemat-
ical sense. It takes a vector and tries to recover the feature vector elements. However,
this technique does make use of knowledge about the feature vector structuring. More
precisely, the boolean feature vector elements are recovered by mapping them to their
closest allowed state (values smaller than 0.5 are mapped to 0.0 and values greater than
0.5 are mapped to 1.0).

Sequence-Based Regeneration The sequence-based regeneration is based on an inter-
nal state machine that tries to track the current state the feature vector sequence in.
Based on that knowledge, a feature vector is recovered.

74

6. Experiments

This chapter describes the experiments conducted in the course of the thesis at hand.
Each section in this chapter deals with experiments regarding an individual component
of the framework. After an experimental setup has been informally introduced and
subsequently described formally along with the used parameters, the results obtained
are outlined afterwards. Finally, remarks are given to how the experiment’s results are
estimated regarding their implications to the proposed software solution (how they were
used to improve it). The experiments described here directly make use of the software
described in chapter 5.

6.1. WebUI - Usability Study

In order to assess the WebUIs capabilities to serve as a sketching editor (and consequently
a tool for entering search requests and to view search results) is assessed by the means
of a user study. In such a study, human users coming from the architectural domain are
advised to work with the WebUI and to give feedback about their experiences with the
prototype. Likewise, it is assessed to what degree they can fulfill their tasks using the
prototype. This experiment has first been described in [16].

Formal Description of Experiment A group of 15 participants from the architectural
domain (students of architecture) is ordered to work on a certain design task (developing
an apartment for a certain fixed price that should be built in a big German city, see
fig. C.1 for the original task description). This task should be performed four times,
each time in a different manner. These different modus operandi can be described as
follows:

1. Design developed in a freestyle manner with pencil on paper.

2. Design developed in a freestyle sketching working method using a dedicated soft-
ware prototype from TU Munich.

3. Design developed in the room schedule working method using pencil, paper and
scissors.

4. Design developed in the room schedule working method using an early version of
the Archistant WebUI (referred to as ”Metis WebUI”)

The participants are working independently from each other in a dedicated environ-
ment and had no strict time limit. The only other person present is a supervisor who

75

answers questions about using the prototype. While working on the tasks, the partici-
pants are videotaped. After completing the task, the participants are asked to fill out
an questionnaire (see fig. C.2, fig. C.3, fig. C.4, fig. C.5 and fig. C.6 for the original
questionnaire).

The answers filled in the questionnaires serves as a primary source of processed infor-
mation. The questionnaire was designed to measure the different dimensions of the ISO
usability definition (see Section 2.3.1). However, since the questionnaire information only
reflects the opinions of the users, this data only approximates the usability dimensions.
Generally, this experiment is a comparative study in which two software prototypes were
compared to their traditional working method manners; thereby checking the software
prototype’s user acceptance. The hypothesis of the study was: ”The user is able to
express his thoughts with the computer tools as good as with the traditional tools.”

(a) (b)

(c) (d)

Figure 6.1.: Results of the WebUI User Study [16].

76

(a) (b)

(c) (d)

(e)

Figure 6.2.: Results of the WebUI User Study [16].

Results The accumulated responses of the participants to the closed questions are
shown in fig. 6.1 and fig. 6.2. The effectiveness of the WebUI (i.e. to what degree the
participants were able to fulfill their task) was measured indirectly by the questions
depicted in fig. 6.1c and fig. 6.2e. The responses to these questions showed that the
majority of participants were able to fulfill their tasks at least to a certain degree. The
freestyle drawing prototype ”Touchtect” from the TU Munich performed slightly better,

77

as shown in fig. 6.1d and fig. 6.2d.

The efficiency of the WebUI was vaguely assessed by asking the participants about
the perceived time they needed to complete the task (see fig. 6.2c). It is measured more
precisely by asking the participants how difficult they perceived the usage of the WebUI
(fig. 6.1a), how exhaused they were by using the WebUI (fig. 6.1b) and how hindered they
were by using the WebUI (fig. 6.2a). Generally, the results vary widely, but Touchtect
performes slightly better (fig. 6.2b).

The questions for measuring the user’s satisfaction in using the WebUI is also covered
to a certain degree in the questions relevant for the efficiency.

Implications After finishing the user study, the supervisors reported that the partici-
pants often appeared to be slightly disappointed when switching from digital methods
back to paper based ones, implying that the participants appeared open to the digital
methods and that they enjoyed using the prototypes.

After this user study, the WebUI has been modified tremendously, also taking the
participant’s feedback into account. For example, the UNDO/REDO functions did not
exist in the WebUI during the user study. Likewise, the RCE manipulation was simplified
by enabling the radial menus center buttons directly when the user clicks on a room (the
prototype in the study required the users to first click on a room, then open the room’s
radial menu, then selecting the kind of RCE to be manipulated and then to click on the
RCE’s radial menu button to finally do the actual manipulation).

The improved version of the WebUI (which was described in detail above) was given
to three DFKI interns generate floor plan designs. They were shortly introduced to
the WebUI usage and then asked to work independently. Their feedback was informally
captured and is summarized as follows: All interns were able to generate reasonable floor
plans by using the WebUI. The interns complained about a small bug in the autolink
function. This implies that this function is of actual use in the WebUI and that the
interns followed the intended workflow at least to a certain degree.

6.2. Retrieval Systems

6.2.1. Quantitative Analysis - Stress Test

A stress test is applied to the Archistant search system (PL plus attached retrieval
systems). This test intends to find the limits of search query sizes (boundaries) which
the individual retrieval systems can handle. This experiment has first been described
in [47]. Since this test only assesses the numbers of search query sizes handleable the
individual retrieval systems, this experiment is a quantitative analysis only.

Formal Description of Experiment The test case generator module of the Archistant
boundary tester is used to generate a series of search queries that are processes by
Archistant’s processing layer and the attached retrieval systems. The actual search
results generated from the retrieval system are discarded by the test case generator, but

78

they are recorded by the PL’s logging mechanism. The log files generated during this
test are analyzed by the boundary tester’s analysis script afterwards. The boundaries
calculated by this script are stated.

For each fingerprint a dedicated series of test search queries is used. For each such
series, only the fingerprint of interest is selected as mandatory in the search requests.
Different metrics are applied to assess the complexity (size) of a test search query. For
most fingerprints, simply the amount of rooms in the query is used as metric. For the
edge count fingerprint, the amount of edges in the test queries is used.

The boundary of a retrieval system for a fingerprint is considered the lowest complexity
rating of a test query belonging to the fingerprint’s query series that created an error in
that retrieval system minus 1.

Figure 6.3.: Boundary Test Results as Calculated by the BT Analysis Skript (from [47]).

Results The results which have been calculcated by the BT analysis skript are depicted
in fig. 6.3.

Implications The test generally showed that all three tested retrieval systems were at
least capable of replying to some of the generated test search queries. Nevertheless, the
weaknesses of the IB retrieval became obvious.

