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A Sophisticated Expert System for the Diagnosis
of a CNC Machining Center

By K. Althoff, K. Nökel, R. Rehbold, and M. M. Richt€rr

,4rJrldcrr As the domains of diqnosric expert systems become lnger and moe comptex, puelv

ßo.ialire apptoaches de no loneB. ad€quate solutions. A good esnple for such a situalion ß the

dia8nosis of a CNC nacnining eütet ehere the dragindtic Procs ha a rich inner strnctN that

has to be reflecl€d in tne lysten- In this &ticle w. desdibe three wavs oi extending the 6nYen

tional expert sysr.m dchitecture. Fitstly, ou syst€h u*s a strüct@l nodel of the macninirS en-

ter ir adütion to p.oduction rüLs- Secondly, we pay special atrention to k.owledge &quisition

which is intimrely r€Lted ro the l€dnine lroces. Finally, sewral temPonl .spect of the diag_

nostic situation are add.e$.d explicitly.

Zusonnenfasrt|e: ln Clei.lgn Mal]e, wie diagnostische Exp.rt€nsystene in inber unfatgreicheE

und konpLxcre Aufgabenste!üngen vordrineE , zeigt sich, daß aBcnlien[ch iegelbaierte, aso'

ziatire ansäre keine angenesene Lösung nehr ddsteUe!, Ein typischa Bei.piel für eine solche

Situarion ist die Di.gnoe von CNc-Bedbeitungszenben, deren kohPlexe innere Sbuktur uld die

sp€zilsche Vorgehensweise des Exp€rten explizil in der Wi$ensb4is Ep.i*edien werden nüssen

ln diesem AniLel heschdben wir drei Richtu.se.. in denen die konvenrionelle" Expertensysten_
architekru eryeit€rt werder kann, uh den gesriegenen Anforderu4€n zü entsprechen. UnFr

Systeh sti'91 sich auf ein Stluktur- md Fünktionshodell des BearbeitunsEzentruns, dß d4 i.

R€E!üorn g€speicherte Wisse. €rg:inzt. Die VeMendung ds Modells st.llt neu&tte Anforderun_

ser m die Wiße6akquisirion, die durch eine enge Verzahnung mir den Lernmechuisnus des

Exp€nesystems ulteslü&l wüd. ScNieSlich 8Bh€n wü aüf die zeitlichen Aspekae der DiagnoPsi
rüatio. ein, die eine spezieU. Bchudlung der dyMnischen Machinenprozesc und der sich darin

entwickelnden FehLer ef oldem.
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I lntroductioo

Most of the existing expert systens deal with diagnostic problems. h pnnciple 1o
€stablish a diagnosis requires a kind of selection process, namely to isolate the corrcct
diagnosis from other possible hypotheses. This seens to be easier than e.g. to construcl
a plan, where a conpletely new objecl has to be created. Indeed many diagnostic situa-
tions are of a structurally simple natur€- This is particularly true if the relation be-
tween th€ obseNed data and the possible reasons for the outcones of the!€ data can
be mod€iled in the folrn of production rules- This means thst one is investigating a
fixed static snuation desclibed by facts and rules; in more difficult situations object
oriented approaches have been used.

For really demanding diagnostic problems such a statlc approach is clearly insuf-
ficienl. Already a superficial view on people who perform the task of finding the
reasons for malfunctioning of complex mächine aggregates shows that they have 10
deal with a process of a rich inner structure. An adequate model can no ionger consist
rnerely of the data and possible causes for these data. Th€ topic of such a model has
to be the whole discouße of finding the diagnosis, i.e. the descnption ofa certain
mental process. This process incorporates a number of different acrivities which ale
baled on and connected with various types of knowledg€. Even in the case of the
diagnosis of wel-defined technical devices üis knowledge is to a great extent in-
complete, gue and ofa heuristic nature. This is a simple consequence of the fact that
we are no longer dealing with the machine aione but with th€ diagnostic process.

In this paper we will concentrate on three differenr äsp€cts which our model häs
to reflect. The example which has led us to these investigations is the diasnosis of a
CNC machining center. Ihis is the subject ofa prqecl in the "Sonderforschungsbe,

reich Kunsdiche Inte[igenz" at the University of Kaisers]aulern (Wesr Gennany.) in
cooperÄtion with the WZL at the Technical Univeßity of Aachen. Il will, however,
not be explained her€ at al because for our present purposes it suffices to answer the
questions under consideration in an abstract way.

