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Abstract

We propose a novel way to measure and understand con-
volutional neural networks by quantifying the amount of in-
put signal they let in. To do this, an autoencoder (AE) was
fine-tuned on gradients from a pre-trained classifier with
fixed parameters. We compared the reconstructed samples
from AEs that were fine-tuned on a set of image classifiers
(AlexNet, VGG16, ResNet-50, and Inception v3) and found
substantial differences. The AE learns which aspects of the
input space to preserve and which ones to ignore, based on
the information encoded in the backpropagated gradients.
Measuring the changes in accuracy when the signal of one
classifier is used by a second one, a relation of total order
emerges. This order depends directly on each classifier’s in-
put signal but it does not correlate with classification accu-
racy or network size. Further evidence of this phenomenon
is provided by measuring the normalized mutual informa-
tion between original images and auto-encoded reconstruc-
tions from different fine-tuned AEs. These findings break
new ground in the area of neural network understanding,
opening a new way to reason, debug, and interpret their re-
sults. We present four concrete examples in the literature
where observations can now be explained in terms of the
input signal that a model uses.

1. Introduction

Diagnostics for Deep Neural Networks often rely on
measurements taken at the end of the processing pipeline.
Pinpointing issues with a network’s architecture, learning
process, and capacity typically depends on metrics based
on the evolution of the loss function or on performance mea-
surements like top-k accuracy. For example, to establish the
presence of overfitting in a network, divergence of training
and validation losses is considered as a good indicator. Un-
der these circumstances, there are general guidelines to fol-
low like early stopping, loss regularization, acquiring more
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Figure 1. Overview of the proposed method and model. A pre-
trained AE is fine-tuned with gradients flowing through a pre-
trained image classifier whose parameters are fixed. After fine-
tuning the combined network, images reconstructed by the AE
preserve more information required by the classifier.

data or reducing the number of parameters in the model [3].
Although these strategies are indeed effective against vari-
ance, they do not provide detailed insights on why the net-
work failed to generalize in the first place. To further under-
stand the transformation of input samples into predictions,
strategies have been proposed to look at the internal signals
of networks [32, 22]. These provide insightful properties,
but they serve a descriptive purpose rather than a predictive
one.

Recently, Zhang et al. [33] pointed out that our current
understanding of how networks learn general features is in-
complete and requires a different angle. We propose a way
to study neural networks based on quantifying the informa-
tion contained in input samples that classification networks
rely on. In general, a deep convolutional neural network
(DCNN) can be modeled as a function y = f (x,θ) where
both the properties of the output y and parameters θ have
been widely studied. In contrast, we introduce a novel way
to examine the properties of the input x and, more precisely,
the amount of signal that the network itself takes in from x.

Intuitively a convolution operation with kernel size k and
striding s covers the entire input spatially as long as s ≤ k.
In other words, such operations incorporate the complete
input space. In this work, we investigate how influential the
input space is, not from the perspective of individual sam-
ples but rather of the model as a whole. We found that, in
practice, information from input samples that image clas-

1



sifiers use for prediction differs greatly between architec-
tures. These differences were measured by pre-training an
AE on a large dataset and then fine-tuning its decoder using
gradients from an image classifier with fixed parameters,
as shown in Figure 1. Once the AE has been fine-tuned,
predictions take place by passing samples through the AE
first. The effect of this specialized compression and recon-
struction phase is two-fold: First, information that is useful
to the network gets preserved while irrelevant parts of the
original input are canceled out. Second, AEs fine-tuned in
conjunction with classifiers learn to reconstruct the input in
a way that attenuates any distracting aspects of the original
input, such as noise. Our approach offers the benefit that
analysis happens in the input space and hence, any learned
transformations by the AE are straightforward to visualize
and interpret. We have applied our method to five well-
known DCNNs trained for image classification: LeNet5,
AlexNet, VGG, Inception v3, and ResNet-50. Analyzing
the input signal that these networks take in (characterized by
the transformation of their corresponding fine-tuned AE),
we found that they rely on different amounts of input signal.
Furthermore, this signal may be entirely different between
classifiers.

