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Abstract— This paper presents a manifold based Unscented
Kalman Filter that applies a novel strategy for inertial, model-
aiding and Acoustic Doppler Current Profiler (ADCP) mea-
surement incorporation. The filter is capable of observing and
utilizing the Earth rotation for heading estimation with a
tactical grade IMU, and utilizes information from the vehicle
model during DVL drop outs. The drag and thrust model-aiding
accounts for the correlated nature of vehicle model parameter
error by applying them as states in the filter. ADCP-aiding
provides further information for the model-aiding in the case of
DVL bottom-lock loss. Additionally this work was implemented
using the MTK and ROCK framework in C++, and is capable
of running in real-time on computing available on the FlatFish
AUV. The IMU biases are estimated in a fully coupled approach
in the navigation filter. Heading convergence is shown on a
real-world data set. Further experiments show that the filter
is capable of consistent positioning, and data denial validates
the method for DVL dropouts due to very low or high altitude
scenarios.

I. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) have found
applications in a variety of underwater exploration and
monitoring tasks including high-resolution, geo-referenced
optical/acoustic ocean floor mapping and measurements of
water column properties such as currents, temperature and
salinity [17]. An advantage of AUVs over other methods of
ocean observation is the autonomy and decoupling from a
surface vessel that a self-contained robot provides.

The ability to geo-reference, or to compute the absolute
position in a global reference frame, is essential for AUVs
for the purposes of path planning for mission requirements,
registration with independently navigated information, or
revisiting a previous mission. Geo-referenced navigation is
often achieved by initializing the navigation solution to the
GPS while on the surface and, once submerged, relaying
on velocity measurements from a Doppler Velocity Log
(DVL). When the water depth is less than the range of the
DVL (a 300kHz DVL has a range of ∼200m), the DVL
has continuous bottom lock throughout the mission. The
DVL sensor provides measurements of the seafloor relative
velocity of the AUV. By combining this information with an
appropriate heading reference, the observations are placed
in the global reference frame and integrated to facilitate
underwater dead reckoning. The result is accuracies of 22m
per hour (2σ) in position error growth attainable during
diving and 8m per hour error growth (2σ) is possible if cou-
pled with a navigation-grade (>$100K) Inertial Measurement
Unit (IMU) [13].
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Fig. 1. The FlatFish AUV [2] during sea trails. Image: Jan Albiez, SENAI
CIMATEC

In cases where the seafloor depth is greater than the
DVL bottom lock range, transitioning from the surface to
the seafloor presents a localization problem [7], since both
GPS and DVL are unavailable in the mid-water column.
Traditional solutions include range-limited Long Base Line
(LBL) acoustic networks requiring deployment, Ultra Short
Base Line (USBL) navigation requiring a dedicated ship, or
single range navigation from an acoustic beacon attached to
a ship [16] or an autonomous surface vehicle (ASV) [9].
In addition to requiring dedicated infrastructure, acoustic
positioning also suffers from multipath returns and the need
to accurately measure the sound speed profile through the
water column. Acoustic methods typically give O(10m)
accuracy at 1km ranges [8] [10].

IMUs provide a strap down navigation capability through
providing body accelerations and rotation rates without exter-
nal aiding such as GPS, acoustic ranging, or DVL velocities.
However, IMUs quickly accumulate position errors, with an
unaided tactical grade IMU (>$10K) drifting at ∼100km per
hour, and a navigation grade IMU drifting at ∼1km per hour
[14]. There also exists cases where DVL bottom-lock is not
possible, when the altitude is very low, such as in inspection
or docking scenarios.

In [5], a model-aiding Inertial Navigation System (INS) is
applied with water-track from the DVL. Comparatively, the
novel contributions of the work presented in this paper are
as follows:

1) Utilizing and validating through experiment a man-
ifold based Unscented Kalman Filter (UKF) which
can observe and utilize the Earth rotation for heading
estimation,



2) Incorporating and validating a novel drag and thrust
model-based aiding, which accounts for the system-
atic uncertainty in vehicle parameters by incorporating
them as states in the UKF and

3) Incorporating and validating the use of ADCP mea-
surements in a novel form to further aid the estimation
in cases of DVL bottom-lock loss.