Firstly our systen is rnodel-bas€d. Th€r€fore we have a model (on various degree!
of abstractions) of the nachine and all questions conc€ming the machine are solv€d
with respect to that model. The second part is addressed to knowledge acquisition
which is strongly connected with the proc€ss ofproblem-solving and th€ structüring of
the knowledge and to some exlent cannot be disconnected fron learning. Finally we
discuss why the diagnostic process is an activity in which lime plays an imponänr role.
We argue that the structuring of temporal aspects goes far b€yond whal has been
modelled in the varioüs temporal logicj'.
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2 A ModelBased Approach to Diagnosis

2.1 Why Model-BGed Diagnosis?
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Up to now most expert systems fo! diagnosis had litde knowledge aboul the structure
and functionaiity of the object they worked on. Instead, they used sev€ral "(pattern)

'(findins)" rules, sometimes einanced by intemediate diastloses. These 'thallow"

rules repres€nted parrs of the compiled knowledg€ of some experts in the fie]d. who
themselves gathered it through experience aad thei understandins of the wt1, the

lchudrasekaran, Mitta183l point out thal knowledge of the underlyinS structure
(-deep" knowledge, also called a model) is not needed, if the compiled knowledge
represents all the r€levant pieces of thal model. The problem in this thesis is ofcourse
that the tlansition from a model to stlalow rules is by no means a simPle one, since

this is an important part of th€ procedurc that makes somebody an expert! As long.s
there are no satisfying rnethods to gel all relevant info.rnation out of the structur€
(and there is no reason to hope t\is wi change soon) a combined methodolos/ is
needed: shallow rules from the expert for speed and deep models,maybe from exp€rts,
maybe from plans, for derails, unusual cases elc- This approach to diagnosis corr€'
sponds to the way hunan experts attack fauits: usually. they quickly find the faulty
part using thei! compiled knowledge; but sometimes things happen that they had not

thought ol before and they haye to use rheir knowledge about the struclure of the
machine to continue. Another asp€ct ofhuman expen reasoning is the ability to select
a suirable locus. r .€.  lhe nghl lewl ol  absrEcrron.

Several approaches to model-based diagnosis have been explored, nearly all of
them work on faulß in €l€ctric digital circuits IDavis85, G€nesereth8s ]. Expert syslems
lor lault diagnosis in mechanical engineering however usually o'tly use shalow know-
ledse (e.g. rulet without deeper undemanding of the machine. Thele are severai
reasons why digital circuits are much easier to mod€l than arbitrary machines:

only one type ofconnection between component! is needed: wires

, lik€ programs in compurers, circuits are digilal, whjl€ machines s€em to work
more analogically

in fault diagnosis for circuits there islittie o! no need for states ofcompofl€nls (Ät
least in the €xanples given in the literature)

faults in circuits can be found by lookingät them staticaily, while nachine faults
usually require a dynamic view

time relations play , much more important role even in simple machines than they
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circuits usualtv foilow a 8loba1 clock signal, while machin€ components change

lieir states only due to local influence (asvnchronous parailelism)

We will now discuss a possible sotution to sone of the aforementioned difficullies'

2.2 Concepß of the SFtem

Our goal is ro create a toolbox system that allows the user 10 model a machine tor

diagnosis: not oily its structule but atso the user's €xp€rtise (cornpiled knowled8e)'

e.g. fault probabillti€s, sinpLrying relations Mode inggoes on in three stepsl

1. Build up the assernbly structure

2. Connect components lhat functionally belong togeth€r

3. Attach additional infornation (i.€ experlise)

Fkst we need a way to replesent the structure: usinS a ser of Siven primitive conpo_

nents and several connections we want to build up more complex assenbiy groups

Thes€ assembly groups then can become parts ofa still more complex ass€mblv group

and so on, until we reach the rnodel of the whole object (machine) to be diagnosed

Subsequently we wil only use the word co,7lponenl to describe such a nachine pärt'

no matter whether it is a comPlex or a primitive one'

lndependently fron this struclure orienied vrew we also want 10 model slstens

i.e. groups of components thät selve the sane purpose (e g cooling svstem' power

supply etc.) but are not locally conn€cted. This is a way of thinking human experts

us€, too,wh€n reasoning about faultv devic,s

2.2. I Co mqo nent Hierarc hY

For every concrete inslance of a component we model a prototype componenr' i-e

a class in the sense of object oriented progamming These component classes lorm a

component hierurchr, whele ali compon€nts are arranged into a tree depending on the

degree of their functional specialization and/or rechnical realisanon Th€ roor of this

co;ponent hierarchy is the most g€neral conponent THING In this lree' relat€d

component ciasses are linkedbv an a'kindaf'edge' r^ot an ts a-edge'

lu"fr "o.pon"nt class contins information about its interfaces to the outside

(cailed poro,;ß stat€ .nd behavior (expressed in constraints berwe€n the ports)' its

composition, i.e its subparts and inlemal connections (if it is not a primitive compc

n€nt) and sone rules to diagnose typical faults in that part-
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2.2.2 Stuctute Hieturchy

Fi8, l. lüt of the stiuctüe hierarchy of the CNC mcnining @nter
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While the component hierarchy contÄins abstract components ord€red by sp€cificity,
the sttuctute hieturch, desctibes the concrete component and its sub{omponents.
Using the description of the composition flom the component hierarchy the intemal
structure of a component can be built up. Sevelal instances of the sane component
class can be part of a structure hierarchy, if that subpart is used more than once,e.g.
pirtons in an engin€. The concrere subparrs (instances) are connecled by ß-Wrtal-
€dges to their concrete superpart. Now it is possible to expand the lhus created sub,
parts thems€lves into tlrcir parts, again using the jnformation provided in the compo-
n€nt hierarchy. It is easy to see that the structure hiera.chy is a tree, too.Its nodes arc
instances of conesponding component classes, to which they are connected in an,r{-
relation. Only components that unambiguously belong to the structure of a compo-
nent are considered as subpärls, i.e. the structure hierarchy models the pIItcaI part-
of-relation.