6.2.2. Qualitative Analysis - Result Adequacy Study

In order to examine how reasonable the results from the retrieval systems are (and
therefore to analyze their performance qualitatively), a couple of search requests are
manually created and the retrieval results are judged subjectively by a group of study
participants. This experiment has been described in detail by Sabri et al. [47].

79

Formal Description of Experiment A series of 10 different hand-crafted floor plan
concepts is successively given to the Archistant retrieval system. The results of each
retrieval system for all of the search queries are shown to a group of study participants.
For each query, a participant had to rank the result list according to which he liked
most. These rankings of the study participants are accumulated for each search query.

Figure 6.4.: Poll Results of the qualitative Analysis based on Subjective Estimation
(from [47]).

Results For each retrieval system, there was a search query that won the majority
vote by the study participants. An illustration of one of the won polls for each system
including the results delivered by the systems that lost the poll in this situation is
depicted in fig. 6.4.

Implications The combined retrieval system of Archistant is capable of delivering rea-
sonable results.

6.3. Creativity Engine

6.3.1. Quantitative Analysis - Machine Learning Performance

Assessing the performance of the creativity engine automatically and by mathematical
means is related to the assessment of the performance of the underlying ANN models.
As a standard proceeding for scientifically applying neural networks to a problem, a

80

database of manually created samples is divided into a training set, a validation set and
a test set (see fig. 6.5). The training itself is conducted in a series of so-called epochs,
where each epoch is a different random permutation of the training set samples. While
the model is trained with the samples from the training set, the error produced during
forward propagation is measured. After an epoch is completed, the ANN is applied to
the validation set and the produced error is also measured. However, only a forward
propagation is used here; the ANN is not trained on the validation set. This training
process results in a trained model. However, two models are stored for each training
process: the final model that was generated by applying the full sequence and the model
with the lowest error on the validation set.

Figure 6.5.: A database of floor plan entries is divided into a training set, a validation set
and a test set. Afterwards, the entries for each set are turned into samples,
where each entry is turned into multiple samples, determined by the blow-up
factor.

Since the training process depends on the random permutation, the random initial-
ization of weights and ANN parameters like cell sizes and learning rate, multiple models
with different parameters are trained. The model with the lowest error on the validation
set is selected and consequently applied to the test set. The error resulting from this ap-
plication is considered to be the final error. Furthermore, a confusion matrix calculated
on the test set error can be used to assess the performance of the model more precisely
and to determine the types of error that occurred.

The floor plan database (like all individual floor plans in it) used for this experiment
has been dedicatedly created for this experiment. The floor plan samples from the re-

81

trieval database have not been used since their purpose and overall quality and room
layout definitions did not meet the criteria of this experiment (in the experiments con-
duced here, room layouts are placed directly next to each other, while in the retrieval
database, there are gaps between the rooms to enclose the intermediate physical wall).

Formal Description of Experiment A set of 75 floor plans is turned (by using a blow-
up factor of 90) into a set of 6750 samples. Likewise, a set of 2 floor plans is turned
(by also using blow-up factor of 90) into a set of 180 samples. Different ANNs, each
consisting of a stack of layers, where four kinds of layer types are considered, are trained
with the vector prediction approach. The three layer types are: LSTM, BIDILSTM,
perceptron layer. For calculating the training error and the validation error, the mean
of the absolute error of all feature vector component error on all feature vectors is used.
The resulting learning curves and minimal errors on both sets are stated.

The model which achieved lowest error on the validation set is applied to the test set
(consisting of 20 samples that are generated from 20 floor plans). As an error metric, the
connection generation function described above is used: The model is used to generate
the connections of a floor plan given a set of room definitions. The adjacency matrices
of both ground truth and predicted connections is calculated and compared. For each
connection that was not calculated correctly (equal type), an error of 0.0 is used, for each
incorrectly predicted connection, an error of 1.0 is used. The sum of errors is calculated
and divided by the adjacency matrix size for the final error.

Finally, a confusion matrix based on adjacency matrices differences in ground truth
and predicted connections on the test set is stated. In this confusion matrix, the for
each class (type of room connection) the likelihood is expressed with which an instance
of this class is predicted correctly or mistakenly predicted as other classes.

When calculating the test set error and the confusion matrix for vector prediction
sequencers, a shallowDream structure with sequence-based feature vector regeneration
is used.

Results In the following, annealing is a factor with which the learning rate is of the
ANN is multiplied after each epoch (the learning rate decreases exponentially). If two
or more layers are stacked, their cell counts are divided by commas (”,”). Furthermore,
each stack is finished with a perceptron layer that ensures an output size equal to the
feature vector size. The learning curves of the vector predictor sequencer are depicted
in appendix chapter D. The resulting lowest error measurements on the training set and
the validation set of these training processes are listed in tab. 6.1.

82

Sequencer
Type

Cell
Count

Learn
Rate

Mom. Anneal Nbr Lowest
Training
Error (%)

LTE
Epoch

Lowest
Validation
Error (%)

LVE
Epoch

vectPred 150,150 0.01 0.3 0.8 1 0.687 47 1.908 10

vectPred 200,200 0.01 0.3 0.8 0 0.595 48 1.874 12

vectPred 300,200 0.01 0.3 0.8 1 0.553 28 2.043 4

vectPred 300,200 0.01 0.3 0.8 2 0.550 29 1.883 3

vectPred 300,200 0.01 0.3 0.8 3 0.548 29 1.893 24

vectPred 300,200 0.02 0.3 0.8 0 0.464 12 1.789 11

vectPred 300,200 0.03 0.3 0.6 0 0.620 12 1.932 4

vectPred 300,200 0.03 0.3 0.7 0 0.505 12 1.798 3

vectPred 400,300 0.01 0.3 0.8 1 0.494 19 1.886 4

vectPred 400,300 0.01 0.3 0.8 2 0.498 16 2.038 6

vectPred 400,300 0.01 0.3 0.8 3 0.494 17 1.869 4

vectPred 400,400 0.01 0.3 0.8 0 0.455 49 1.885 11

vectPred 400,400 0.01 0.3 0.8 1 0.454 49 1.967 3

vectPred 800 0.01 0.3 0.8 0 0.452 19 2.069 3

vectPred 800 0.01 0.3 0.8 1 0.453 21 2.211 5

Table 6.1.: Overview over the lowest error measurements on the training set and valida-
tion set achieved during training. Stated hyperparameters include learn(ing)
rate, mom(entum) and anneal(ing). The lowest overall error on the validation
set is indicated in boldface.

The lowest error on the validation test during training of a vector prediction sequencer
was achieved by a stack of 300 and 200 LSTM cells, using a learning rate of 0.02 and
a momentum of 0.3 and an annealing rate of 0.8. The achieved error was 1.789%,
measured after epoch 11. The resulting model is used for further analysis.

The error on the test set for the selected model is 62.694%. The confusion matrix
for this model calculated on the test set is depicted in fig. 6.6.