Our main contributions are: First, a model architecture
and learning scheme that allows quantification of the in-
put signal used by DCNNs. Second, a relation of order
that exists between high performance DCNNs concerning
the input signal they use. Third, we present an extensive,
comparative evaluation of the input signal used by multi-
ple state-of-the-art DCNNs backed up by well-established
measures of information theory such as Mutual Information
(MI) [24].

2. Related Work
The need for interpretability in AI is growing with new

laws and regulations [5] being introduced that govern its ap-
plication. Given the ever growing body of evidence in favor
of the effectiveness of Deep Networks, there is a pressing
need for increased understanding how they work. One of
the first insights about their properties was that their features
were general enough to perform well in different classifica-
tion tasks [31, 21]. Not only are these features transferable
between tasks but they can also be distilled from an ensem-
ble to a single model [7].

A second family of strategies has focused on understand-
ing intermediate elements within networks like activation
maps or convolutional filters. Valuable insights came from
visualizing said elements [32], but also from inspecting the
degree of correlation that network filters share [13].

This kind of intermediate analysis has been extended all
the way down to the input domain (otherwise known as ac-
tivation maximization). Results show that not only are in-
termediate features encoding enough information to recon-

struct the original input [15, 4], but that it is also possi-
ble to identify areas within the input responsible for high
prediction probabilities. These areas can be modeled as a
generic subset of the input [34, 18] or as a collection of
higher-level features [14, 2]. Moreover, this idea can be
refined by explicitly accounting for background and fore-
ground areas [22] and even individual pixels [17]. Interest-
ingly, studying the influence of individual pixels on deep
image classifiers, gave rise to the research area of adversar-
ial examples [26].

The use of AEs to remap the input space into better
suited latent-space has been explored with general-purpose
architectures like the variational auto-encoder [9], as well
as in specific tasks like noise suppression [28]. Moreover,
it has been shown that initializing the weights of a network
based on an auto-encoding scheme provides a good starting
point for learning another task [16].

Despite all these advances in understanding neural net-
works, recent work shows that we are still far from having a
comprehensive notion about the learned features [33]. This
highlights the need for new ways to analyze the capacity
of a neural network (e.g., in terms of activation patterns or
trajectory length [19]).

3. Methods
This section describes the selection of the AE architec-

ture and training scheme, and analysis performed on the re-
sulting networks. We pre-train a shared base AE and fine-
tune it in conjunction with different classification networks
to create tailored AEs. We quantify and compare the in-
formation contained in images reconstructed by these fine-
tuned AEs through (1) relative changes of accuracy when
input signals tailored to one classifier is used to measure the
accuracy of another and (2) the amount of information that
is present in images reconstructed by fine-tuned AEs.

3.1. Autoencoder Selection

For our purposes we need an AE architecture that is ca-
pable of reliably capturing a large portion of information
contained in input samples. The reconstruction quality is
primarily measured through the AE’s loss. Additionally,
we define a validation measure that depends on the clas-
sification accuracy of a pre-trained network. Informally,
an AE produces good reconstructions if the accuracy of a
pre-trained classifier does not change compared to the accu-
racy obtained by using the original inputs. We chose Seg-
Net [1] as the architecture for our AE, since it meets all
the aforementioned requirements. SegNet is a fully convo-
lutional AE originally designed for semantic segmentation
of RGB images. It consists of two VGG-16 [23] networks
with batch normalization [8] where the second half of the
network has its layers reversed. Max-pooling indices gen-
erated during the encoding stage are used to upsample acti-
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Figure 2. Mean-square reconstruction error of two SegNet net-
works trained on YFCC100m and ImageNet.

vations in the decoder. This enables the network to produce
pixel-accurate reconstructions even though the smallest ac-
tivation map is only 1

32 of the input size.