B€side the dependencies denoted by th€ is-parl-of-relations there äre a lot of other

relations (connectiont belween components. Thes€ functionäl dependenci€s are added

ro the structure hielarchy ^s connetted-to'reiations. lnformalion about tlle connec-

tions between subparts can again b€ found in the component class- By addinq con-

neded-to-edles to th€ slructure hierarchy its tree chancler is losti so we call it the
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functional dependency net. Nore t]:'at @nnected-to-edges can cause cyclic dependen-

Difierent from e.g. elecrrical circujts cortvcted to edler in mechanical ensineer

ing models can have several quite diff€r€nl interpfttations (typet, e.g. the flow ofin-

formation, heal, eLectricjty, material (liquid, gas), force elc. Different kinds of cor

necred-to-edges of cours€ can also model different intensities of conn€ction-

2.2.4 Co npo ne n t Inlormat io n

As m€ntioned abov€ €ach component class contains several information about its

A conponent interfaces its neighboß by sevelal types of input and output poß.

These ports are its only connection to other components. Each port is conn€cted to
another port of the same iype via a corresponding .on nected-to- edBe.

Oulside of a component its behavior is descnbed by the relations between its pois.

Tlis functionäIi47 is intemally given by constiaints belween the ports. While these

constraints only represent a static view of the component, chänges in lime also have to

be modelled, e.g. using son€ m€asures of change. Th€ behavior of a component is

closely related to its state. State and b€havior are abstracted and efficient veßions of
the relations thät can be achieved using rhe composition ofthe component and the be-

havior of its subparts-

Each component class contains information aboul i1s subparls, the connections be-
tween rhese parts and the conneclions between sorn€ subparts and the ports of the

Prinilive cornponents need no composition jnformation. A cl€ver selection which
päns to model as primitive is important to keep the cost of modelling low and effi-
ciency high. For exampie it seems to be reasonable to model a component as a primi-

tive ifit is aLways completely r€placed iffauky-
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Ports of subparts are interünked by or nected-to-edEes of appropriat€ typ€s or
connected fo ports of th€ coinpon€nt itselfvia transl^ti,ontelations.Connected-to-edges
between subparts represent the inner functioflaLity of a part, while translation relations
jmpart that b€havior to the outside. Naturaily. rhe behavior described through dle
fünctionality of the subparts and thei connections should be rhe behavior direcrly
d€scribed for the component.

Translation relations make similar port types of different abstraction levels com-
patible and can th€refore link several ports of subparts to one porr of the componenr.

lDavisSsl describes a modelling syslem for electrical circuits, which allows param.
eterized components, i.e. m€ß{omponents that can be used ro build sevenl real con-
ponents according to some parameter, €.9- an n-bit-adder can be instantiated to any
adder for /t € N. Even rhough this p0rameterjzation is not as helpful in mechanical ap-
plications as it is in electric ones it can help to keep the cost ofnodelling ]ow.

For every coinponent there is a diagnostic module tailored ro the special fauhs of rhat
part. While there is in principle no restricrion on the methods to use for diagnosis we
selected the usual production rules to gain profit from t]rc research efforrs thai went
into that directior. Several methods can be us€d ro find faults in a conponent:

Rule-based examinations and conclusions as in usuat diagnostic experl systems
(here expertise is incorporated)

Descenr in rhe structure hi€rärchy for better locaLization of some fault. if nor
atready in a primitive component

Fault simulation by constraint suspension" [Davis85], i.e. checking out which
subparts may have caused the faulr by r€moving selected constraints from the
functional dependency net.

Us€ of the connections in the sysrem the part belongs ro. i.e. only regarding se-
tected neighbors of the same systern.

Each of these methods can use its own special focus, i.e. severat subparrs can be ex-
panded to diff€rent ievels to provide an oplimal examination.

Whether it is su fficient to restrict our model tool ro qualitarive vatues is under inves-
trgation; sometimes it might be important roreasoo withquanriti€s. Up to now lemporal
relations belween state intervals and nachine püametenare not wellcovered. The üse of
(static) quälitative measures of change (e.9. .o'l$ant, asce ditls, descendins\ is insü-
licient to envision the behaviof of a nachine. Here aspects ot simulation play an
imponant role- So mod€lling wirh time is an essential fi€ld ofresearch.
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3 How to Get the Knowledge into the System

ln this chapter w€ give a short d€s.ription of the main problems we are dealing with

*trile acquir;ng rhe nectssary knowledge for our diagnostic situalion Th€se problems

can b€ fornulated by the following questions whichwe will try to answer'

1� What kinds of knowt€dge are rel€vanl for this diagnostic problem?