83

Figure 6.6.: Confusion Matrix of the finally selected vector prediction sequencer model
calculated on the test set. The classes are numbered as follows: 0-No con-
nection, 1-Wall, 2-Door, 3-Entrance, 4-Passage

Implications While the error on the training set and validation set appears low at first
glance and the error on the test set appears high, both numbers have to be handled
with care. First of all, they cannot directly be compared to each other due to their
different calculation methods. These different methods serve different purposes. The
error calculation on training and validation set intends to be a minimum computational
overhead and a general assessment of the model’s prediction capabilities. In contrast,
the error calculation method for the test set intends to assess the actual meaning of the
feature vectors produced by the model (at least the connection generation capabilities
are covered).

When considering the training and validation error measurement, the following prob-
lem should be regarded: only a small amount of the feature vector accounts for the
most important information (point positions). In combination with the large number
of 1-hot encoded feature vector elements, the error function is potentially spoiled since
these elements are usually 0 and therefore easy to predict.

The test set error measurement was particularly hard for the models: Incorrect pre-
dictions resulted as complete failure even for connection types that may be considered
similar in further analysis. Hence, the fact should be considered that in contrast to most
classification problems, there might not always be one correct answer to a creative and
generative problem like floor plan generation.

6.3.2. Qualitative Analysis - Performance Case Study

The creativity engine’s performance is illustrated by showing exemplary results gener-
ated by the creativity engine. This experiment is done using the existing Archistant

84

system. The creativity engine functions are generally triggered by simply hitting the
creativity button in the WebUI; the creativity engine then selects the adequate function
automatically. However individual rooms in the floor plan concepts processed by the
creativity engine sometimes need to be moved manually for clearness reasons.

Formal Description of Experiment Using the finally selected vector prediction model
from the previous experiment, the creativity engine functions are successively applied to
sample data. More precisely, a set of rooms is used as origin. Initially, the connection
generation function is triggered. Then, the resulting graph is used as input for the layout
generation function. Screenshots of all steps are shown. After each step, the individual
rooms are manually rearranged for clearness reasons (i.e. to resolve occlusions). Dur-
ing this experiment, the sequence-based feature vector regeneration is employed in the
shallowDream structure.

Figure 6.7.: Original Room Set

85

Figure 6.8.: Generated Connection Graph

Figure 6.9.: Generated Room Layouts.

Results The screenshots are depicted in fig. 6.7, fig. 6.8 and fig. 6.9.

Implications The performance of the models has to be improved in order to be actually
operational in real-world use. However, the case study illustrates the basic viability of
the approach. Using the shallowDream structure, the two shown functions are both
realized using the same ANN model.

86

7. Conclusion

This chapter describes the archived state of the developed software solution as well
as discusses issues that still exist and that can be tackled in upcoming and improved
versions of the software solution. The latter can be considered open research problems.
For each main component described in the thesis at hand, there is a subsection describing
the state of the software and there is a subsection describing future work. Apart from
that, general issues of the framework are discussed in the beginning of the two main
sections of this chapter.

Generally, this work dealt with the design of a software framework for supporting
architects in their early design phases, avoiding monotone and repetitive labor. By uti-
lizing different basic technologies and sciences like human computer interaction, artificial
neural networks and graph theory, a modular framework has been developed that pro-
vides the user with a sketching tool, similar references designs as well as with design
suggestions.

7.1. Achieved Performance

Generally, many aspects of the developed framework are fully functional. However,
some functions are only working under restricted circumstances or only in a rudimentary
manner, as pointed out below.

7.1.1. User Interface

The user interface of the Archistant framework, the WebUI, is fully functional. It can
be used to formulate floor plan concepts, trigger search processes, view and assess their
results, and to invoke the creativity engine as well as incorporating the generated design
suggestions in the workflow of the UI. In the current version, full crashes are extremely
rare.

However, some functions are unformed. The resize function for example inherently
destroys the order established by the grid-based polygon sketching tool. More precisely,
since the resize function is seamlessly, resized rooms often do not match the discrete wall
lenghts of non-resized rooms. Likewise, it is next to impossible for a user to reizse two
rooms exactly the same factor.

The autolink function does not yet work as expected in all situations. This might be
due to the fact that a connection is only established by the autolink function if the line
segment describing a wall is part of the snapped wall’s describing line segment. However,
overlapping walls are often also expected to be handled by this functions.

87

In its current form, the analysis view is more considered a rather prototypical function
that has to be extended in upcoming versions.

Finally, the walls are treated as by the WebUI as if they had no physical width.

7.1.2. Retrieval Systems

The retrieval systems are functional in different degrees. In simple cases, results are
returned. In one case during internal testing we retrieved a result in which all rooms
but one were exactly matched to same room functions. However, the one room in which
there was a mismatch between search query and result could well be reassigned a purpose
from a human perspective. This subjectively hinted that how inspiration can actually
be grasped from the contemplation of search results.

The IB retrieval regularly crashes in scenarios where the number of rooms in the search
query exceeds a certain number. More precisely, scenarios with more than 3 rooms
are critical already. These failings are caused by the connected Neo4j database and
relate most likely with the number of matching possibilities that have to be considered
by Neo4j. Unfortunately, such errors negatively effect the rest of the system since the
augmentation processor is also connected to the same instance of Neo4j. If the hypothesis
of memory problems proves to be true, the problem is simply solvable by providing more
computational resources. By using multiple Neo4j instances, the negative effects of the
IB to the AP can however be resolved by using dedicated instances for the individual
modules.

Nevertheless, if the IB returns results, these are ensured to respect the user’s wishes
regarding mandatory fingerprints (the search query’s fingerprint graphs are subgraphs
of the result ones).

7.1.3. Creativity Engine

The creativity engine is only functioning in a rudimentary manner. Generally, the trained
models already reproduce feature vector sequences that sufficiently reproduce the in-
tended sequence syntax in order to be interpretable by the subsequent post-processing
mechanics. However, the produced concepts don’t resemble meaningful architectural
structures. Currently, there are two pitches to improve the performance: Firstly, the
used database is extremely small. By adding entries to the database, the model’s per-
formance should improve according to known principles of ANNs. Secondly, the cells
sizes of the models have been limited by the the performance of the used OCRolib im-
plementation. Using more sophisticated ANN frameworks that utilize state-of-the-art
hardware accelerators can dissolve this issue.

7.2. Future Work

The current framework can only model single-story buildings. One approach to model
entire buildings can be to combine multiple single storey floor plans. In order to fully
support this aspect, references between multiple floor plans that indicate for example how

88

to precisely traverse between different storeys (by stairways, elevators and escalators)
have to be incorporated.

Likewise, an appropriate environment for managing user accounts and collaborative
work functions would be needed for a real-world deployment.