3.2. Autoencoder Pre-training

As mentioned before, we first train the AE to minimize
unsupervised reconstruction loss. Ultimately, we do this
so that transformed samples do not significantly change
the accuracy of a pre-trained classifier (which will be ad-
dressed in Section 3.3). Hence, we train the AE using the
YFCC100m [27]. This dataset consists of 100 million me-
dia objects taken from Flickr with roughly 99.2 million im-
ages. This set presents a comprehensive selection of the
kinds of photos taken by a large group of people. It con-
stitutes the largest, publicly available image dataset to date.
We remove potential sources of noise in the form of place-
holder images (i.e., samples that are listed in the dataset but
were later removed by the user) and other non-photos (e.g.,
very small file size, single color) for a final count of ≈ 92.1
million training images. Using the YFCC100m as training
set comes with some unique advantages. On one hand, the
concept of training step or epoch does not apply, since given
the scale images do not need to be reused. As shown in
Figure 2, the reconstruction error during training, smoothly
converges to a good local minima before the dataset is used
up. On the other hand, learning without using any sample
more than once makes the training loss an unbiased estima-
tor of the model’s ability to generalize. A separate valida-
tion set is no longer required, since new samples have never
been seen by the network.

We also compare this first run to the learning behavior
of a second SegNet AE using ImageNet [20] instead of
YFCC100m. Both AEs were trained under similar con-
ditions: Input size of 256× 256 pixels, MSE loss, SGD
with momentum 0.9 and initial learning rate of η = 0.01.
When training on the YFCC100m, the reconstruction er-
ror is checked every 1 million images and, learning rate
is reduced to η ′ = 0.2η if the loss does not improve af-
ter two consecutive checks. For comparability and fairness,

when using ImageNet, we let the AE train for 72 epochs
which amounts to ≈ 92.2 million images that will be seen
by the network during learning. Although necessary for Im-
ageNet but not for YFCC100m, we apply a common set of
data augmentation operations (scale, rotation, shift, noise,
blur, brightness, contrast, color, mirror) in both cases. We
also measured validation in two different ways: For the AE
trained on YFCC100m, we use ImageNet’s validation set.
For the AE trained on ImageNet, we computed a validation
scored based on ImageNet’s validation set and, addition-
ally, also on a subset of 50000 random samples taken from
YFCC100m. All training and validation curves are shown
in Figure 2.

At a glance we observe that both learning schemes reach
good local minima for both training and validation. How-
ever, using YFCC100m produces a faster-converging net-
work which also reaches a consistently well-behaved lower
bound for the loss function. In contrast, training on Ima-
geNet yields an asymptotic, unstable learning curve. Val-
idation sets closely followed the training curves with the
AE trained on ImageNet and validated on a subset of
YFCC100m producing the highest error.

These experiments indicate that using the YFCC100m as
inital training for the AE is optimal, as it produces consis-
tent, low error image reconstructions that generalize bet-
ter than using a smaller dataset. Having a well trained
AE as a starting point for further training has been recom-
mended [3, 16] and proven to improve convergence.

3.3. Autoencoder Fine-Tuning

Using the AE from Section 3.1, we now fine-tune it with
gradients that originate from a pre-trained classification net-
work with fixed parameters. Intuitively, by letting the AE
adapt the reconstruction function to produce samples that
are likely to enhance classification performance, the AE will
be rewarded for keeping the parts of the input that are rele-
vant for inference. Conversely, the fine-tuned AE will dis-
regard any portions of the original input that do not have
positive impact on the performance of the classifier. An AE
could then learn to represent all the information that is used
by a classifier, if the accuracy of the latter does not decrease
by using input reconstructions from the former.

Fine-tuning the AE occurs by feeding the reconstructed
sample from the AE into a classifier, computing the pre-
diction loss and, backpropagating the gradients all the way
down to the input pixels and, further down the AE archi-
tecture. Since the target of analysis is the classifier and not
the combined AE-classifier network, the parameters of the
classifier are not updated by the flowing gradients. Only pa-
rameters belonging to the AE architecture get updated once
gradients from the classifier start flowing into the AE it-
self. Incoming gradients can be used to update parameters
either on the encoding, the decoding, or both sides of the
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AE. We found that the best results were obtained by updat-
ing only the weights belonging to the decoder. Experiments
that back up this argument are provided in the supplemen-
tary material.