IMUs with low gyro bias uncertainty allow gyrocompass-
ing by measuring the Earth rotation to estimate heading. The
price range for navigation grade IMUs (as used in [5]) with a
low bias uncertainty are typically in the >$100K USD price
range. In this paper, the KVH1750 IMU, in the >$10K USD
price range, is utilized. In order for this price range IMU
to be utilized, the biases are estimated in a fully coupled
approach in the navigation filter. Real-world experiments
with the FlatFish AUV (Fig. 1) show that less than 1◦

(2σ) heading uncertainty is possible in the filter following
an initialization within 15◦ of the true heading (possible
from a magnetic sensor). Further experiments also show
that the filter is capable of consistent positioning, and data
denial validates the method for DVL dropouts due to very
low or high altitude scenarios. Additionally this work was
implemented using the MTK [6] and ROCK [1] framework
in C++1, and is capable of running in real-time on computing
available on the FlatFish AUV.

The work in this paper utilizes vehicle model-based aiding
and the ADCP sensor for further ocean water current and
vehicle velocity constraints. Model-aiding allows physics
based constraints on the positioning, and the uncertainty in
each parameter can be set to account for the systematic
error associated with a system identification. Thus even a
low accuracy system identification can still be used with this
filter without resulting in filter overconfidence. Additionally,
by modeling the vehicle parameters as time-varying, the
model itself has become uncertain, as any small deviations in
dynamics from the modeling equations can be absorbed by
the time-varying parameters. ADCP-aiding in cases where
DVL dropout would occur, due to being higher altitude than
the bottom-lock range, also can aid the model by providing
independent vehicle velocity constraints. ADCP also gives
information regarding the surrounding water currents when
there is a DVL dropout and the vehicle state estimation
relies more on model-aiding. Generally, inertial navigation
is achieved using error-state filtering [5], but this is not
necessary as is shown in this paper. This paper gives a
more conceptually simplified approach, while also utilizing
manifold methods [3] to represent attitude, which is more
general than other methods.

II. MODEL-AIDED INERTIAL FILTER DESIGN

Our filter design is conceptually simple, since we model
all modalities in one filter and model the attitude of the
vehicle as a manifold. We utilize an Unscented Kalman Filter
(UKF) since it doesn’t require the Jacobians of the process

1The implementation is under open source license available on https:
//github.com/rock-slam/slam-uwv_kalman_filters

or measurement models and can handle non-linearities better
than an Extended Kalman Filter [15].

The attitude of the vehicle is an element of SO(3),
the group of orientations in R3. To directly estimate the
attitude in the filter it can be either modeled by a minimal
parametrization (Euler angles) or by a over-parametrization
(quaternion or rotation matrix). A minimal parametriza-
tion has singularities, i.e. small changes in the state space
might require large changes in the parameters. An over-
parametrization has redundant parameters and needs to be
re-normalized as required. In both cases it requires special
treatment in the filter, which leads to a conceptually more
complex filter design. Representing the attitude as a manifold
is a more general solution in which the filter operates on a
locally mapped neighborhood of SO(3) in R3 [6].