7.2.1. User Interface

The resize function of the WebUI could be improved by a smart snapping functions, that
snaps the resize factor when the size of individual walls approaches the sizes of other
walls. However, there is usually a bigger amount of such walls, hence the set of walls
of other rooms taken into account has to be limited by a selection. Different selection
techniques like selection by proximity of other rooms and taking into account the angle
of a wall to the coordinate system of the floor plan have to be investigated while taking
the user’s responses into account in order to construct a useful function.

The same proceeding applies to the wall shifting function.

Wall thicknesses and related properties could be modeled by assigning each wall of a
room a certain thickness by default, and a merging technique for wall thicknesses of two
rooms that share a wall have still to be developed. This can particularly be useful when
a room needs to have walls of certain properties (e.g. the walls of a bedroom might
shield sound from the outside for the users comfort).

Currently, the WebUI is limited to 2D-views of floor plans. 3D-rendering could help
the architects to comprehend their design decisions have on how their drafts are perceived
by the habitants of their buildings.

7.2.2. Retrieval Systems

The set of fingerprints used to retrieve floor plans can be extended in order to incorporate
additional floor plan aspects and hence improve the quality of the results. For example,
geometric aspects are not yet covered by the existing fingerprints. Consequently, a user
will not affect the result list when the sizes and amounts of walls of the rooms are altered.
However, in order to match those aspects, techniques beyond graph matching are needed
(for example, point set registration could be used).

As an methodological problem, floor plans appropriate for inspiration might not nec-
essarily be too similar to search queries. More precisely, the user might not want to find
the same floor plan he entered, since inspiration should augment the existing concept.
Likewise, in rather early sketches, certain aspects like wall geometries are simply not
available. Hence, there is nothing with which possible results can be compared to. All
in all, the question arises whether or not only complete floor plans should be in the
database or if rough sketches should be incorporated as well.

The existing database for floor plan retrieval is still small. This problem could be mit-
igated automatically by uploading search queries submitted by users into the database.
Such a processing of course has be to brought into agreement with the users for legal
reasons. Furthermore, such a modus operandi could hint how the described framework
could be deployed for productive use: A crowd-based approach could be chosen.

89

Currently, the user has to assign the fingerprint weights manually to signal that certain
aspects of his floor plan concepts matter to him. However, some users may be confused
by the selection mechanism or aren’t willing to manually select fingerprint weights. So in
order to simplify the search process, fingerprint weights could be assigned automatically.
This issue has already been considered in the course of this thesis and solutions based
on the user’s gaze or the time a user spends on creating as well as reworking individual
aspects could be the basis for further research in this area.

The actual usefulness of search results for the user of the architectural still has to be
investigated more intensively. Likewise, an approach for automatically improving search
results - perhaps even tailored to the needs of individual users - is desired. Approaches to
accomplish both automatical analysis and result improvements could be done with ma-
chine learning based on the already existing user’s feedback function. For that purpose,
the generated log files provide sufficient information.

7.2.3. Creativity Engine

The upper limit of the number of rooms in a floor plans that can be processes by the
creativity engine is limited by the design of the feature vector. More precisely, for each
room ID available, there is a component in the feature vector. This design aspect has
been chosen since it appeared to be simple for the neural network to reference individual
rooms (previously, room IDs based on the decimal system have been considered, however
a protocol based on such a numbering enforces the ANN to learn the semantics of the
decimal system; an overhead that should be avoided).

In order to overcome this issue, a new approach has been considered: Instead of a
single neural network that generates the entire floor plan, a cluster of individual neural
networks can be used, where each instance of the model took care of one of the rooms
in the floor plan.

Currently, only few floor plan aspects are covered by the proposed feature vector
sequences. Information about the positions and dimensions of doors/passages/entries
are not yet covered. Likewise, three dimensional aspects are not yet regarded, e.g. how
different storeys of the same building be described by a single feature vector sequence.

90

Appendices

91

A. Sample Floor Plan in Different
Representations

Figure A.1.: Sample Floor Plan Image (rendered in WebUI).

Listing A.1: Sample Floor Plan Encoded in AGraphML

<graphml xmlns="http:// graphml.graphdrawing.org/xmlns" xmlns:xsi=

"http: //www.w3.org /2001/ XMLSchema -instance" xsi:schemalocation

="http: // graphml.graphdrawing.org/xmlns http: // graphml.

graphdrawing.org/xmlns /1.0/ graphml.xsd">

<graph id="searchGraph1" edgedefault="undirected">

<key id="imageUri" for="graph" attr.name="imageUri" attr.type

="string"></key>

<key id="imageMD5" for="graph" attr.name="imageMD5" attr.type

="string"></key>

<key id="validatedManually" for="graph" attr.name="

validatedManually" attr.type="boolean"></key>

<key id="floorLevel" for="graph" attr.name="floorLevel" attr.

type="float"></key>

<key id="buildingId" for="graph" attr.name="buildingId" attr.

type="string"></key>

<key id="ifcUri" for="graph" attr.name="ifcUri" attr.type="

string"></key>

<key id="bimServerPoid" for="graph" attr.name="bimServerPoid"

attr.type="long"></key>

93

<key id="alignmentNorth" for="graph" attr.name="

alignmentNorth" attr.type="float"></key>

<key id="geoReference" for="graph" attr.name="geoReference"

attr.type="string"></key>

<key id="name" for="node" attr.name="name" attr.type="string"

></key>

<key id="roomType" for="node" attr.name="roomType" attr.type=

"string"></key>

<key id="center" for="node" attr.name="center" attr.type="

string"></key>

<key id="corners" for="node" attr.name="corners" attr.type="

string"></key>

<key id="windowExist" for="node" attr.name="windowExist" attr

.type="boolean"></key>

<key id="enclosedRoom" for="node" attr.name="enclosedRoom"

attr.type="boolean"></key>

<key id="area" for="node" attr.name="area" attr.type="float">

</key>

<key id="sourceConnector" for="edge" attr.name="

sourceConnector" attr.type="string"></key>

<key id="targetConnector" for="edge" attr.name="

targetConnector" attr.type="string"></key>

<key id="hinge" for="edge" attr.name="hinge" attr.type="

string"></key>

<key id="edgeType" for="edge" attr.name="edgeType" attr.type=

"string"></key>

<node id="room0">

<data key="roomType">LIVING </data>

<data key="center">POINT (337.48 221.34000000000003) </data>

<data key="corners">POLYGON ((168.73000000000002

198.84000000000003 , 213.73000000000002

41.34000000000003 , 506.23 41.34000000000003 , 506.23

401.34000000000003 , 168.73000000000002

401.34000000000003 , 168.73000000000002

198.84000000000003))</data>

<data key="area">117956.25000000001 </data><data key="