2. Which knowledge hold€rs own this knowledg€ and in whal kind ofway can th€v

be used as knowledge sourc€s?

3- What are the structural cons€quences for representing this knowl€dge and model_

ling th€ diagnoctic problem{olvrng process?

3.1 Kinds of Knolüledge Needed for the Diagnosis

of a CNC Machining Center

In our context of di.gnostic problemaolving,

described on ai l€ast three different leveis i

l. the cognitive level,

2. the represenration level,

3. the imPlernentalion level.

as in many others, knowiedge has to be

The fißt level serves for identifying the knowledge structures' which are itnportant to

find the diagnosis. The second level is used to construct a rpresentadon of thisknow_

ledge, which focuses on the main aspects of its structurcs and should be as nat'rral as

po;ible. The third level reflects the pragmatic nec€ssitv ofefficiendv using this know-

ledge representahon.
These levels can be used to diff€rentiate the äreas ir which knowledge app€ars'yet

there exisr other categories for classifving the considered knowledge'

1. Explicit Veßus lmplicit Knowledge (on th€ Representation hvel)

Knowiedge which is directiy available withour tansformation is explicit knowledge'

When needed during the problem-solving process implicit knowledge can be Senerated

by the system baled on exPlicit knowledg€
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2. Explicit VersN lmplicit Knowledge (on the Cognitive kvel)

Within the field of Cognitive Science especialy tn€ concept of n pridt knowledge is
used in a different s€nse. It denotes knowledge th€ resp€ctive olvner is ,?oi conscious
of and has difficuities in making it transparent to olher p€rsons- ln thß sense know-
ledge which can be made transparent without problem is called erpüctr There is much
€vidence (cf. e.s. [Berry8?]) that some kinds of knowl€dge are directly stored in an
implicit fom, üerefore r€quiring conscious effort to make il accessible. Irnplicit
knowledge that has origina y been represented explicitly is also oorrpiled knowledge.

3. Objecl Knowledge versus Meta.Knowl€dge

Object knowledge is knowledge about the machining center (functioning, fauhs and
corresponding causes, machine components, ...). Here the expert is absolutely com
petent. Meta-knowledg€ is knowledge about the diagnosis discours€, i.e. knowledge
for controling the object knowledge to govern the dlagnostic proc€dure acquisition
and learning processes and to generate explanations. Meta knowledge (discourse know-
ledge) is a type of knowledge where the expert may 80 wrong.

4. Knowledg€ Consisting of a Prrtition of the Domain into Class€s
Veßur Knowledge Coruirting of Prototypical f,xampl€s

A. ptototypical example ß a t€chnical term in the field of Cognitive Science denoting
a chunk of knowledge. Such an ex.mple describes a cldss ofapplicarions or things and
it must be cl€ar what is typical in that example and what is variable. A partirion of the
domain into ciass€s is a hierarchical snd more abstnct way for describing knowledge,
but the expert often uses examples to explain his domain-

5 . Brd(ground versu! Foregound Knowledge

Backgound knowledge is that parl of the domain knowledg€ ',vhich is necessary for a
thoroud und€rstanding of the natue of the probl€m. Foregound knowiedg€ is a[ th€
knowl€dge that has a drrect iniluenc€ on th€ diagnostic procedur€.

3: Wherc the Knowledge ß Storcd and how ir Can be Made Usable for the Project

As our diagnostic situation is embedded in the field ofMechanical Engineering, back'
ground knowledge mostly consists of th€ relevant knowledge of the affected subfield.
The.e is plenty of literatur€ available on the subj€cts ofthe principal construction and
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firnctioning of machine tools, numerical controls' the prodüction processes us€d and

the nec€ssary testing facilities
The obict knowledge can be extracted from the technical docunentation ofthe

nachining center, which is not ävailable in public, of cours€ This includes material

about the constructlon of t]rc machine, the control, the circuitry etc'

B€side the problems of acquiflng ali this object knowledge, the nain problem tor

big systems is organizing such a high arnount of inforrnation and identifving the neces-

sary control f<nowledge This {tiscourse knowledge is hardtv documented and exists

.aiity ln *t" fo.. of sttntegies and heuristics in the mind of the servic€ technicians of

long standing. Sinc€ these service technicians (as oth€r experts' too) are not able to

-..*i""t" their rel€vant knowledge completelv (becaus€ nüch of il is imPlicit)'

here is the point where psychologically motivated knowledge acquisition methods

come into play. For a survey of $ese methods see lDederich8T] or lo]son' Ruet€r8?l'

