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Abstract 
A particular strength of case-based reasoning (CBR) over most other methods is its inherent combination of 
problem solving with sustained learning through problem solving experience. This is therefore a particularly 
important topic of study, and an issue that has now become mature enough to be addressed in a more 
systematic way. To enable such an analysis of problem solving and learning, we have initiated work 
towards the development of an analytic framework for studying CBR methods. It provides an explicit 
ontology of basic CBR task types, domain characterisations, and types of problem solving and learning 
methods. Further, it incorporates within this framework a methodology for combining a knowledge-level, 
top-down analysis with a bottom-up, case-driven one. In this article, we present the underlying view and 
the basic approach being taken, the main components of the framework and accompanying methodology, 
examples of studies recently done and how they relate to the framework. 

1. Introduction 
Over the last few years substantial progress has been made within the case-based reasoning (CBR) field. 
The problems we are facing have become more clearly identified, research results have led to improved 
methods for case retrieval as well as improved approaches to the harder problems of adaptation and 
learning (see, e.g., the collection of recent papers in ICCBR-95: Veloso & Aamodt, 1995). In the course 
of this development it has also become clear that a particular strength of CBR over most other methods is 
its inherent combination of problem solving with sustained learning through problem solving experience. 
This is therefore a particularly important topic of study, and an issue that has now become mature enough 
to be addressed in a more systematic way. To enable such an analysis of problem solving and learning, a 
unified framework for describing, analysing, and comparing various types and aspects of CBR methods is 
needed.  

Integration of learning and problem solving may in general start out from different goals, and be viewed 
from different perspectives. One example is „concept formation“ as a goal, and the formation and utilisation 
of operationalisation criteria related to the problem solving task, as the perspective. Another example is 
„improved performance“ as a goal, and the improvement of total problem solving speed - for computer 
and human together - as the perspective. A third example is „sustained learning“, i.e. continuous learning 
through problem solving experience, as a goal, and the impact of the application problem task on the 



learning method as a perspective. Many more examples may be given, and for each of them a particular 
area of overlap, an „intersection space“ between machine learning (ML) and problem solving (PS) 
methods can be identified. Within this space, dependencies and other relations between specific ML and 
PS methods may be described and analysed in a systematic way, provided we have a suitable means to 
structure the space. 

We have initiated work towards the development of a framework and a methodology which defines and 
makes use of such a structure. Since we are studying CBR methods, the natural focus is on the third of the 
above goals: Sustained and (continuous) learning from each problem solving experience as a natural part of 
a problem solver's behaviour. Within a broader perspective of integrated learning and problem solving, it is 
also natural to start a study of learning as close as possible to the source of learning, namely a concrete 
experience. Our work is related to some earlier suggestions for analytic CBR frameworks, such as the 
similarity-focused framework by Richter and Wess (Richter, Wess, 1991), Althoff's analysis of systems for 
technical diagnosis (Althoff, 1992), Aamodt's comparison of knowledge-intensive CBR methods (Aamodt, 
1991), Armengol's and Plaza's analysis of CBR system architectures (Armengol & Plaza,1993), and the 
INRECA framework for systems comparison and evaluation (Auriol et. al, 1995). The framework we are 
developing extends these previous suggestions in several respects. It provides an explicit ontology of basic 
CBR task types, domain characterisations, and types of problem solving and learning methods. Further, it 
incorporates within this framework a methodology for combining a knowledge-level, top-down analysis 
with a bottom-up, case-driven one. In this article, we present the underlying view and the basic approach 
being taken, the main components of the framework and accompanying methodology, and examples of 
studies recently done and how they relate to the framework. 

2. Basic approach 
2.1. Knowledge-level analysis 

A potentially useful way to describe problem solving and learning behaviour is in terms of the goals to be 
achieved, the tasks that need to be solved, the methods that will accomplish those tasks, and the 
knowledge of the application domain that those methods need. A description of a system along these 
lines is often referred to as a knowledge level description, and more recent research in knowledge 
acquisition (e.g. Steels, 1990; Wielinga, Van de Velde et al., 1993) has clearly demonstrated the usability 
of this approach. The original knowledge-level idea has undergone some modifications over the years, from 
Newell's highly intentional, purpose-oriented way of describing a system (Newell, 1982), to a more 
structured and usable type of description. An incorporation of the CBR perspective into knowledge-level 
modelling is discussed in Aamodt (1995). 