windowExist">true</data>

</node>

<node id="room1"><data key="roomType">KITCHEN </data>

<data key="center">POINT (629.98 142.59000000000003) </data>

<data key="corners">POLYGON ((753.73 41.34000000000003 ,

753.73 176.34000000000003 , 573.73 176.34000000000003 ,

573.73 243.84000000000003 , 506.23 243.84000000000003 ,

506.23 41.34000000000003 , 753.73 41.34000000000003))</

data>

<data key="area">37968.750000000015 </data>

<data key="windowExist">true</data>

94

</node>

<node id="room2">

<data key="roomType">SLEEPING </data>

<data key="center">POINT (629.98 288.84000000000003) </data>

<data key="corners">POLYGON ((506.23 243.84000000000003 ,

573.73 243.84000000000003 , 573.73 176.34000000000003 ,

753.73 176.34000000000003 , 753.73 401.34000000000003 ,

506.23 401.34000000000003 , 506.23 243.84000000000003))</

data>

<data key="area">51131.25 </data>

<data key="windowExist">true</data>

</node>

<edge id="edge0" source="room0" target="room0">

<data key="edgeType">WINDOW </data>

<data key="sourceConnector">LINESTRING (208.74291357327886

58.79480249352408 , 174.81132445290078

177.55536441484736) </data>

</edge>

<edge id="edge1" source="room0" target="room0">

<data key="edgeType">DOOR</data>

<data key="sourceConnector">LINESTRING (377.61020833333333

401.34000000000003 , 432.3497916666667

401.34000000000003) </data>

<data key="hinge">RIGHT</data>

</edge>

<edge id="edge2" source="room1" target="room0">

<data key="edgeType">PASSAGE </data>

<data key="sourceConnector">LINESTRING (506.23

46.34000000000003 , 506.23 161.74277777777783) </data>

<data key="targetConnector">LINESTRING (506.23

161.74277777777786 , 506.23 46.340000000000046) </data>

</edge>

<edge id="edge3" source="room1" target="room1">

<data key="edgeType">WINDOW </data>

<data key="sourceConnector">LINESTRING (600.48

41.34000000000003 , 560.48 41.34000000000003) </data>

</edge>

<edge id="edge4" source="room1" target="room1">

<data key="edgeType">WINDOW </data>

<data key="sourceConnector">LINESTRING (685.53

41.34000000000003 , 645.53 41.34000000000003) </data>

</edge>

95

<edge id="edge5" source="room2" target="room2">

<data key="edgeType">WINDOW </data>

<data key="sourceConnector">LINESTRING (753.73

387.03784529320995 , 753.73 320.2393769290126) </data>

</edge>

<edge id="edge6" source="room2" target="room0">

<data key="edgeType">DOOR</data>

<data key="sourceConnector">LINESTRING (506.23

327.40875000000005 , 506.23 380.77125) </data>

<data key="hinge">RIGHT</data>

<data key="targetConnector">LINESTRING (506.23 380.77125 ,

506.23 327.40875000000005) </data>

</edge>

<edge id="edge7" source="room2" target="room1">

<data key="edgeType">WALL</data>

</edge>

</graph>

</graphml >

Figure A.2.: Sample Floor Plan in Tight Encoding for RNN Processing Purposes.

96

B. LOGXML Sample File

Listing B.1: Log XML File with two Search Requests as well as Responses from Three
Servers and a Feedback to the Second Result from the User after the second
search query (contained AGraphMLs as well as some of the results files
omitted)

<log client_ip="127.0.0.1" end_time="2017 -07 -05 T23:51:26"

start_time="2017 -07 -05 T23:48:19">

<SearchOperation >

<UserRequest time="2017 -07 -05 T23:48:46">

<searchRequest >

<agraphml >

<!-- description of search request 1 -->

</agraphml >

<fingerprint name="Relation_Count" weight="0.66"/>

<fingerprint name="Room_Graph" weight="0.37"/>

<fingerprint name="Room_Types" weight="0.68"/>

<fingerprint name="Adjacency" weight="0.34"/>

<fingerprint name="Accessibility" weight="0.6"/>

<fingerprint name="Full_Room_Graph" weight="0.33"/>

<fingerprint name="Natural_Light" weight="0.81"/>

</searchRequest >

</UserRequest >

<ServerResponse systemName="Index -Based System" time="

2017 -07 -05 T23:49:15">

<searchResults >

<error>No results found.</error>

</searchResults >

</ServerResponse >

<ServerResponse systemName="Case -Based System" time="

2017 -07 -05 T23:49:00">

<searchResults >

<tr>

<td/>

<td>0.7324061 </td>

<td>

<matchingInfo >

<matchedfingerprint name="Natural_Light" score="

97

0.6315789"/>

<matchedfingerprint name="Accessibility" score="

0.6315789"/>

<matchedfingerprint name="Relation_Count" score="

0.9997997"/>

<matchedfingerprint name="Room_Types" score="0.6666667

"/>

</matchingInfo >

</td>

<td/>

<td>http:// mediatum.ub.tum.de/file /1231438/126063. svg</

td>

<td/>

</tr>

</searchResults >

</ServerResponse >

<ServerResponse systemName="VF2 Exact -Matching System" time="

2017 -07 -05 T23:48:51">

<searchResults >

<error>No results found.</error>

</searchResults >

</ServerResponse >

<FinalResultList time="2017 -07 -05 T23:49:17">

<resultList >

<tr>

<td/>

<td>0.7324061 </td>

<td>

<matchingInfo >

<matchedfingerprint name="Natural_Light" score="

0.6315789"/>

<matchedfingerprint name="Accessibility" score="

0.6315789"/>

<matchedfingerprint name="Relation_Count" score="

0.9997997"/>

<matchedfingerprint name="Room_Types" score="0.6666667"/

>

</matchingInfo >

</td>

<td>

<roomMap >

<roomMapEntry from="room1" to="e29c404e -a4b0 -4287-

bc4b -35 e6939c3ae5"/>

<roomMapEntry from="room2" to="06019303 -c498 -4c67

-9664 - f1401ebe23f8"/>

<roomMapEntry from="room0" to="52e9d50b -298c-4bc7 -

b29a -d570c1d1bc97"/>

<roomMapInfo >

8 Trying Natural_Light to create room map...

98

IMPOSSIBLE

4 Trying Room_Types to create room map...

Relation_Count cannot be used to create a room

map.IMPOSSIBLE

6 Trying Accessibility to create room map...

IMPOSSIBLE

3 Trying Room_Graph to create room map... SUCCESS

</roomMapInfo >

</roomMap >

</td>

<td>

http: // mediatum.ub.tum.de/file /1231438/126063. svg

</td>

<td>

<!-- description of search result 1 -->

</td>

</tr>

</resultList >

</FinalResultList >

</SearchOperation >

<SearchOperation >

<UserRequest time="2017 -07 -05 T23:50:58">

<!-- like above -->

</UserRequest >

<ServerResponse systemName="Index -Based System" time="

2017 -07 -05 T23:50:58">

<!-- like above -->

</ServerResponse >

<ServerResponse systemName="Case -Based System" time="

2017 -07 -05 T23:51:07">

<!-- like above -->

</ServerResponse >

<ServerResponse systemName="VF2 Exact -Matching System" time="