The approach we t t(e is that one member of our knowleds€ acquisition team (an

electrical engrneer) takes part in a lraining in malntaining machining centen at "oul'

machine tooi company This training Provides a kind of kno'tledge platform upon

which a useful processing of all naintenance and repair documents of the lasr v€ars

becornes possible. This result! in a meäsure for eva'luating all the svmptom'cause_at'

tachrnents. Such evaluations enable the realization of rrouble shooting pläns (a kind

of generalized flowaharts), which will be us€d for verificarion purposes duingknow-

ledge acquisition meetings at the machine tool companv'

To get all the detailed discourse and object knowledge into th€ svstem' one 01 our

aims is developing a knowledge acquisition procedure, which is ädequately applicable

at these knowledge acquisition meetings For a lot of good starting points for this see

tPrerauSrl .  ,+nor}er aim ß to detelop a knosledee scquisirron comoonenr '  whrch

;nables the €xpert/knowledge engineer to think änd act in the respectiY€ context using

prototypical examples.

3.3 A System D6ign for Building Big Knowledge Bäs€s

Although nost knowledge acquisition systemshave chosen a relatively geoeral starting

point for automaticaliy classifying and structuring the domain knowledge' we want to

te rather ctose to the respective application The reason for this is our favoring of the

experr's probl€m-solving behavior, which can be modeied sufficiendv onlv if his wav

of thlnki;g sefles as a .letaited guideiine for the diagnostic procedure- Automatical

classification and structuring tends to deviate from this guideline in the end Since

human problem{olving can hardiy be separated from l€arninS' this is an important

parr of  our prolecr The marn lask hele ß to enable lhe syslem lo draw dn' logous ' r_

ierences from known examples based on a similaritv measure for !hen'
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Our starting point is a small prolotype which hÄs explicidy represented domsin
and control knowledge and in which t\e needed world of concepts is rather fixed.lf
tlle knowl€dge acquisition component ß abl€ to work on tlrc representation of such
knowledge a nodel of the system behavior is accessible for the knowledge acquisition
process. This can b€ compared to the user's specifications (in the form ofprololypical
examples). Therefore it is possible to build an int€Srated test environment that allows
to look at, execute and/or change many differ€nt aspects of the system.

Since examples are a very important knowledge acquisition rn€dium, they will be
direcdy repres€ntable within our system. merefore user specifications can be repre-
sented easily. Using the examples the specifications can then be transformed into a
more abstract control and knowledg€ structur€. Al present they include the following

l� Start context

2. Differentiatingsymptons

3. Fault causes

4. Stral€S/ how to find the fault causes beginning with the stlrt context by deter-
nining th€ differentiatingsymptoms

5. Evaluation of the diagnosis strateey

6. Frequency ofexample occürrence

To give a taste of our explicit knowledge r€presentation w€ now introduce contexts
and meta-contexts as exampl€s ofbasic knowledge structures:

A context is the basic structure for modeling a concrete part" of the progam. Ex-
amples are diagnosis contexrs Qike data prcüsion, intermediate diagnosis, fitiel ditsno.
sfs, . . .), nachine conponent contexts (like rool ./ra nger, tasazine, numerical &ntrol ,
...). sysren conlexts (llke input, output, browset, debusser, ditsnosis, kno\,)ledge
acquisition, leaming, explandtion, ...) or example coniextr (sample data). A context
includes among other things production rul€s for diagnosis, production rules for con-
t€xt managing and constraints for modelirg purposes.

For every conlext there exists a corresponding meta-conrext which represenrs meta-
knowledge of the considered context necessary for processing the context informa-
tion. A meta{ontext includ€s €.9. neta-diagnosis rules or meta-context rules, which
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define the strates/ of the rule interpreter concerning processing tlle diagnosis ot con'

text rul€s, resp€ctiv€ly.

Th€ fact that both the object knowi€dge and the control knowledge must b€ repre'
sent€d €xplicitly for usinS a knowledge acquisition component, which ba!€s on the

above mentioned ideas, is not really a rcstriction for their applicability. The reason is

that building a big knowledge base requires a very hiSh amount of fl€nbility and
system transparency on its own, which suggBsts an explicit knowledge repr€s€ntation

not only for the obj€ct knowledge, but for the discouße knowledge, too.

4 Temporal Aspects of Diagnostic Situations

4.1 A Classification oI Tempo.al Aspects

In the past diagnostic expelt system prqects have customarily chos€n to concentrat€
on the representation of the static parts of the experts' knowiedge, e.g. knowledge
about symptoms, tests and faults. The basic assumprion underlying this appro.ch is
thar after a fault has occurred all relevant synptoms are obs€rved simultaneously and
the diagnosis is baled on a static evaluation of this snapshot of the machine's state. Al-
though tl s assumption is justified in nany cäses, critical rcmarks throughout the titera-
ture on dia8nostic experl systems suggest that there are aspects of the diagnostic
procedure or the fauhs to be diagnosed which r€quire an explicil r€presentation of
their temporal propeiies. The literature on mechanical engineering(cf. e.g. [Weck85])
mentions temporal data, too, as a source of information for diagnosis. Naturaliy, the
Al and mechanical €ngineering views of temporal aspects in diagnostic situations do
not coincide completely. However. this does not necessarily jmply that AI r€searcheß
work in disregard of existing knowledge; as seen from the mechanical €ngineer's point

of view some of the aspects thal ar€ relevant to AI are instances of common sens€
reasoning rather than engineering €xpertis€.