To test the influence of architectural elements from the
classification network in the fine-tuning process, we fine-
tune copies of the pre-trained AE on four different classi-
fiers pre-trained on ImageNet, as provided by the torchvi-
sion project1: AlexNet [10], VGG-16 [23] with batch nor-
malization, Inception v3 [25], and ResNet-50 [6]. We also
added a version of LeNet-5 [12] modified to take input im-
ages of size 224× 224 pixels as a simple, lower bound in
terms of classification accuracy. These networks have been
recognized as high performing models when they were first
proposed. Furthermore, they include a series of different
structural elements that have played an important role to
push the state of the art on image classification e.g., higher
depth, batch normalization, inception modules, and residual
connections. We measure changes in accuracy when these
networks use the unaltered images from the ImageNet vali-
dation set and when they use reconstructions from the AE of
the same samples. Moreover, we check if the reconstructed
samples from the original pre-trained AE already encode all
the information that each classifier uses for inference.

For the remainder of this paper, classifiers will be refer-
enced by their first letter (L, A, V , I, and R) where applica-
ble. Furthermore, we will use the shorthand notation Ai ◦ j
to indicate that the classifier j is using input samples from
an AE that has been fine-tuned with gradients provided by
classifier i. Additionally, AS will refer to the SegNet AE
pre-trained on YFCC100m and, Ai(x) will refer to a re-
construction of input sample x using Ai. We also define
C = {L,A,V, I,R}, the set of all classifiers evaluated.

Table 1 shows top-1 and top-5 accuracies for the afore-
mentioned classifiers before and after pre-pending them
with their correspoinding fine-tuned AE. As described
above, we also computed the baseline AS ◦ i, i ∈ C for ref-
erence. We see that the baseline lays between 1.2 and 3.7
points below the accuracy of the classifiers alone. Although
this is not a dramatic drop, it does indicate that some in-
formation has been lost during the reconstruction of input
samples. Taking into account that the difference between
x and AS(x) is quite small, we can infer that the miss-
ing signal that is relevant for inference has to be small as
well. Notwithstanding, fine-tuning AS on any classifier, al-
ready makes up for the initial loss of information and, for
most cases, even surpasses the performance of the classi-
fiers alone.

1https://github.com/pytorch/vision, commit 10a387a

Table 1. Center-crop, single-scale accuracies on ImageNet vali-
dation set for: original classifier, classifier using reconstructions
from AS and, classifier using reconstructions from the AE that was
fine-tuned in conjunction with the classifier.

Network top-1 diff top-5 diff

L 32.30 54.63
AS ◦L 31.08 −1.22 53.01 −1.62
AL ◦L 34.85 +2.55 57.79 +3.61

A 54.96 77.98
AS ◦A 51.89 −3.07 75.52 −2.46
AA ◦A 56.13 +1.17 78.96 +0.98

V 71.35 90.50
AS ◦V 67.59 −3.76 87.95 −2.55
AV ◦V 71.65 +0.30 90.55 +0.05

R 74.02 92.01
AS ◦R 71.19 −2,83 90.23 −1.78
AR ◦R 74.94 +0.92 92.27 +0.26

I 77.12 93.25
AS ◦ I 74.42 −2.70 91.87 −1.38
AI ◦ I 76.71 −0.41 93.03 −0.22

3.3.1 Encoded Representations of Fine-Tuned AEs

Once we obtain all Ai, i ∈ C ∪{S} by fine-tuning, we can
have a look at the reconstructed images. Figure 3 shows
an original image and the corresponding reconstructions by
each Ai (for more examples, please refer to the supplemen-
tary material). Below each reconstructed image, we visu-
alize channel-wise histograms in LAB color space. These
histograms allow us to identify global changes in perceived
brightness and opposing colors. The “L” channel repre-
sents the luminance, “A” encodes color changes between
green and magenta and, “B” encodes changes between blue
and yellow. We chose this representation because it relates
closely to how human vision works. It neatly separates per-
ceived brightness from color and does not suffer from range
singularities like HSV.