2017 -07 -05 T23:51:00">

<!-- like above -->

</ServerResponse >

<FinalResultList time="2017 -07 -05 T23:51:17">

<!-- like above -->

</FinalResultList >

<userRating rating="95" resultNo="1" time="2017 -07 -05 T23:51:24

"/>

</SearchOperation >

</log>

99

101

C. WebUI User Study

C.1. Task Desprition for Participants

Die Aufgabenstellung

Da das Oktoberfest ab 2015 in Berlin im Tiergarten stattfindet, hat die TU München das

Gelände der Theresienwiese in München erworben und wird dort Wohnungen errichten. Als

Mitglied der TU München hast du die Möglichkeit für 1000,00 € Warmmiete bevorzugt

diese neuen Wohnungen zu mieten. Zum Herausstellen der Innovationskraft der

Eliteuniversität TU München kannst du die Raumanordnung und den Grundriss deiner

zukünftigen Mietwohnung selber bestimmen. Für die Bewerbung für eine solche Wohnung

müssen vier Grundrissschemata und jeweils drei Referenzgrundrisse eingereicht werden.

Kriterien für eine erfolgreiche Bewerbung sind flexible Nutzungskonzepte bspw. als

Wohngemeinschaft, Familienwohnung oder altersgerechtes Wohnen.

Was Du tun sollst

Im Rahmen der vorliegenden Evaluierung für das Forschungsprojekt „Metis" wird in

diesem ersten Schritt ausschließlich die Erstellung der Grundrissschemata der ersten

Entwurfsideen untersucht. Die Auswahl von drei Referenzgrundrissen wird später in einem

2. Evaluierungsschritt untersucht. Jedes Grundrissschema soll mit einem der vier

Bearbeitungsansätze angefertigt werden:

 1. Freihandzeichnung auf Papier und Skizzenrolle

 2. Freihandzeichnung auf einem Tablet

 3. Ausgeschnittenes Raumprogramm auslegen

 4. Raumprogramm am PC modellieren

Im Anschluss möchten wir dich noch bitten den Fragebogen auszufüllen.

Bitte beachten

Ganz wichtig: Wir wollen herausfinden, wie genau Architekten beim Entwurf denken.

Deshalb zeichnen wir alles auf. Wir würden uns freuen, wenn du uns an deinen Gedanken

teilhaben lässt. Sprich einfach aus, was du grade denkst. Egal ob es darum geht, was du

machst oder vor hast zu tun, was dich gerade stört oder wenn etwas nicht direkt klappt.

Vielen Dank und viel Spaß :-)

Figure C.1.: This figure despicts the original task description handed to the partici-
pants of the WebUI user study. This task desciption has been developed by
Christoph Langenhan.

102

C.2. Questionaire for Participants

Übertragung von analoger in digitale Arbeitsweise - Skizze

Benutzen Sie in frühen Entwurfsphasen

Skizzen, um Ihre Entwurfsideen zu

formulieren?

○Ja ○ Nein

Inwieweit konnten Sie Ihre Ideen/Konzepte

ausdrücken?

Mit Freihandzeichung

Mit dem Prototyp “Touchtec”

Gar nicht ○ ○ ○ ○ ○ ○ ○ Vollkommen

Gar nicht ○ ○ ○ ○ ○ ○ ○ Vollkommen

War das Arbeiten mit dem Prototyp “Touchtec”

für Sie im Gegensatz zum “klassischen”

Freihandskizzieren (Papier / Stift) anders?

○Ja ○ Nein

War der Arbeitsablauf mit dem Prototyp

“Touchtec” für Sie im Gegensatz zum

“klassischen” Zeichnen mit Stift und Papier

anders?

Gar nicht ○ ○ ○ ○ ○ ○ ○ Vollkommen

Wie war die „gefühlte“ Zeit bis die

Darstellung ihren Vorstellungen entspricht?

Freihandskizze

Touchtec

Viel ○ ○ ○ ○ ○ ○ ○ Wenig

Viel ○ ○ ○ ○ ○ ○ ○ Wenig

Wie bewerten Sie die Flexibilität bei der

Anpassung der Darstellung?

Freihandskizze

Touchtec

Gar nicht ○ ○ ○ ○ ○ ○ ○ Vollkommen

Gar nicht ○ ○ ○ ○ ○ ○ ○ Vollkommen

Wie ähnlich ist die Darstellung mit der

mentalen Vorstellung Ihres Konzeptes?

Freihandskizze

Touchtec

Gar nicht ○ ○ ○ ○ ○ ○ ○ Vollkommen

Gar nicht ○ ○ ○ ○ ○ ○ ○ Vollkommen

War etwas beim Arbeiten mit dem Prototypen

„Touchtec“ im Vergleich zur Arbeit mit Papier

und Stift schlechter?

○Ja ○ Nein

Wenn ja, was? (max. 5 Auszählungen)

Figure C.2.: Page 1 of the Original Questionaire for WebUI User Study Participants.

103

War etwas beim Arbeiten mit dem Prototypen

„Touchtec“ im Vergleich zur Arbeit mit Papier

und Stift besser?

○Ja ○ Nein

Wenn ja, was? (max. 5 Auszählungen)

Benutzeroberfläche Touchtec

Wie verständlich war die optische Gestaltung

(z.B. Bedeutung v. Symbolen, Schaltflächen,

Funktionen) für Sie?

Verständlich ○ ○ ○ ○ ○ ○ ○ Unverständlich

Wie einfach oder schwierig war für Sie die

Benutzung von Touchtec?
Einfach ○ ○ ○ ○ ○ ○ ○ Schwierig

Wie bewerten Sie das Aussehen von Touchtec? Unansehnlich ○ ○ ○ ○ ○ ○ ○ Ansehnlich

Wie körperlich anstrengend empfanden Sie die

Arbeit mit Touchtec?
Gar nicht ○ ○ ○ ○ ○ ○ ○ Vollkommen

War für Sie die Arbeit mit der digitalen

Stifteingabe hinderlich?
Eher Ja ○ ○ ○ ○ ○ ○ ○ Eher Nein

Akzeptanz

Inwieweit könnten Sie sich vorstellen, diese

Arbeitsweise in frühen Planungsphasen z.B.

zum Zwecke der Konzeptionierung einzusetzen?

Gar nicht ○ ○ ○ ○ ○ ○ ○ Vollkommen

Welche Aspekte der Benutzeroberfläche genau

empfanden Sie als verbesserungswürdig? Wie

könnte eine solche Verbesserung aussehen?

Figure C.3.: Page 2 of the Original Questionaire for WebUI User Study Participants.

104

Übertragung von analoger in digitale Arbeitsweise - Funktionsschemata

Benutzen Sie in früher Entwurfsphase

Funktionsschemata, um Entwurfsideen zu

formulieren?