Adopting a knowledge-level perspective to the analysis of integrated PS-ML systems enables the 
description of methods and systems both from a general (intensional) and case-specific (extensional) 
perspective. A general description relates a method to descriptive terms and relationships within a general 
model of descriptive concepts - i.e. an ontology of task types, domain characteristics, and method types. 
Through a case-driven description, methods can be understood by relating them to already known 
methods within already described/implemented systems (e.g., CBR is combined with rule- and model-
based reasoning in the same way as in CREEK (Aamodt, 1994); a decision tree is generated as in INRECA 
(Manago, Althoff et al., 1993); the similarity measure is adapted as in PATDEX (Wess, 1993); partial 
determination rules are generated and used like the so called „shortcut rules“ in MOLTKE (Althoff 1992); 
etc.). After having developed/described a certain number of systems, we will be able to select/instantiate a 
system description at the knowledge level by a combined use of general and case-specific descriptors. 
What we are aiming at is an effective combination of top-down and bottom-up analysis and modelling 
methods, based on an integration of these two perspectives. 



From an engineering point of view, this will enable a particular symbol-level architecture to be chosen, 
and/or a chosen architecture to be instantiated, based on a thorough understanding of the real world 
application task and its domain characteristics. However, a knowledge-level description in itself will not 
provide a language detailed enough to describe or analyse system designs, or to arrive at a symbol-level 
architecture specification. Our approach therefore incorporates a focusing perspective and an analytic 
„tool“ to help in the more detailed description that guides the architectural specification based on a 
knowledge-level model. 

2.2. Similarity  as a  focusing mechanism 

The focus provided by this mechanism leads to a view of - in principle - all CBR methods as operations 
related to similarity, in one sense or another. That is, problem solving can be described as a process of 
initial assessment of similarity (case retrieval) followed by a more deliberate assessment of similarity (case 
adaptation), and learning (case extraction, case indexing, and possibly updates of general knowledge) can 
be described by relating it to later similarity assessment - i.e. to a pragmatic learning goal. Along with 
Richter and Wess (1991) we view similarity as an a posteriori criterion, and any attempt to assess 
similarity before a retrieved case has been found useful will only result in a hypothesised similarity 
assessment. Our retrieval methods should of course try to minimise the difference between the 
hypothesised similarity measure and the actual similarity determined after the attempt has been made to use 
the case. A way to describe the role of general domain knowledge, for example, is then as a means to re-
duce this uncertainty of the initial similarity assessment with respect to the final similarity assessment made 
after having evaluated the success of the (possibly modified) case in finding a solution to the input problem. 

2.3. Tasks and domain characterisations 

The types of application domains we address cover a wide spectrum, ranging from strong-theory domains 
with rather well-defined relationships between domain concepts (e.g., diagnosis of purely technical 
systems), to weak-theory and open domains with uncertain domain relationships (e.g., medical diagnosis). 
This is an important feature of the framework, since we particularly want to relate characteristics of the task 
(the what-to-do) and the knowledge on which performance of the task is based, to the methods (how-to-
dos) that enable the problem solver to accomplish the task by use of the knowledge. The starting point is 
always the real world setting in which the system is to operate. Medical diagnosis, for example, in a real 
world setting, is far from a pure classification task (Althoff & Bartsch-Spörl, 1996). If a system shall cover 
the major tasks involved in practical diagnosis, it will have to include planning tasks (e.g., setting up and 
continuously revising an examination protocol), as well as prediction tasks (assessing the consequences of a 
treatment).  

The next section outlines the core components of the framework, with a focus on the knowledge-level 
description and analysis and the combined top-down and bottom-up oriented methodology. The 
incorporation of the similarity assessment mechanism is part of ongoing research. 

3. Framework and methodological issues 
3.1. Basic framework components 

At the highest level of generality, a general CBR cycle may be described by four tasks (Aamodt & Plaza, 
1994): Retrieve the most similar case or cases, Reuse the information and knowledge in that case to solve 
the problem, Revise the proposed solution, and Retain the parts of this experience likely to be useful for 
future problem solving. See Figure 1.  