TABLE I
FILTER STATE

Elements of
the state vector Description

pn ∈ R3 Position of the IMU in the navigation frame
φn ∈ R3 Attitude of the IMU in the navigation frame
vn ∈ R3 Velocity of the IMU in the navigation frame
an ∈ R3 Acceleration of the IMU in the navigation frame
Msub ∈ R2×3 Inertia sub-matrix of the motion model
Dl,sub ∈ R2×3 Linear damping sub-matrix of the motion model
Dq,sub ∈ R2×3 Quadratic damping sub-matrix of the motion model

vn
c,v ∈ R2 Water current velocity surrounding

the vehicle in navigation frame

vn
c,b ∈ R2 Water current velocity below the

vehicle in navigation frame
gn ∈ R Gravity in the navigation frame
bω ∈ R3 Gyroscope bias
ba ∈ R3 Accelerometer bias
bc ∈ R2 Bias in the ADCP measurements

Table I shows the state vector of the filter as element of
R43 and gives a detailed description of the higher dimen-
sional elements of the state vector. The navigation frame is
North-East-Down (NED). The body and IMU frames are x-
axis pointing forward, y-axis pointing left and z-axis pointing
up. In the filter design we consider the IMU frame not to be
rotated with respect to the body frame.

A. Inertial prediction equations

The following equations describe the prediction models
for position, velocity, acceleration and attitude, applying a
constant acceleration model for translation and a constant
angular velocity model for rotation:

pn
t = pn

t−1 + vn
t−1δt (1)

vn
t = vn

t−1 + an
t−1δt (2)

an
t = an

t−1 (3)

φn
t = φn

t−1 � [Cn
b,t−1(ω

b
t−1 − bω,t−1)−Ωn

e δt] (4)

where pn
t is the position of the IMU in the navigation

frame at time t, vn
t is the velocity of the IMU in the

navigation frame, an
t is the acceleration of the IMU in the

navigation frame, Cn
b,t is the coordinate transformation from



body to navigation frame, φn
t is the attitude of the IMU in the

navigation frame, ωb
t is the rotation rates in the body frame,

bω,t is the gyroscope bias and Ωn
e is the Earth rotation in

the navigation frame. The � operator in (4) is a manifold
based addition, as defined in [6]. Equations (1) to (4) each
have corresponding prediction noise added.

The accelerometer measurements are handled with an
update equation on the acceleration state as follows:

za(t) = f bt + ba,t + Cn
b,tg

n
t + νa (5)

where f bt is the specific force acting on the vehicle at time
t, ba,t is the accelerometer bias and gn

t is the gravity vector[
0, 0, gnt

]T
in the navigation frame. The gravity state is

modeled applying a constant gravity model in order to refine
the theoretical gravity according to the WGS-84 ellipsoid
earth model starting with a small initial uncertainty. The
acceleration state in the filter allows both the accelerometer
and model-aiding to act on the filter in a consistent fashion,
without resorting to virtual correlation terms when an accel-
eration state does not exist, such as in [5]. Accelerometer and
gyro bias terms are modeled as a first order Markov process
as follows:

ḃ = − 1

τb
(b− b0) + νb (6)

where τb is the expected rate change of the bias, b0 is the
mean bias value, and νb is a zero-mean normally distributed
random variable with

σb =

√
2fσ2

b drift

τb
(7)

where σb drift is a bound to the bias drift and f is the
measurement frequency. The accelerometer and gyro bias are
assumed to be zero mean.

B. Model-aiding update equations

In this section we show a model-aiding measurement
function using a simplified vehicle motion model for which
a subset of the parameter space is part of the filter state.
This allows the filter to refine the parameters at runtime
and to account for the systematic uncertainty in the vehicle
parameters.

The nonlinear equations for motion [4] of a rigid body
with 6 DOF can be written as

τ = Mν̇ + C(ν)ν + D(ν)ν + g(Rn
b ) (8)

where τ is the vector of forces and torques, ν is the vector
of linear and angular velocities, M is the inertia matrix
including added mass, C(ν) is the Coriolis and centripetal
matrix, D(ν) is the hydrodynamic damping matrix and
g(Rn

b ) is the vector of gravitational forces and moments
given the rotation matrix from the body to the navigation
frame Rn

b .

g(R) =

[
R−1k̂(W −B)

rG ×R−1k̂W − rB ×R−1k̂B

]
(9)

Equation (9) shows how the gravitational forces and mo-
ments are calculated given the weight W , buoyancy B, center
of gravity rG and center of buoyancy rB of the vehicle,
where k̂ is the unit vector

[
0, 0, 1

]T
.