Nevertheless there is one important aspect that is common to both peßp€ctives.

Dagnosis is not an end in itself, but a means to th€ end ofrepairing the machine and
rcstoring it to its ful operational capacity. Any improv€m€nl of the diagnostic proce-

dure (in particular any sp€ed-up) serves to minimize the duration and. henc€, the cost
of the standstill. In this sens€ diagnosis and repair are "normal" components ofth€
production process and are therefore subject to the same economic consid€rations a!
al th€ other paraneters in production planning. As a consequence the supervision of
the diagnoslic process is a special case of ^ plrnning situation where the diagnosis is
pursued only as long as rhe utility of the additional information to be gained out-
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weights the additional €ffort. The principal decision criteria in this situation are the ex-
pected cost and duration of the tests, the penalty cost! of the standstill and the
urgency of special acnvities (€.g. due to irnpending danger). In process monitoring and
rrouble rhooting the characteristics of the planning situation become even more pro-

nounc€d becaus€ ür€ r€al-time requüements of th€ process can only be met by judici_

ously inlerleaqng the diagnosüc acrions wilh the primary Plocess.
The second aspect that is repeatedly m€ntioned in the literature on mechanical

engineering conc€rns time ce es of gocess Wt metels. In many cases faulh do not
manifest themselves in rlle form of isolated abnormal obt€rvatioff, instead they
show up as significant p€rturbations of statislical aggregat€s over time (e.9. lrends,
Inean valu€s etc.). Statistical aggegation is a potentially dan8erous oPeralion sinc, ir
eliminates the temporal cllaracter of r.he observations and thus informalion about the
originat data is lost. In the case oflong time series this mayjustified because statistical
significance is guaranteed by the sheer quantity of measurements; ev€n then it may be
pot€ntially misleading to nix aggregat€s and single observations in e.g. a rule embody-
ing diagnostic knowledge. But in a large number of ca|€s \etmed dyramic ldult titua'
rions faults ar€ characteized by short sequenc€s of events and machine states rather
than long series. Consider for €xample the following example of a hypothetical frult
that results in parameter A's value being b€low normal, then rising above normal for a
penod of time and finaly dropping below norrnal agaln.

Fig. 2, A ictitious dynanic fault situslion

In such a case no single \napshot" of the machinet state can be an adequat€
description of the fault situalion nor can such a fault be detected by any single measurc.
m€nt. The only way to detect it is to measure parameteß at several points oftime and
to match lhe valu€s obtained againsl an €xplicil description of the evolution of the
fauh situation over tim€. W€ will call such a description a ,irtory and the set ofmea-
surement! an oösel'atlon sequence. A vety simil?�t problen arises ifa parameter is not
direcdy observable but can be deduced from multiple measurements of other param-



Two other aspects can be found in the literature on diagnosric sysrems. In reality
tne sequence faul! + observarion + diagnosi! ' repair is rarely folowed in its oure
forn. in oarrtcular dra8nosis and repair ofren cannol be separared rn rhjs one-uar
fashion. ln conlrasr ro medical scrence rt ß a srandard procedure rn rechnrcai diaenosis
ro replace indrvidual pa'rs of lhe machine on d {guided) rrial and error basis an; üur
eventually home in on the cause of the faulr. Another situation whi€h cals for an
alter,ation of diagnosttu anrt rcpai dctio s oc.lts when rhe machine has been damaced
selerely so rhal il has ro be repaired p,ovirionalt' before rhe dragnoss can be canied
out. Reflecting rhis procedure in an expert system poses a number ofdifficult logicai
(non-monotonicity) and computanonal (frane problen) problems since some oi the
eadier observations witl have been invalidared by the replacernenr whereas orhen wül
have not (rhis being the very Iarionale behind the strare$/). A naive soturion ro the
problem would be to rest rt the experr system €ach rime a part has be€n r€plac€d and
to r€pear all observations including those that have not be€n affected by the replace-
nenr. ObMously. rhrr solur|on cannol be ialistacrorv srnce rhere q ouftj be no wav
forrhesyslemtodirecdycompareobserva onsf,ombetorearr/atrerrherepraemenr
which night wel be cruciat for the diagnosis. One way out is ro partition time into th€
Inrervals between any rwo conreculrve !eplacemenß and ro index obqervalons wirh
the corresponding interval. As w€ can see, ttrc only temporal prop€rty that remains
relevant is the orderinS of time whereas durations and more complex temporal rela-
tions do not play a ro1e. This simplifi€s rhe siruation up to a point where the predomi-
nant issue is the trurh maintenance problem rather than rhe remporat representation.