Note that the tasks referred to here are internal 
reasoning tasks, and different from the 
application problems tasks (e.g. diagnosis, 
planning, etc.) referred to earlier. The four CBR 
tasks each involve a number of more specific 
sub-tasks. An initial description of a problem 
(top of Fig. 1) defines a new case. In the 
Retrieve task this new case is used to find a 
matching case from the collection of previous 
cases. The retrieved case is combined with the 
input case - in the Reuse task - into a solved 
case, i.e. a proposed solution to the initial 
problem. The Revise task tests this solution for 
success, e.g. by applying it to the real-life 
environment or have it evaluated by a teacher, 
and repaired if failed. This task is important for 
learning, since the system needs a feedback of 
how successful its proposed solution actually 
was. Retain is the main learning task, where 
useful experience is retained for future reuse, by 
updating the case-base and possibly also the 
general domain knowledge. As indicated in the 
figure, general knowledge usually plays a part in 

this cycle, by supporting the CBR processes. This 
support may range from very weak to very 
strong,  depending on the type of CBR  
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Figure 1 – The CBR Cycle 

method. By general knowledge we here mean general domain-dependent knowledge, as opposed to the 
specific domain knowledge embodied by cases. For example, in diagnosing a patient by retrieving and 
reusing the case of a previous patient, a model of anatomy together with causal relationships between 
pathological and other physiological states may constitute the general knowledge used by a CBR system. A 
set of rules may have the same role. 

Knowledge-level analysis, as previously described, is a general approach to systems analysis. It is 
therefore applicable to the analysis of application tasks and domains - as manifested in the knowledge 
acquisition methodologies referred to earlier - as well as internal reasoning tasks of a problem solver and 
learner. In our framework we therefore take a „task – method – domain knowledge“ approach both to the 
analysis of real-world application tasks, and to the analysis of the CBR reasoning tasks themselves. The 
mapping between the two is as follows: Methods from the application analysis (e.g. how to solve a 
technical diagnosis problem, or how to determine the next test to be done) either decomposes an 
application task into sub-tasks, or it solves the task directly. In both cases these methods set up tasks at 
the reasoning level (e.g. problem solving and learning from experience). In the following, we concentrate on 
the reasoning tasks.  



 

Figure 2 – Task-method decomposition of CBR 

The tasks from Figure 1 are further decomposed in Figure 2. The tasks have node names in bold letters, 
while methods are written in plain text. The links between task nodes (bold lines) are task decompositions, 
i.e. part-of relations. The links between tasks and methods (stippled lines) identify alternative methods 
applicable for solving a task. The top-level task is problem solving and learning from experience and the 
method to accomplish the task is a case-based reasoning method. This splits the top-level task into the four 
major CBR tasks corresponding to Figure 1. All the four tasks are necessary in order to perform the top-
level task. The retrieve task is, in turn, partitioned in the same manner (by a retrieval method) into the tasks 
identify features, search (to find a set of past cases), initially match (the relevant descriptors to past cases), 
and select (the most similar case). All task partitions in the figure are considered complete, i.e. the set of 
sub-tasks of a task are intended to be sufficient to accomplish the task, at this level of description. The 
figure does not show any control structure over the sub-tasks. The actual control is specified as part of the 
problem-solving method. The actual retrieval method, for example (not explicitly indicated in the figure), 
specifies the sequence and loop-backs for the sub-tasks of retrieve. A method specifies the algorithm that 
identifies and controls the execution of sub-tasks, or solves the task directly, while accessing and utilising 
the domain knowledge needed to do this. The methods shown in the figure are high level method classes, 
from which one or more specific methods should be chosen. The method set as shown is incomplete, i.e. 
one of the methods indicated may be sufficient to solve the task, several methods may be combined, or 
there may be other methods that have not been mentioned.  

The above structure provides the basis for the analytic framework. It needs to be elaborated and described 
in more detail, characterisations of domain knowledge types need to be added, and dependencies between 
the various knowledge types need to be identified.  