The observed transformations are unique for each clas-
sifier and are easily identified as large changes in all three
channels when compared to the original image. Changes
introduced by AV are the smallest among all AEs. AA
and AR introduce consistent checkerboard artifacts over the
entire input space. These artifacts appear as peaks in the
histograms in channels “A” and “B”. AR and AI compress
the range of the luminance, making dark areas brighter and
bright areas darker. AI introduces a strong shift in “B” val-
ues that manifest as a lack of blues and yellow/brown tint.
AA produces images with a distinct pink hue.

4
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Figure 3. Example taken from ImageNet’s validation set. Each image corresponds to a reconstruction produced by one of the fine-tuned
AEs. Below each reconstruction, global histograms of the image in LAB space are shown. Zoomed portions of the image reconstructions
are provided, showing the emergent patterns in more detail.
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Figure 4. Example for additive noise used to evaluate performance
in noisy environments for different values of the strength parame-
ter s. Top is the original input image. Middle and bottom rows are
reconstructions of AS and AV .

3.3.2 Emergent Resilience to Noise

We noticed that a consequence of fine-tuning AEs, as pro-
posed in this work, is that their reconstructions are preserv-
ing more information under noise than the original inputs.
We tracked the top-1 accuracy of the classifiers in C on Im-
ageNet’s validation set under an increasing additive uniform
noise drawn from U[−s,s] with strength s ∈ [0,1]. We com-
pared the results to a similar setup where the accuracy was
computed using reconstructed samples from Ai∈C∪{S}.

For the first experiment (dashed lines in Figure 5), ac-
curacy starts decays steadily, as soon as noise gets intro-
duced. Using reconstructions from AS (left of Figure 5),
worsens performance even more, suggesting that the AE it-
self has not learned a denoising transformation. Note that
these results are aligned with initial findings presented in
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Figure 5. Top-1 accuracy on ImageNet’s validation set under in-
creasing noise strength s. Dashed lines correspond to networks
evaluated on the original inputs. Solid lines depict evaluation of
the networks using reconstucted inputs from fine-tuned AEs. Left:
behavior with reconstructions from AS. Right: behavior with re-
constructions from Ai, i ∈ C .

Section 3.3.1 where classification with reconstructed sam-
ples of AS alone were already lower than the correspoinding
baseline. In contrast, reconstructions from fine-tuned AEs
are consistently more resilient to noise, even when com-
pared to the stand-alone classifiers. Accuracy for classifiers
of the form Ai ◦ i present higher accuracies for all levels of
noise, indicating that all Ai∈C have indeed learned a repre-
sentation of the information that is useful to the classifier
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Table 2. Cross-validation accuracies on ImageNet validation set
for classifiers that receive inputs from AEs fine-tuned on different
models.

L A V I R

AL 0.3484 0.3077 0.0416 0.4352 0.4730
AA 0.0211 0.5613 0.0097 0.5375 0.0925
AV 0.2929 0.5362 0.7163 0.7400 0.7300
AI 0.1829 0.3024 0.4555 0.7671 0.4540
AR 0.0163 0.4972 0.0710 0.7249 0.7494

it was fine-tuned on. The most pronounced difference can
be seen with AlexNet, which falls below the accuracy of
LeNet-5 at s = 0.3, yet it manages to remain above LeNet-5
when using inputs from AA. This measurable resilency to
noise is also visually perceptible as shown in Figure 4.

3.4. Measuring Information through Classifiers

We explored the relationship between different encod-
ings defined by fine-tuned AEs. By observing the wide
visual differences between image reconstructions from all
Ai∈C , it is clear that each classifier prefers different re-
constructions and thus, different information. Hence, we
measured changes in accuracy for each classifier when us-
ing input reconstructions from AEs that were fine-tuned on
other classifiers. More formally, we evaluate the accuracy
of Ai ◦ j,∀i, j ∈ C . Results are summarized in Table 2.