We assume the Coriolis and centripetal forces as well as
damping terms higher than second order are negligible for
vehicles operating within lower speeds (typically below 1.5
m/s). This allows us the define the measurement function for
the forces and torques in the body frame from (8) as

zτ (t) = Mt

[
ab
t

αb
t

]
+ D(

[
vb
t

ωb
t

]
, t) + g(Rn

b,t) + ντ (10)

where ab
t is the linear acceleration, αb

t is the angular ac-
celeration, vb

t is the linear velocity and ωb
t is the angular

velocity, all expressed in the body-fixed frame at time t. ντ
is the random noise of the force and torque measurement,
with a standard deviation given by the thruster manufacturer.

ab
t can be computed given the acceleration in the naviga-

tion frame an
t as

ab
t = Cb

n,ta
n
t − ωb

t × (ωb
t × pb) (11)

where Cb
n,t is the coordinate transformation matrix from

navigation to body frame at time t and pb is the position
of the IMU in the body frame.

vb
t can be computed given the velocity in the navigation

frame vn
t as

vb
t = Cb

n,t(v
n
t − vn

c,v,t)− ωb
t × pb (12)

where vn
c,v,t is the water current velocity surrounding the

vehicle at time t.
Equation (13) shows how the damping is defined given

the linear and angular velocities at time t.

D(νt, t) = Dl,t · νt + |νt|T ·Dq,t · νt (13)

The linear damping matrix Dl,t, the quadratic damping
matrix Dq,t and the inertia matrix Mt are time dependent,
since for all of them a sub matrix is part of the filter state.
The filter states Dl,sub,t, Dq,sub,t, Msub,t ∈ R2×3 are defined
by removing the rows 3 to 6 and columns 3 to 5 from
the full damping and inertia matrices Dl, Dq , M ∈ R6×6.
In other words we model the x, xy, xψ, yx, y, yψ terms of
the matrices in the filter, where ψ is the yaw. Because we
expect them to have the major impact with respect to the
horizontal accelerations and velocities, in case of an AUV
keeping roll and pitch stable. It would be easy to extended
the filter states and add more model terms, however it is a
trade-off between the additional benefit, the computational
complexity and potential filtering instability.

The damping and inertia state prediction models have a
base time varying component, with a timescale of around
one hour, modeled as in (6). The vehicle parameters are
initialized using a prior system identification, with the means
of the states set at these values in the first order Markov
process equation. Since the vehicle parameters are states in
the filter, the systematic uncertainty in their error can be
accounted for, which acts like a bias rather than a noise.



This allows even a low accuracy system identification, or
very crude estimates of the parameter values, to still allow
estimation without resulting in overconfidence, due to the
bias error having a stronger and different effect to simply
increasing the uncertainty in the vehicle model noise. This
also allows the vehicle modeling to adapt to different sce-
narios, such as surfacing or changes to the vehicle following
the system identification, while constraining their value range
by utilizing the first order Markov process model. Although
these parameters could have been modeled as a constant, by
allowing the parameters to have a time-varying component
it acts as a way to implement “model uncertainty”. In this
way, the robustness of the filter improves as we no longer
fully trust our model to be a perfect representation of the true
dynamics, which is most definitely the case with applying a
simplified and computationally tractable model for real-time
usage to the real-world.

C. ADCP-aiding update equations

Given the 3D velocities output from the ADCP, the obser-
vation function for each ADCP measurement is

zc,i(t) = Cb
n,t(−vn

t +
dmax − di
dmax

vn
c,v,t+

di
dmax

vnc,b,t)+ba,t+νa

(14)
where zc,i is the ADCP measured current vector in the

ith measurement cell, Cb
n,t is the coordinate transform from

navigation/world frame to ADCP/body frame at time t, vnt is
the vehicle velocity in the world/navigation frame, vnc,v,t is
the water current velocity surrounding the vehicle, vn

c,b,t is
the water current velocity at the maximum ADCP range, ba,t

is the bias in the ADCP measurement and νa is the random
noise in the ADCP measurement, with a standard deviation
given by the sensor manufacturer.