3.2. Methodology 

As previously stated, the basic methodological approach is to combine a top-down oriented analysis of 
application tasks, domain knowledge descriptions, and methods with a bottom-up, case-driven method of 
studying existing systems. The aim is to arrive at a coherent framework and description language that 
specialises from the high-level analysis and generalises from the example systems studied. 
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The baseline of the approach is as follows. We describe CBR systems as well as domains and application 
tasks using two different kinds of criteria, namely criteria characterising the domain and task at hand 
(domain/task criteria) and criteria describing the abilities and limitations of existing systems and system 
components (technical/ergonomic criteria) (cf. Althoff & Bartsch-Spörl, 1996; Althoff, Wess et al., 1995). 
Examples for domain/task criteria are size1, theory strength2, openness3, change over time4, and 
complexity5, while case and knowledge representation, similarity assessment, validation, and data 
acquisition and maintenance exemplify important technical/ergonomic criteria. We analyse the 
underlying methods and domain/task characteristics by relating domain/task criteria with techni-
cal/ergonomic criteria. Figure 3 gives an example of how CBR systems can be labelled with domain criteria. 
Combining such a description with a general analysis based on the sub-task structure of Figure 2, was 
shown to be useful during the final evaluation of the INRECA system (Althoff, Auriol et al., 1995; Althoff, 
Wess et al., 1995).  
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Fig. 3 – An example of domain criteria related to existing systems  

From a software or knowledge engineering perspective, we try to arrive at non-functional system 
properties as a systematic means for (CBR) system development. Since we focus on CBR systems we can 
define more precise criteria than we could for software systems in general. Additionally, we combine these 
system-oriented, more technical criteria with an analysis of application domains in which we have 
experience. On the one hand, feedback from applications can be systematically transformed in an 
evaluation based on domain and application task criteria. On the other hand, methods extracted from CBR-
                                                 
1 The size of a domain is characterised by the amount of different items representing the explicit knowledge. 
2 The theory strength of a domain depends on the degree of certainty of the involved relationships. 
3 The openness of a domain depends on its environmental dependencies. 
4 The change over time of a domain means that a domain is called static if there are no expected changes and it is called 

dynamic if it is clear that changes will appear in continuation. 
5 The complexity of a domain means the amount of different taxonomic relations. 



related systems and tools can be labelled with the results of the application of such criteria. Again, the aim 
is to close the gap between high level characterisations, on the one side, and concrete systems on the other 
side. General knowledge level analysis and case-driven analysis are merged in order to come up with 
application frameworks for particular types of systems, based on a common terminology and a unified 
model. Here technical/ergonomic criteria are combined with domain/task criteria.  

The intended use of this framework both for analysis and development of integrated problem solving and 
learning systems, can be described as providing answers to the following questions related to the evaluation 
of AI research (cf. Cohen, 1989): 

• How is the CBR method to be evaluated an improvement, an alternative, or a complement to other 
methods? Does it account for more situations, or produce a wider variety of desired behaviour, or is it 
more efficient in time or space, or does it model human behaviour in a more useful way/detail? 

• What are the underlying architectural assumptions? Are all design decisions justified? Does the method 
rely on other integrated methods? Does it subsume other methods? 

• What is the scope of the method? How extendible is it? Will it scale up? 
• Why does the method work? Under which conditions would it not work? 
• What is the relationship between the class of task, of which the current task is an example, and the 

method used? Can this relationship be stated clearly enough to support a claim that the method is 
general to the class of task?  

4. Example studies 
We will point to two small example studies where the framework as specified so far has been used. They 
both illustrate a bottom-up approach (a case-oriented approach) to the study of CBR methods, undertaken 
within the general, high level, analytic framework. The first example is a description of the learning method 
(for the retain task), at a suitable level of abstraction, which was derived by abstracting from a set of 
existing systems. The second example is related to the top-level task of case-based problem solving and 
learning (see figure 2), and methods for integrating case-based and generalisation-based reasoning. 

A set of criteria for analysing and evaluating CBR methods was defined and applied within a study of 
industrial CBR tools (Althoff, Auriol et al., 1995). These criteria were in turn generalised and extended to 
CBR research systems (Althoff, Wess et al., 1995). Here the task-method decomposition hierarchy (Fig. 
2) was extended with methods that were abstracted from a set of specific CBR algorithms. An abstracted 
version of these algorithms is shown in figure 4, for the CBR task retain. 

IF no_similar_past_case(current_case)   
 THEN construct_new_case; 
 ELSE lazy_generalise(old_case);  
IF current_case_successful   
 THEN integrate_into_successful_cases; 
 ELSE integrate_into_total_problem_cases;  
DO adaptation UNTIL system_behaves_as_wanted 

Figure 4 – Abstracted method for the retain task. Sources of the algorithm: The CREEK, MOLTKE and PROTOS systems  

The THEN and ELSE sentences point to task decomposition methods of the retain task, i.e. methods that 
in turn will lead to a particular selection and control over the integrate, index, and extract tasks (figure 
2).  