We observed that accuracy drops consistently for each
classifier when they use other AEs. However, some com-
binations of Ai ◦ j tend to preserve the accuracy of the
lowest performing model in that combination i.e., ∃i6= j :
acc(Ai ◦ j) ≈ min(acc(i),acc( j)). Informally, this effect
can be interpreted as networks that use at least the sig-
nal that the lowest performing model uses. To quantify
this, we define the relative rate of change (RRC) of an AE-
classifier pair as follows: RRC(Ai ◦ j) = acc(Ai◦ j)

m(i, j) where
m(i, j) = min(acc(i),acc( j)). Computing RRC values on
the cross-validation experiment reveals which combinations
of AEs and classifiers preserve more signal, as shown in
Figure 6. From this curve, we see how the input signal used
by VGG is enough to make both ResNet and Inception per-
form better than VGG itself. Additionally, the signal from
Inception v3 seems to be quite different from the one used
by any other model, as none of the models in C \ {I} per-
formed well (i.e., below 0.65 of their original accuracy) us-
ing AI .

To further examine the relation between AEs and clas-
sifiers, we use formal concept analysis (FCA) [29] to de-
rive a hierarchical ontology between all possible combina-
tions of them. FCA is of particular interest here because
it allows us to model partially order sets (under the inclu-
sion operation ⊆). To this end, we need to define a formal
context K = (G,M,I) where G is a set of objects, M is

Ai ◦ j by RRC
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Figure 6. Every tested Ai ◦ j combination, sorted by RRC. Parts
are color coded according to their associated classifier: L red, A
blue, V green, I purple, R orange.

a set of attributes and I is a binary relation between ele-
ments of G×M that expresses whether G has the attribute
M or not. Formal concepts of K are object-attribute sub-
set pairs (SA,SB) such that S′A = SB and S′B = SA, where
S′A = {m ∈M|∀g∈GgIm} and S′B = {g ∈G|∀m∈MgIm}. The
lattice of formal concepts for K is constructed by ordering
pairs of formal concepts (SA,SB),(SC,SD) under the opera-
tion ≤: (SA,SB)≤ (SC,SD)↔ SA ⊆ SC. Please refer to [30]
for a more intuitive introduction on FCA. Let G = C and
M = {Ai∈C }. Finally, let I = {(i, j) : RRC(Ai ◦ j) ≥ t} for
a given threshold t. In other words, we convert the table
of RRC values into a binary relationship between AEs and
classifiers by applying a threshold to it. We generate lattices
for the FCs at thresholds t ∈ {0.1,0.2,0.8,0.9}, shown in
Figure 7. For any two nodes connected by an edge, the up-
stream connection can be interpreted as the signal encoded
by Ai is used by classifier j. Looking at t ∈ {0.1,0.9} gives
an idea of the most sensitive and robust changes in signal
behavior since they are close to the upper and lower bound
in the range of RRCs. Similarly, FCs for t ∈ {0.2,0.8} char-
acterize the largest changes in signal intake (i.e., they lay
in between the largest gaps) among classifiers. Note that
any value of t between those intervals ([0.17− 0.52] and
[0.66−0.84]) yield the same FC, thus the same lattice. This
is important for establishing more precise lower and upper
bounds between signals and classifiers later on.

Looking at the first lattice in Figure 7a, we can see that
the signal from Resnet’s AE is already not enough to make
VGG or LeNet reach an accuracy that can go above 10%
of what either of them achieves on their own, using their
corresponding AE. This is especially surprising for VGG,
considering how similar its performance is compared to
ResNet. Conversely, in Figure 7d we see how the signal of
VGG is enough for making Resnet’s performance at least
90% of what VGG–the lowest performing of the two–is
originally capable of. For Inception, we see that it shares
up to 50% of the signal that the other classifiers are picking
up on. However, the remaining half of the signal used by
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Figure 7. FC lattices for different RRC thresholds. Attributes (sig-
nal) are always below the nodes, objects (classifiers) are on top.

all other networks appears to be completely different from
the one Inception uses to achieve its high performance. As
a general trend, VGG stands out as the classifier making the
most exhaustive use of the input signal. The AE fine-tuned
on VGG preserves a signal that makes all other classifiers
keep a performance of 80% and higher.