○Ja ○ Nein

Inwieweit konnten Sie Ihre Ideen/Konzepte mit

dem Prototyp “Metis WebUI” ausdrücken?
Gar nicht ○ ○ ○ ○ ○ ○ ○ Vollkommen

War das Arbeiten mit dem Prototyp WebUI für

Sie im Gegensatz zum “klassischen” Arbeiten

mit Funktionsschemata (Papier / Stift) anders?

○Ja ○ Nein

War der Arbeitsablauf mit dem Prototyp

WebUI für Sie im Gegensatz zum “klassischen”

Arbeiten (Papier / Stift) anders?

Gar nicht ○ ○ ○ ○ ○ ○ ○ Vollkommen

Gefühlte Zeit bis die Darstellung Ihren

Vorstellungen entspricht.

Funktionsschemata

WebUI

Viel ○ ○ ○ ○ ○ ○ ○ Wenig

Viel ○ ○ ○ ○ ○ ○ ○ Wenig

Flexibilität bei der Anpassung der

Darstellung.

Funktionsschemata

WebUI

Gar nicht ○ ○ ○ ○ ○ ○ ○ Vollkommen

Gar nicht ○ ○ ○ ○ ○ ○ ○ Vollkommen

Wie ähnlich ist die Darstellung zu der

mentalen Vorstellung Ihres Konzeptes?

Funktionsschemata

WebUI

Gar nicht ○ ○ ○ ○ ○ ○ ○ Vollkommen

Gar nicht ○ ○ ○ ○ ○ ○ ○ Vollkommen

War etwas beim Arbeiten mit WebUI im

Vergleich zu der Arbeit mit Funktionsschemata

schlechter?

○Ja ○ Nein

Wenn ja, was?

Figure C.4.: Page 3 of the Original Questionaire for WebUI User Study Participants.

105

War etwas beim Arbeiten mit WebUI im

Vergleich zu der Arbeit mit Funktionsschemata

besser?

○Ja ○ Nein

Wenn ja, was? (max. 5 Auszählungen)

Benutzeroberfläche WebUI

Wie verständlich war die optische Gestaltung

(z.B. Bedeutung v. Symbolen, Schaltflächen,

Funktionen) von WebUI für Sie?

Verständlich ○ ○ ○ ○ ○ ○ ○ Unverständlich

Wie einfach oder schwierig war es für Sie,

WebUI zu bedienen?
Einfach ○ ○ ○ ○ ○ ○ ○ Schwierig

Wie bewerten Sie das Aussehen von WebUI? Unansehnlich ○ ○ ○ ○ ○ ○ ○ Ansehnlich

Wie körperlich anstrengend empfanden Sie die

Arbeit mit WebUI?
Gar nicht ○ ○ ○ ○ ○ ○ ○ Vollkommen

War für Sie die Arbeit mit Maus und Tastatur

hinderlich?
Gar nicht ○ ○ ○ ○ ○ ○ ○ Vollkommen

Akzeptanz

Inwieweit könnten Sie sich vorstellen, die

Benutzeroberfläche in frühen Planungsphasen

z.B. zum Zwecke der Konzeptionierung

einzusetzen?

 Gar nicht ○ ○ ○ ○ ○ ○ ○ Vollkommen

Welche Aspekte der Arbeitsweise genau

empfanden Sie als verbesserungswürdig? Wie

könnte eine solche Verbesserung aussehen?

Figure C.5.: Page 4 of the Original Questionaire for WebUI User Study Participants.

106

Fragen zur Person

Wie alt sind Sie?

Was studieren Sie (Fachrichtung, Abschluss)?

Im wievielten Semester befinden Sie sich?

Wie körperlich anstrengend empfinden Sie die

Arbeit mit klassischen Arbeitsweisen wie

Papier, Stift und Schere?

Gar nicht ○ ○ ○ ○ ○ ○ ○ Vollkommen

Welche anderen Probleme sehen Sie in der

Arbeit mit klassischen Arbeitsweisen wie

Papier, Stift und Schere?

Abgesehen von dem Experiment:

Haben Sie bereits Erfahrung mit

computergestützten Arbeitsweisen in der

Architektur?

○Ja ○ Nein

Figure C.6.: Page 5 of the Original Questionaire for WebUI User Study Participants.

107

D. Learning Curves of Creativity Engine
ANNs

Figure D.1.: Error on training set and validation set.

109

Figure D.2.: Error on training set and validation set.

Figure D.3.: Error on training set and validation set.

110

Figure D.4.: Error on training set and validation set.

Figure D.5.: Error on training set and validation set.

111

Figure D.6.: Error on training set and validation set.

Figure D.7.: Error on training set and validation set.

112

Figure D.8.: Error on training set and validation set.

Figure D.9.: Error on training set and validation set.

113

Bibliography

[1] Deutsches Forschungszentrum für Künstliche Intelligenz gGmbH.
https://www.dfki.de/web. Accessed: 2017-07-04.

[2] DFKI Archistant. http://www.dfki.uni-kl.de/archistant. Accessed: 2017-06-21.

[3] Firefox: Fast, private browser for desktop, iOS and Android.
https://www.mozilla.org/en-US/firefox/. Accessed: 2017-05-22.

[4] International Organization for Standardization. https://www.iso.org/. Accessed:
2017-07-11.

[5] ISO 19162:2015 - Geographic information – Well-known text representation of co-
ordinate reference systems. https://www.iso.org/standard/63094.html. Accessed:
2017-07-13.

[6] ISO/IEC 13249-3:2016 - Information technology – Database lan-
guages – SQL multimedia and application packages – Part 3: Spatial.
https://www.iso.org/standard/60343.html. Accessed: 2017-07-13.

[7] Ksd research group. http://ksd.ai.ar.tum.de/. Accessed: 2017-07-04.

[8] metis Wissensbasierte Such- und Abfragemethoden für die Erschließung von
Informationen in semantischen Modellen (BIM) für die Recherche in frühen En-
twurfsphasen. https://www.ar.tum.de/en/research-development/projects/metis-
wissensbasierte-such-und-abfragemethoden-fuer-die-erschliessung-von-
informationen-in-semantischen-modellen-bim-fuer-die-recherche-in-fruehen-
entwurfsphasen/. Accessed: 2017-07-04.

[9] Neuron - from wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Neuron&oldid=787323343. Accessed:
2017-07-16.

[10] Plotly. https://plot.ly/. Accessed: 2017-07-17.

[11] Filipe Afonso and Kirill Jedenov. Coding randomness: accepting unpredictability
in modular systems through the use of computation.

[12] Christopher Alexander. Notes on the Synthesis of Form, volume 5. Harvard Uni-
versity Press, 1964.

[13] Renzo Angles and Claudio Gutierrez. Survey of graph database models. ACM
Computing Surveys (CSUR), 40(1):1, 2008.