To reduce the state number of the filter, the vertical
velocity of the water currents are not estimated. The ADCP
measurement model is a depth dependent function with two
water current states, which linearly interpolates between
them. The states are located at the vehicle position, and at a
water volume at end of the ADCP measurement range. The
water velocity and the ADCP bias state prediction models
have a base time varying component, with a timescale of
around one hour for the water current and half an hour for
the bias, modeled as in (6). In addition to this, the water
velocity state will vary more given spatial motion through a
water current vector field. This component scales the process
model uncertainty of the water velocity state according to the
vehicle velocity. In this way, if the vehicle is slowly traveling
through the water current vector field, it can account for
the spatial scale of the water currents, which can depend on
the environment. For example, water currents near complex
bathymetry or strong wind and tides can contribute to smaller
spatial scale water current velocity changes, compared to the
case of the mid-water ocean [11].

III. RESULTS

All the experiments have been made using the FlatFish
AUV [2] shown in Fig. 1. As relevant sensors for our

experiments, the vehicle is equipped with a KVH 1750
IMU, a Rowe SeaProfiler DualFrequency 300/1200 kHz
ADCP/DVL, a Paroscientific 8CDP700-I pressure sensor, a
u-blox PAM-7Q GPS receiver and six 60N Enitech ring
thrusters. For heading evaluation purposes we also use a
Tritech Gemini 720i Multibeam Imaging Sonar attached to
the AUV. The data sets have been collected during the sea
trails of the second phase of the FlatFish project close to the
shore of Salvador (Brazil) during April 2017.

Since the experiments took place in the open ocean
in all data sets, a fiber optic tether was attached to the
vehicle for safety reasons. As a result, even though the
vehicle model parameters were estimated with a prior system
identification, there would be a large error associated with
the model given the tether, so there is ∼20% uncertainty
in the parameter values. Nonetheless, the filter is robustly
capable of accounting for this increase in the uncertainty
of the vehicle model parameters. This allows the filter to
adaptively change the parameters while keeping them in a
constrained range through the use of the first order Markov
process model. The filter is capable of running in 14× real-
time with an integration frequency of 100 Hz on computing
available on the FlatFish AUV.

A. Heading estimation experiment

In this data set we show that the filter is able to find its
true heading without a global positioning reference, given
an initial guess. The mission consists of a initialization
phase on the surface followed by a submerged phase be-
fore resurfacing. During the initialization phase the vehicle
moves for around 8 minutes on a straight line in order to
estimate its true heading and position by incorporating GPS
measurements. In the submerged phase the vehicle changes
its heading to face the target coordinate and follows a straight
line for about 112 meters to reach it.
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Fig. 2. The plots show the estimated heading during the mission given
different filter configurations and initial headings distributed over 30◦. The
green crosses show independent land mark based heading measurements.
200 seconds in the mission the heading offset was corrected resulting in the
short change of attitude.

Fig. 2 shows six runs of the same data set in different filter
configurations. Three GPS-aided runs with a different initial



heading distributed over 30◦, one with a close initial guess
(black line), one with a 15◦ positive offset (cyan line) and
one with a 15◦ negative offset (blue line). Due to the help
of the GPS measurements the estimated headings converge
in the first 5 minutes. The three runs not integrating a global
position reference starting with the same heading distribution
show that the filter is able to find its true heading by observ-
ing the rotation of the earth (gyro compassing), relying only
on Inertial and velocities. After 15 minutes the GPS-aided
and the non-GPS-aided estimated headings have converged
with an uncertainty below 0.5◦ (1σ). Initial errors >15◦

will converge as well given more time. Critical however are
initial errors close to 180◦. The green crosses show multiple
independent measurements of the expected vehicle heading
based on landmarks (poles) visible in the multibeam imaging
sonar on the vehicle. The average difference between the
landmark based headings to the filter estimates is below 1◦.
We expect the uncertainties of these measurements to be
within 5◦ due to the uncertainties associated with the pole
positions in surveyed maps and in the sonar images.
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Fig. 3. The blue solid line is the error in heading with integrated
GPS measurements. The red solid line is the error in heading without the
integration of GPS measurements. The dashed lines are the corresponding
uncertainties (1σ).