Lasrly.  bar ing rhe oidgnosric proce.!  on I  deep modet of rhe machine Inouces rhe
need lbr l€nlnporal inferences. In the couße of the s,/rrl, tion or the enrßi.)nins of
rhe rrachinei beha\ ior $e have ro keep rract of  r_he srare inrena,s for rhe var ious
machine paramereß and of rhe rempolai relarions between thern_ This aspecr has been
mentioned before in the section on modet-based diagnosis, so we wil skip it here.

Al l  in al l  we hare oiscusseo tour remporat dspecr,  o '  d,agnosrrc siruairo"s

lspecl .li time as a decision criterion in diagnosb p$n.rng

,4sp€c, 2r dynamic faulr situarionyhisrones

Aspect 3. inretle^\inrdiagnosis and repair

.4specr ?i envisioning/simulating the nachine,s behavior

Each of these aspecrs requires r speciatized knowledge repr€sentation formatism and a
suitable inference m€chanism. ln the rest of rhis section we are going to take a closer
look at aspect 2.
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4.2 Dynamic Fault Situations: the R€pr€sentation and Matching of Histories

265

In paragraph 4.1 we introduced histories as an explicit descdption of evolving iauh
situälions. If we take a look at conventional rule languages and try to accommodate
histories in the terminological framework they prcvide, we notic, rhrt aithough they
all permit complex rule conditions very few of them off€r conslrucls to express the
kind of temporal relations between the individual conditions that are needed to re-
present histori€s. E.g. in the rule

IF vaiue ofpararneter A > 30

AND value ofpalamete! ts < 80

THEN component XYZ overheared

which is typical of conventional rule iormalisms there is no indication whether A and
B have to b€ measur€d simultaneously or merely in the course of the same consulta'
tion wilh any amount of time in between. Usually the implicit assumption is made
that all observations have indeed been made simultaneously or ' som€what weaker
that the observation conditions have been kept sufficiently constant during the whol€
consullation so that variations of the param€t€r values can be neglecrcd. While this is
a useful abstraction in many cas€s. it d€finitely does not hold in the case ofhistories
where parameteß are m€asured at diffelent pointx of time l, o/der 1r] detect changes.
The weaker form of the assumption does not hold either: frequendy the observer
intentionally changes the obsenation conditions thereby inducing variations in the
parameter values. Consequently the expressive power of traditionat nne fornalisms
(nore specificallyi of traditlonal rule conditions) has to b€ ext€nded.

This exlension can be carried out in different ways. At lhe moment the choice
of an optimal repres€ntation for histories is still an open problem. At least three of
then which all have rheir individual ments aod are currendy under invesligation hav€
to be mentioned here.

4.2.1 Tine Series Atldlysk

If we slart from the procedure thal is usually employed in nechänical engine€ring, the
mathemarical techniques of time seri€s analysis (cf. e.s. [Ändeßon7s]) seerr to be the
natural choice. Th€y äre suited especially well to the compact description ollong time
s€ries. In the €xrmpl€s studied so far. however, the s€ries are too short so that rhe
advantages of a conpact description do not compensale th€ conceptual and analytical
overhead. Wheüer the break4ven-point can be r€ached at aLl in diagnostic situations
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cannot be decided at this point of tirne. Furthermore it has to b€ in!€stigated for

which applications the assumptions of lhe stochastic process nodels are satisfied. Al-
though we ruspect tha! the neüods of time senes analysis would have to undergo
substantial changes to b€com€ useful for knowl€dge representation they cannot be
ruled out as a candidate for rhe representation of hislories on tlle basis of pres€nt

4.2.2 Temporul Losic

Another appmach nakes us€ of the various logics that have been proposed for the
treatm€nt of remporal infonnation in AL Historica y, t}Iese temporal logics have
many ancestors in nalhern.tical logic. In AI they were first applied in two subfields
which are unrelated to diagnosis: planning and natural language understa,iding. Many
€arly problem solving programs ran into serious trouble when they assumed a static
surrounding. Fr€quently, examples of intelligenf' plannin8 behavior rely on the ex-
ploitation of parallelism or side effects which c.n be fonnalized only poorly using
traditional situation calculi which were state of the art then. At the same time, bul
independently, linguists became inter€sted in temporal iogic because a better under-
standing of discoußes seemed to require the knonl€dge of the speakeis intentions;
the description of rhes€ int€ntions which include plans and goals raised similar ques-
tions as the plans in problem soiving.