115

[14] Viktor Ayzenshtadt, Christoph Langenhan, Syed Saqib Bukhari, Klaus-Dieter Al-
thoff, Frank Petzold, and Andreas Dengel. Distributed domain model for the case-
based retrieval of architectural building designs. In Miltos Petridis, Thomas Roth-
Berghofer, and Nirmalie Wiratunga, editors, Proceedings of the 20th UK Work-
shop on Case-Based Reasoning. UK Workshop on Case-Based Reasoning (UKCBR-
2015), located at SGAI International Conference on Artificial Intelligence, Decem-
ber 15-17, Cambridge, United Kingdom. School of Computing, Engineering and
Mathematics, University of Brighton, UK, 2015.

[15] Viktor Ayzenshtadt, Christoph Langenhan, Syed Saqib Bukhari, Klaus-Dieter Al-
thoff, Frank Petzold, and Andreas Dengel. Thinking with containers: A multi-agent
retrieval approach for the case-based semantic search of architectural designs. In
Joaquim Filipe and Jaap van den Herik, editors, Proceedings of the 8th Interna-
tional Conference on Agents and Artificial Intelligence. International Conference
on Agents and Artificial Intelligence (ICAART-2016), February 24-26, Rome, Italy.
SCITEPRESS, 2016.

[16] Johannes Bayer, Syed Saqib Bukhari, Christoph Langenhan, Marcus Liwicki, Klaus-
Dieter Althoff, Frank Petzold, and Andreas Dengel. Migrating the classical pen-
and-paper based conceptual sketching of architecture plans towards computer tools-
prototype design and evaluation. In International Workshop on Graphics Recogni-
tion, pages 47–59. Springer, 2015.

[17] Suresh K Bhavnani and Bonnie E John. Exploring the unrealized potential of
computer-aided drafting. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 332–339. ACM, 1996.

[18] Ulrik Brandes, Markus Eiglsperger, Jürgen Lerner, and Christian Pich. Graph
markup language (graphml). Handbook of graph drawing and visualization,
20007:517–541, 2013.

[19] Thomas M Breuel. The ocropus open source ocr system. In Electronic Imaging
2008, pages 68150F–68150F. International Society for Optics and Photonics, 2008.

[20] Bill Buxton. Sketching user experiences: getting the design right and the right
design. Morgan Kaufmann, 2010.

[21] Reinhard Diestel. Graphentheory. Springer, 2000.

[22] JAVIER I ZARATIEGUI FERNANDEZ. INTELLIGENT DESIGN OBJECTS
APPLIED TO THE SPATIAL ALLOCATION PROBLEM. PhD thesis, MIDDLE
EAST TECHNICAL UNIVERSITY, 2014.

[23] Ian Fette. The websocket protocol. 2011.

[24] Erik Frøkjær, Morten Hertzum, and Kasper Hornbæk. Measuring usability: are
effectiveness, efficiency, and satisfaction really correlated? In Proceedings of the

116

SIGCHI conference on Human Factors in Computing Systems, pages 345–352.
ACM, 2000.

[25] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Con-
tinual prediction with lstm. Neural computation, 12(10):2451–2471, 2000.

[26] John D Gould and Clayton Lewis. Designing for usability: key principles and what
designers think. Communications of the ACM, 28(3):300–311, 1985.

[27] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

[28] Jiang Guo. Backpropagation through time. Unpubl. ms., Harbin Institute of Tech-
nology, 2013.

[29] Robert Hecht-Nielsen. Theory of the backpropagation neural network. In Neural
Networks, 1989. IJCNN., International Joint Conference on, pages 593–605. IEEE,
1989.

[30] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural
nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6(02):107–116, 1998.

[31] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

[32] Tao-Kuang Huang, Larry O Degelman, and Terry R Larsen. A visualization model
for computerized energy evaluation during the conceptual design stage (energraph).
1992.

[33] Timo Jokela, Netta Iivari, Juha Matero, and Minna Karukka. The standard of user-
centered design and the standard definition of usability: analyzing iso 13407 against
iso 9241-11. In Proceedings of the Latin American conference on Human-computer
interaction, pages 53–60. ACM, 2003.

[34] Olga Kulyk, Robert Kosara, Jaime Urquiza, and Ingo Wassink. Human-centered
aspects. Human-centered visualization environments, pages 13–75, 2007.

[35] Christoph Langenhan. Datenmanagement in der Architektur. Dissertation, Tech-
nische Universitt Mnchen, Mchen, 2017.

[36] Jia-Her Lee and Yu-Tung Liu. Modelling mondrian’s design processes and their
architectural associations using multilayer neural networks. 1998.

[37] Paul Merrell, Eric Schkufza, and Vladlen Koltun. Computer-generated residential
building layouts. In ACM Transactions on Graphics (TOG), volume 29, page 181.
ACM, 2010.

117

[38] Justin J Miller. Graph database applications and concepts with neo4j. In Proceed-
ings of the Southern Association for Information Systems Conference, Atlanta, GA,
USA, volume 2324, page 36, 2013.

[39] Lance A Miller and John C Thomas. Behavioral issues in the use of interactive
systems. International Journal of Man-Machine Studies, 9(5):509–536, 1977.

[40] Herbert Moelle. Rechnergestützte planungsprozesse der entwurfsphasen des ar-
chitekten auf basis semantischer modelle. 2006.

[41] Jakob Nielsen. Usability engineering. Elsevier, 1994.

[42] Thomas Dyhre Nielsen and Finn Verner Jensen. Bayesian networks and decision
graphs. Springer Science & Business Media, 2009.

[43] Siu-hang Or, Kin-Hong Wong, Ying-kin Yu, Michael Ming-yuan Chang, and
H Kong. Highly automatic approach to architectural floorplan image understanding
& model generation. Pattern Recognition, pages 25–32, 2005.

[44] John R Ragazzini and Lotfi A Zadeh. The analysis of sampled-data systems. Trans-
actions of the American Institute of Electrical Engineers, Part II: Applications and
Industry, 71(5):225–234, 1952.

[45] Jon D Reid. jQuery Mobile. O’Reilly Germany, 2011.

[46] Katharina Richter. Augmenting designers’ memory: case based reasoning in der
Architektur. Logos Verlag Berlin GmbH, 2011.

[47] Qamer Uddin Sabri, Johannes Bayer, Viktor Ayzenshtadt, Syed Saqib Bukhari,
Klaus-Dieter Althoff, and Andreas Dengel. Semantic pattern-based retrieval of
architectural floor plans with case-based and graph-based searching techniques and
their evaluation and visualization.

[48] Krystian Samp and Stefan Decker. Supporting menu design with radial layouts. In
Proceedings of the International Conference on Advanced Visual Interfaces, pages
155–162. ACM, 2010.

[49] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45(11):2673–2681, 1997.

[50] Brian Shackel. Usability-context, framework, definition, design and evaluation. Hu-
man factors for informatics usability, pages 21–37, 1991.

[51] Sidney L Smith and Jane N Mosier. Guidelines for designing user interface software.
Mitre Corporation Bedford, MA, 1986.

[52] Heather Williamson. XML: The complete reference. McGraw-Hill Professional,
2001.

118