Using the GPS-aided heading with a close initial guess
shown in Fig. 2 (black solid line) as ground truth, we can
have a closer look in Fig. 3 on the uncertainties and how
the estimates improve. In Fig. 3 both filter configurations
start with an offset of -15◦ to the ground truth and an initial
uncertainty of 30◦ (1σ). The GPS-aided heading estimate
converges, as expected, quickly to the ground truth while
staying in the 1σ bound. For the heading estimate without
global positioning reference we can see that the strong offset
and high uncertainty in the beginning leads to a fast com-
pensation in the correct direction with an overshot slightly
exceeding the 1σ bound. As the experiment progresses we
can see that observing different orientations helps to estimate
the gyroscope bias and therefore helps to detect the error
between the expected rotation of the earth given the current
orientation. We have shown that our filter is able to estimate
its true heading by observing the rotation of the earth and
that observations from different attitudes help to improve the

process.

B. Repeated square path experiment

In this experiment we show how the filter performs when
the vehicle travels a longer distance of 1 km without horizon-
tal position aiding measurements, such as GPS. The vehicle
was following a 5 times repeated square trajectory with an
edge length of 50 meter for ∼1 hour. After resurfacing, the
position difference to the GPS ground truth is within 0.5%
of the traveled distance.

Starting with an initialization phase (same as in III-A)
on the surface, to estimate its heading and position using
GPS measurements, the vehicle submerges to 10 m depth,
performs the mission and surfaces at the end. The blue line in
Fig. 4 shows the trajectory of the vehicle from minute 20 to
minute 80 in the mission, i.e. 1 minute before submerging
and 2 minutes after surfacing. The red dots are the GPS
measurements including outliers.

Fig. 4. The blue solid line shows the trajectory of the vehicle performing
5 times a 50 meter square trajectory in a depth of 10 meter. After traveling
the distance of 1 km the horizontal (North/East plane) position difference
is withing 5 meter (0.5% of distance traveled).

The pose filter used on the vehicle at the time the data set
was created was not aware of the drift and the initial error
in heading. Our filter can correct the heading by observing
the rotation of the earth and compensate for DVL dropouts
utilizing the motion model. However during the mission a
fiber optic tether was attached to the vehicle which represents
an unmodeled source of error.

The blue line in Fig. 5 shows the position difference on the
North/East plane with respect to the GPS measurements (in-
cluding outliers). During the first 20 minutes of the mission
the GPS measurements are integrated in the filter allowing
initialization. After resurfacing (minute 78 and onward) the
GPS measurements are not integrated allowing us to observe
the difference to the ground truth. After traveling a distance



0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

Time (min)

H
o
ri
z
o
n
ta

l 
p
o
s
it
io

n
 u

n
c
e
rt

a
in

ty
 a

n
d
 d

if
fe

re
n
c
e
 f
ro

m
 g

ro
u
n
d
 t
ru

th
 (

m
)

 

 

Horizontal position difference from ground truth

1σ position uncertainty

2σ position uncertainty

Fig. 5. The blue solid line shows the horizontal (North/East plane) position
difference with respect to the GPS measurements (including outliers). The
red and magenta dashed lines represent the corresponding uncertainty (1σ
and 2σ).

of 1 km the position difference is withing 5 meter (0.5%
of distance traveled) and in the 2σ bound of the position
uncertainty.
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Fig. 6. Estimated water current in north (red) and east (blue) direction.
The dashed lines represent the corresponding uncertainties (2σ).