This analysis shows that all networks extract features
based on a common portion of the input signal but said
portion, can be as small as 10%, as pointed out earlier for
Resnet. Note how any FC for thresholds between 0.2 and
0.8 yield lattices describing a totally ordered set. The only
changing element is the AE fine-tuned on Inception. Such a
total order exposes an unexplored aspect that networks are
sensitive to, namely that DCNNs are only extracting fea-
tures from a reduced portion of the input signal. We inter-
pret this hierarchy as the amount of general or specialized
signal used by a network.

3.5. Measuring Information through Image Recon-
structions

We validate the pattern found in the cross-validation ex-
periments from Section 3.4 by measuring loss and preser-
vation of information between input reconstructions. We
use the normalized mutual information (nMI) [24] measure
to calculate bounded values reflecting relative changes in
the information that is preserved or lost when input samples
are passed through each AE. There are two complementary
cases to be considered, as shown in Figure 8:
Intra-class nMI: compare reconstructions from each
fine-tuned AE to the original sample. Reconstructed sam-
ples should preserve as much information as possible from
the original image and hence, a high correspondence is ex-
pected. To compute the intra-class nMI, an input sam-
ple is passed through all AEs and the nMI is computed
with respect to the original sample. In other words,
intra-nMI(x,Ai) = nMI(x,Ai(x)). For each AE, the av-
erage nMI and the standard deviation of all samples in the

Figure 8. Difference between intra-class nMI and inter-class nMI.
The former measures information between the original sample and
reconstructions from different AEs. The latter measures recon-
structions of different samples using the same AE.

None AS AV AL AR AA AI

AE used for reconstruction

0.1

0.2

0.3

0.4

nM
I

inter-mi
intra-mi

Figure 9. Normalized mutual information for input samples recon-
structed from different AEs. Intra-class nMI measures informa-
tion between reconstructions of the same sample

validation set of ImageNet (50000 samples) are reported.
Inter-class nMI: compare reconstructions of two differ-
ent samples using a single fine-tuned AE. Reconstructed
samples of two independent images should yield low nMI
values. Therefore, a low correspondence is expected. To
compute the inter-class nMI, two samples are drawn at ran-
dom, passed through the same AE and, the nMI is calcu-
lated between those two reconstructions. More formally,
inter-nMI(x1,x2,Ai) = nMI(Ai(x1),Ai(x2). For each AE,
the average nMI and the standard deviation of consecutive
sample pairs over the entire set of Imagenet (25000 pairs)
are reported.

Results shown in Figure 9 that AS is able to preserve
the highest amount of the input signal. Moreover, there is
a well-defined order with respect to classifiers whose fine-
tuned AEs preserve more information. Regardless of the
variant of nMI used for comparison, all fine-tuned AEs can
be sorted as follows: AV > AI > AL > AR > AA. Note that
both AA and AR show comparatively high amounts of inter-
class nMI, which is consistent with earlier observations of
highly regular patterns in their reconstructions as described
in Section 3.3.1. The resulting totally ordered set aligns
closely to the attributes in the lattice of Figure 7b which
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also describes a totally ordered set.
This analysis provides further evidence of the existence

of a pattern, where different networks are using of more or
less information from the original input. Furthermore, con-
sidering that classification accuracy dropped consistently
for all classifiers when the original AE was used, we can in-
fer that the lost information, though irrelevant in most cases,
is indeed used by all classifiers. The nature of information
reconstructed by AS and its fine-tuned versions suggests that
classifiers are using parts of the inputs that are less relevant
for accurate reconstruction.