The other example starts out from the top level CBR with the aim of studying methods that integrate 
different reasoning strategies, in this case purely case-based reasoning and reasoning from general domain 



knowledge. In Table 1 a set of methods, corresponding to some specific research systems, are grouped 
into levels of integration according to the "tightness" of integration. The different levels of integration are as 
follows (cf. Auriol, Manago et al., 1995). 

 BoLERO CASEY CCC+ CREEK INRECA  M OLTKE PROTOS S3+/INRECA  
toolbox level • • •  • • • • 

cooperative level • • • • • •  • 
workbench level •   • • •  • 

seamless level    • •   • 
Table 1. Task: Problem solving and learning from experience, Method: Combining case-specific and general knowledge. 

At the toolbox level the integration is restricted to the common use of parts of the knowledge-base. A 
reasoning method is initially chosen, and that method is then used as a single method. Exchange of 
reasoning results between methods is not done. This is the weakest level of integration. At the cooperative 
level  different reasoning methods can exchange intermediate results through a common representation 
formalism. At the workbench level  different reasoning methods are aggregated into a single combined 
method. For instance, a diagnostic system can carry out its classification sub-task using a rule-based 
module, and the test selection sub-task based on a CBR component. The seamless level is the highest level 
of integration. Different reasoning methods are integrated within a single algorithm and are not viewed as 
separate methods. Thus, the change of reasoning methods during reasoning is hidden for the user.  

While CASEY applies model-based causal reasoning speeded up by CBR (Koton, 1989), BOLERO 
combines case-based test selection and rule-based diagnostic reasoning (López & Plaza, 1991). In CREEK 
case-based reasoning is performed within a full-fledged semantic network knowledge model integrating 
cases as well as general domain knowledge, which enables initial goal-driven context focusing as well as 
knowledge-intensive, explanation-supported methods for the various CBR tasks (Aamodt, 1994). MOLTKE 
focuses on rule-based diagnostic reasoning using CBR for exception handling (Althoff, 1992). While 
INRECA combines CBR with integrated inductive k-d trees for case-filtering, preference learning, and 
consultation (Althoff, Bergmann et al., 1995; Wess, 1995), S3+/INRECA integrates INRECA with a service 
support system basing on general knowledge (Althoff, Wess et al., 1995). CcC+ is a case-based classifier 
that can cooperate with other sub-systems of the D3 toolbox for diagnostic reasoning (Goos, 1995). 
However, PROTOS is a stand-alone CBR system for classification, knowledge acquisition, and learning 
(Bareiss & Porter, 1987). 

5. Conclusion and further research 
The long term goal of the research reported here is twofold. The first goal is related to AI as an 
experimental science: To establish a descriptive and analytic framework for improved understanding of the 
PS-ML integration problem, starting out from a focus on CBR methods. An improved understanding of the 
„CBR space“ will be the basis for extensions, such as into learning methods for more eager generalisation. 
The resulting framework will serve as a „language“ and a set of principles for analytic and comparative 
studies of various systems across different „traditions“ and research groups. The second goal is related to 
the needs of improved methods for knowledge-based systems engineering: To specify ML-PS integration 
as an important task to be understood and handled by the knowledge engineer, and to provide methods for 
dealing with this problem.  

We have reasons to believe that we are on the right track, so far, even if only a high-level and general 
version of the framework to some extent has been tested. At the core of the framework is the combination 



of a top-level analysis, based on a task-method decomposition, and a bottom-up analysis of specific 
systems. It is our intention that the systems descriptions resulting from this analysis can be used by the 
ongoing efforts of creating an information server for CBR research and development purposes (cf. Althoff 
& Bartsch-Spörl, 1995; 1996). An intelligent server should be able to give advice based on a set of cases 
describing CBR systems and applications, embedded in a generic methodology for CBR systems 
decomposition, analysis, and construction. Another use of the framework which we are exploring is its use 
as a modelling ground for integration of knowledge-based systems into information systems and data base 
systems in general, based on the different roles these systems (or rather: sub-systems) have in a total 
decision-support system (Aamodt & Nygård, 1995). One of the major refinements of the framework will 
be to incorporate relevant parts of the similarity model briefly described in Ch. 2.2.  
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