In the case that ADCP measurements are not available the
filter will estimate the water currents only by the difference
between the motion model based velocity and the DVL based
velocity, as modeled in (12). Fig. 6 shows the estimated
water current velocities in North and East direction during
this experiment without the aiding of ADCP measurements.
During the first 20 minutes the uncertainties of the water
current velocities stay constant, since we apply the model-
aiding measurements with an increased uncertainty in case
the vehicle is surfaced. When the mission starts and the
vehicle submerges (starting around minute 21) to a depth of
10 meters we can see that the estimated water flow changes
to the one on the surface and that its velocity continuously
increases during the 1 hour mission. The uncertainties reduce
during this phase since we trust the model more when
submerged. The impact of the tether attached to the vehicle
is seen as an unmodeled but estimated drag, which changes
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Fig. 7. Linear damping in x (red) and y (blue) direction in the body frame.
The dashed lines represent the corresponding uncertainties (2σ).

depending on the direction the vehicle travels.
Fig. 7 shows the linear damping terms on the x and

y-axis in the body frame of the vehicle and how they
are refined during the mission. Because the vehicle travels
during the mission mainly in the forward direction, the
damping term on the x-axis is refined and the corresponding
uncertainty reduces more compared to the y-axis damping
term. The uncertainty reduction reaches a limit however due
to observability, and the first order Markov process model
ensures that the parameters become neither overconfident nor
unconstrained. In this way, the model parameters can adapt
with time to new conditions and implicitly represents some
uncertainty in the model equations themselves.

C. Square path with ADCP
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Fig. 8. The solid blue line shows the trajectory of the vehicle performing
a square path in a depth of 2 meter while surfacing in each corner.

This mission undergoes a 600 second initialization phase
on the surface (as in III-A), then 1000 seconds of data denial
to show the performance of the filter in different scenarios.
During the data denial phase, the vehicle completes a square
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Fig. 9. Square path with ADCP - The position uncertainties and differences from the ground truth are compared for different data denials.

TABLE II
FILTER POSITION DIFFERENCE FROM GROUND TRUTH AND ESTIMATED

UNCERTAINTY

Filter measurements used Estimated uncertainty
after 1000 seconds

Position difference
from ground truth
after 1000 seconds

Inertial + ADCP 50.9 m (2σ) 22.0 m
Inertial + model 45.7 m (2σ) 21.5 m
Inertial + model + ADCP 32.3 m (2σ) 16.1 m

trajectory, and surfaces at the corners. The ground truth
trajectory is shown in Fig. 8. The ground truth is determined
using Inertial, DVL, GPS, ADCP and model-aiding.

Since this mission also includes ADCP measurements
interleaved with DVL, the ADCP-aiding update is applied.
During this mission, there are cases where the downward
facing DVL drops out due to very low altitude (between
0-2m during the mission), and there is collision with the
sandy bottom. Despite this challenging data set, the filter is
capable of estimating the position of the vehicle, validated by
the smooth trajectory without sudden corrections at the GPS
measurements during the corner surfacing shown in Fig. 8.

With the full measurement filter (without data denial), the
filter is able to handle DVL drop outs, which could be the
case in low-altitude scenarios such as inspection or docking,
by letting the model-aiding fill in during these time periods.
Data denial further validates the filter performance in DVL
loss scenarios, as shown in Fig. 9. In cases of DVL bottom-
lock loss due to altitude being too high (simulated through
data-denial), the ADCP and model-aiding combined gives
the best solution, compared to either ADCP or model-aiding
alone.