Among ürc various proposals for lime logics €sp€cially those of Järnes Allen
lAllen83l aod Drew McD€rrnolt [McDennottS2] have gained wide-spread recognition-
Both provide a basic vocabulary for time references and rclations between temporal
referents. ln James Allen's time iogic the basic referents are time intewals which can
stand in any of the thirteen possible interval relations (before, during, ov€daps etc.) to
each other- Using intervals and relalions we can describe simple histori€s by specifying
s€quences of consecutive state intervals for sel€cted machine parameleß. Consider the
folowing (fictitiout €xanple :

o f l
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In the diagram tim€ flowshoizontally from left to rjght, the rhree bars corr€spond

ro the s€lected parameters and each state interval is narked offas a bar seSrnent- The
lenglhs of the segnenrs ar€ nol significant;all üat matl€rs is the relative position of
the intervals with r€spect lo each odler- IAllen83l discusses extensions of his basic
logic (e.g. absolute tim€ reierences, reference intervals, multiple tine lin€s)which are
need€d to capture more complex diaSnostic plans.

I-et us suppose that the de$ription of a history (as the one above) forns th€ con-
dition part of a diagnostic rule that suggest! a c€rtain fault. Oiven such a rule the rule
interpreter has to match the incoming observations agalnst its condition. The r€sdl of
a successful match is a napping from the obseNations in the obseflation sequence to
compatibl€ state intervals in the history. At any time during the di.Snostic process an
initial part of the obsewations has already been made while the results of th€ other
measurements are still unknown. In contrast to conventional patlem matching where
th€ pä11€m and the data are specified completely we have to deal with a complete pat-

tern (the description of the hhtory) and incornplete data which accumulaie over time.
In many cases non monotonicity is an inescapable consequenc€ ofsuch a situation.ln'
terestinSly, thoü8h, matching histories against observations is monotonous since a
measurement that does not fit ä history cannot be compensaled by anothet observa'
tion later in the sequenc€ (alo$ing for obs€ruation errors night complicate matters,
of couß€). To take ad%ntag€ of the accumuiating data as soon as possible th€ match-
ing operation can be carried out incrementaly assigning a modal status to each hislory
which is updat€d after each obserration. This status abo includes the i.fornation
about the partial mapping from observations to intervals to which lhe pattem matcher
has cornmitted its€lf so far.

4.2.3 Dßcouse Reptesentation Theory

The third approach is motivated by the knowledge engineeis view- Histories or
Inore completely, whole diagnostic plans consisting of observalions and actions - have
to be extracted from the expert's accounl ofhis knowledge. This knowledge is usually
presented in the form of a natunl language discouß€. All proposals that we have seen
so far have in common that the transition from the expert knowledg€ to th€ internal
lepresentalion requires an interpretative intermediate step. A! an example in Allen's
time logic the chaücteristic macfun€ parameters have to be singled oul before lhe in-
teffal structure can be constructed. In general this may not be easy because the
neaning contents of a discouße is to be represented in a länguag€ which was designed
for a totally different purpos€. If we acc€p! this as rhe key problem the logical next
step would be 1() use the formalisms dev€loped by linguists explicitly fbr th€ represen-
tation of discoußes. Ev€n if th€ir exDresslve Dower did not exceed that of the oth€r



approaches, at least th€ €xistence of aiSorithms for th€ €xtraction of discourse repre_

sentation slruclures fron texts wouid nake them highly atlractive for knowledg€

A good candidate for a represenl.don language is Hans Karnp's Discourse Repre'

sentation Theory @RT) (cf. e.s. IKamp81], lKolb83]) which has been us€d before for

knowledge repres€ntation purposes. One ofthe objectives ofthe LEX projecl that was

carried out ioinlly at the IB['l resedch c€nler at Heidelberg and at the Univenity of Tü-

bingen was t]Ie r€presentation oflegal t€xts in an advisory expelt syst€n. Although legal

rexts contain fewer temporal references than histories the LEX approach addrcsses a

number ot key problens that occur in the treatment ofhistories as well. Aslessing tne

feasibilily of an ext€nsion of Dscouße Representation Theory for the representation

of more comDlex tempolal refer€nces is one ofour cullent research interests.

5 Conclusion

We have pointed oul that a comprehensive treatment of the diagnostic procedures in
technical diagnosis has ro includ€ rnore than just factual knowledge in th€ form of
production rules. The combination of rules with a structurai model of the machining
cenl€r improves the system's performanc€ when confronted wnh unforeseen faults.
Hypotheses can be verified by modifying the model in correlpondence wilh th€
suspected fadt and envisioning the resulrs. Furthermore t}le diagnosis can be explained
within th€ same conceptual framework that the exper! uses. In contrast to other diag_
nostic applications which can be trcated statically the temporal properti€s ofrhe faulls
and lests have to be taken into considerarion on diiferent level! of abstraction. Afler a
summary description of four important temporal aspects we have given a more de'
tajled accoünr of dynamic fauit sihrations, their representation in an expe system and
the pragmatica of their us€ in a rule-based setting. One should |lole thrt although for
didactic r€asons we have referred to the rule paradigm s€vera1 times throudout this
section, a ol the ideas presenred can be applied equally well in a model-based expe(
systern. The acquisition and structuring of Lhe diff€r€ni kinds ofknowledge needed in
our system poses a numb€r ofproblems that need special attention and blend with th€
simdalion of the exper!\ lea.ning behavioi.
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