3.6. Understanding Previous Work based on Input
Signal

We have so far been able to quantify the amount of signal
different classifiers use for their predictions. Another way
of interpreting our findings resulted in lattices that describe
(partial) orders of classifiers according to (non-) overlap-
ping parts of the input signal they process. These results
coincide with several prior publications on understanding
the operations performed by deep neural network. Zeiler et
al. [32] discovered that AlexNet is highly sensitive to local
structures. This can be understood in part as a consequence
of the reduced input signal that AlexNet uses. Raghu et
al. [19] showed that parameters on shallower layers have
a higher impact on the final prediction than deeper layers.
Shallower layers are closer and hence more exposed to the
entire signal and can therefore drop more of it. Modify-
ing shallow layers alters the amount and the kind of sig-
nal that goes into the network, affecting prediction scores
significantly. The work of Montavon et al. [17] shows rel-
evance reconstruction maps that are coarser for CaffeNet
than for GoogleNet. This phenomenon is consistent with
other work [11] and can now be understood from the point
of view of the input signal. In one of their latest exper-
iments, Bau et al. [2] trained a variant of AlexNet with
wider layers and global average pooling to explore its in-
terpretability. Despite all those changes, the accuracy was
similar to the original architecture even after increasing the
number of filters of the last convolutional layer by a factor
of 4 and 8. They suggest that the capacity of the network
has been exhausted although, by definition, more filters in-
dicate a higher capacity. We propose a complementary idea:
adding more filters in deeper layers do not affect the perfor-
mance not because the capacity of the model is exhausted,
but because the input signal is. In other words, deeper layers
already interpret all the signal that is available to them.

4. Discussion & Future Work
In this work, we introduced a novel, alternative way to

understand the behavior of deep neural networks by study-
ing the reconstruction performed by autoencoders that were
fine-tuned to suit their needs. This setup allowed us to ana-

lyze the amount of signal that a network uses before it enters
the model itself. Our approach is fundamentally different
from previous work since we did not focus on measuring
the behavior of intermediate or end results (e.g., through
bias-variance metrics or activation maximization analysis).

We propose a training scheme for the autoencoder that
ensures excellent generalization and reproducible results by
using the YFCC100m as dataset for pre-training. Further-
more, we use the resulting model as basis for further fine-
tuning of the decoder with gradients from different pre-
trained image classifiers. By looking at the response of
classifiers when different auto-encoded images are fed, we
were able to establish a relation of order between classifiers
that depends on the input signal. We presented evidence
of this underlying pattern by using formal concept analy-
sis and validate our findings by measuring the information
contained in the different image reconstructions.
Additional Findings: There are some further observa-
tions that spawn from our proposed method that we like to
highlight.

The two-stage training strategy for autoencoders has in-
fluenced these networks to learn denoising operations. Said
function is effective because it favors the preservation of
parts of the input signal that are used by the classifier, in-
creasing the overall tolerance to noise within individual
samples.

The amount of signal used by most classifiers is small
compared to the amount of signal that is available from the
input. High performing image classifiers like ResNet can
use as little or less than 10% of the original input. This
can be seen as a beneficial property, as less evidence is re-
quired to make a correct prediction. Possible downside of
this reliance on little evidence is that small changes to rele-
vant parts of the input, also known as adversarial examples,
can change the prediction. Classifiers that take advantage
of redundant information are more robust to changes that
were unaccounted for during training. Note also that the
amount of input signal does not correlate with the number
of parameters or performance.

However, the relevant portion of the input signal does
follow a general, distributed pattern as seen by the global
checkerboard artifacts that appear in reconstructions pro-
duced by some AEs. In other words, these patterns to not
depend on the specific content of each image, but rather to
general patterns (e.g. darken bright areas, increased distance
between colors).
Future Work: As next steps, we want to compare the
denoising properties of fine-tuned autoencoders with other
architectures and training strategies that are explicitly de-
signed to denoise. Moreover, we would like to explore al-
ternatives to SegNet as autoencoder that are more efficient
and light-weight. Finally, we are not yet able to point to
specific points in the architecture of a deep network that
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are responsible for losing signal. A better understanding of
how the flow of signal through a network can be controlled
will allow for a more principled approach to design future
architectures.
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