The position estimate differences compared to the ground
truth for these data denials are consistent with the 2σ un-

certainty bounds, while remaining stable. At approximately
400 seconds following data denial, the filter with only ADCP
and inertial measurements appears to slightly exceed the
2σ bounds, due to a low altitude section with very little
valid ADCP measurements, and some ADCP outliers are
incorporated into the filter since the innovation gate increases
due to inertial-only dead-reckoning. The ground truth also
increases in uncertainty at this stage due to the lack of DVL
measurements, relying more on the model-aiding. Following
further measurements, the filter recovers and is able to reduce
the difference between the filter estimate and the ground
truth. This is possible since the water current estimate will
not vary significantly in this timescale, so that the vehicle can
use this state when there are ADCP measurements available
again to estimate the velocity and thus position of the vehicle.

The ADCP-aiding typically performed worse in this case
than the model-aiding, but this can be attributed to low
altitude where there are very few valid ADCP measurements
available. Nonetheless, incorporating these ADCP measure-
ments into the model-aiding improved on the performance
of either option. In addition to another source of velocity-
aiding information from the ADCP, it also allows an inde-
pendent source of information regarding the water currents
surrounding the vehicle, which is required to transform the
water relative velocity of the vehicle model to the navigation
frame position used in the filter.

The results are further quantitatively compared in Table
II. The combination of the ADCP-aiding and model-aiding
results in a significant improvement compared to model-
aiding alone, reducing position uncertainty from 45.7m (2σ)
to 32.3m (2σ) during 1000 seconds of data denial.

IV. CONCLUSIONS

The filter designed and implemented in this paper would
be appropriate for general AUV navigation, despite not using



a navigation grade IMU. In comparison to [5], the primary
insight to the design of this filter is the incorporation of the
acceleration state, and adding many parameters as states to
account for their correlated error, while modeling with a first
order Markov process to constrain the change the filter can
apply. The engineering design trade-off is that adding too
many states will unnecessarily add computational complexity
and potential filtering instability.

This furthers the state-of-the-art for robust filter design
for INS, model-aiding and ADCP measurements, capable of
real-time performance, consistency and stability as outlined
in the experiments, while remaining conceptually simple.
This paper has shown a manifold based UKF that applies
a novel strategy for inertial, model-aiding and ADCP mea-
surement incorporation. The filter is capable of observing
and utilizing the Earth rotation for heading estimation to
within 1◦ (2σ) by estimating the KVH 1750 IMU biases.
The drag and thrust model-aiding accounts for the correlated
nature of vehicle model parameter error by applying them as
states in the filter. The usage of the model-aiding is validated
through observing that the filter remains consistent and
does not become overconfident or unstable in the real-world
experiments, despite uncertain vehicle model parameters.

It is hypothesized that the usage of time varying first
order Markov processes to model these parameters act as
a way to implement “model uncertainty”, improving the
robustness of the filter as we no longer fully trust our
model to be a perfect representation of the true dynamics,
which is most definitely the case with applying simplified
and computationally tractable model for real-time usage to
the real-world. ADCP-aiding provides further information
for the model-aiding in the case of DVL bottom-lock loss.
The importance of water current estimation is highlighted
in underwater navigation in the absence of external aiding,
justifying the use of the model-aiding and ADCP sensor.
Through data denial, scenarios with no DVL bottom lock are
shown to be consistently estimated. Additionally this work
was implemented using the MTK and ROCK framework
in C++, and is capable of running in 14× real-time on
computing available on the FlatFish AUV.

Future work would include full spatiotemporal real-time
ADCP based methods to more accurately model and observe
the water current state around vehicle. This requires imple-
menting a mapping approach, such as the work from [12]
[11]. The primary source of bias uncertainty for the KVH
1750 IMU is due to temperature change. If the temperature
of the IMU can be controlled, or this bias can be calibrated
with further experiments, then the performance can be further
improved. Further heading evaluation will be possible with
better ground truth, such as a visual confirmation or by
utilizing an independent heading estimator such as an iXblue
PHINS, so that a more accurate heading comparison can be
undertaken. The error in alignments of sensors could also be
further compensated, perhaps by adding states to the filter
similar to the strategy for other systematic biases. Finally,
further experiments and implementations in a variety of
scenarios are planned to further test and refine the proposed

filtering strategy.
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