
Efficient SIMD Vectorization for Hashing in OpenCL
Tobias Behrens1 Viktor Rosenfeld1 Jonas Traub2 Sebastian Breß1,2 Volker Markl1,2

1DFKI GmbH 2Technische Universität Berlin

ABSTRACT
Hashing is at the core ofmany efficient database operators such as
hash-based joins and aggregations. Vectorization is a technique
that uses Single Instruction Multiple Data (SIMD) instructions
to process multiple data elements at once. Applying vectoriza-
tion to hash tables results in promising speedups for build and
probe operations. However, vectorization typically requires in-
trinsics – low-level APIs in which functions map to processor-
specific SIMD instructions. Intrinsics are specific to a processor
architecture and result in complex and difficult to maintain code.

OpenCL is a parallel programming framework which provides
a higher abstraction level than intrinsics and is portable to dif-
ferent processors. Thus, OpenCL avoids processor dependencies,
which results in improved code maintainability. In this paper,
we add efficient, vectorized hashing primitives to OpenCL. Our
results show that OpenCL-based vectorization is competitive to
intrinsics on CPUs but not on Xeon Phi coprocessors.

1 INTRODUCTION
Modern processors support Single InstructionMultiple Data (SIMD)
extensions. These vectorized instructions process multiple data
values in a single instruction to increase the computational effi-
ciency of a program. Database operators that use SIMD instruc-
tions are several times faster than scalar operators, because they
process multiple tuples at once [8, 10, 11, 13].

Compilers expose SIMD instructions through function-like
primitives called intrinsics [5]. Since intrinsics correspond di-
rectly to SIMD instructions of a processor, they are processor-
dependent. Different processor architectures use specific instruc-
tion sets and each processor generation typically adds new in-
structions. Consequently, supporting vectorized database opera-
tors on different processors requires continuous maintenance of
a growing code base and increases development costs.

Parallel computing frameworks such as OpenCL abstract from
low level intrinsics and enable programmers to write code in
a restricted dialect of C. The major advantage of OpenCL is
its portability. Processor-specific compilers translate OpenCL
programs to efficient machine code. OpenCL natively supports
vectorized data types, which are directly compiled to the native
SIMD instructions of a particular processor. However, OpenCL’s
vectorized instruction set is limited to arithmetic, logical, and
permutation operations. Therefore, we need to emulate more
complex SIMD instructions such as Gather and Scatter [8].

In this paper, we leverage OpenCL to provide vectorized imple-
mentations of database operators which are portable to different
instruction set architectures and processors (e.g., Intel CPUs and
Xeon Phi coprocessors). OpenCL programs are implemented in
special functions called kernels. We provide vectorized kernels for
the data movement primitives selective load, selective store, gather,
and scatter [8]. These primitives are essential building blocks of
hash-based operators. We use vectorized hashing operations for
© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

A
B
C
D

Start

Memory Mask

1
0
0
1

A

B

Register

a) Selective load.

A
B
C
D

Start

Memory

C
D
A
A

Register

3
4
1
1

Positions

b) Gather.
Figure 1: Vectorized data movement primitives. Grey
boxes indicate values that are neither read nor written.

our case study because they are at the core of many database
operators. Our results show that portable OpenCL-based hashing
is competitive to processor-specific vectorized implementations.

Specifically, we make the following contributions:
(1) We adapt vectorized data movement primitives to the

OpenCL computation model. Using these primitives, we
formulate explicitly vectorized algorithms of different data
processing operations (Section 3).1

(2) We compare our OpenCL-based approach with intrinsics-
based SIMD instruction sets – namely, AVX2 on a Haswell
CPU and AVX512 on a Xeon Phi coprocessor (Section 4).

2 BACKGROUND
2.1 Vectorized Data Movement Primitives
Vectorized data movement primitives move data between SIMD
lanes (i.e., the components of SIMD registers) and memory loca-
tions [8]. Selective Load, Selective Store, Gather, and Scatter are
such data movement primitives. Selective Load (Figure 1a) selects
data from contiguous memory (starting at an offset) and copies
it into SIMD lanes specified by a bitmask. Selective Store is the
inverse operation of Selective Load, which copies data from SIMD
lanes into contiguous memory. Gather (Figure 1b) selects data
from discontiguous memory and copies it into SIMD lanes. A
separate SIMD register provides the pointers to data elements.
Scatter is the inverse operations ofGather which copies data from
SIMD lanes to discontiguousmemory. Modern processors support
these operations natively to a certain extent: The Intel Xeon Phi
coprocessor, which uses the AVX512 SIMD instruction set, sup-
ports all four primitives. Intel Haswell CPUs, which use the AVX2
SIMD instruction set, support Gather operations only. However,
Polychroniou et al. emulate these primitives using basic SIMD
permutation instructions at a small performance penalty [8].

2.2 Vectorized Linear Probing in Hash Tables
A probe operation iterates over many keys. Vectorized hash tables
use a SIMD register (k) to probe multiple keys (ki) at once. We
show the initial iteration step of vectorized hashing in Figure 2a:

1 We load probe keys (ki) into a SIMD register (k) with
Selective Load. In the first iteration, we load all SIMD lanes
as indicated by the green bitmask.

2 For each probe keyki in the SIMD register, we compute the
hash hi and store it in a SIMD register h. We keep separate
SIMD registers for probe keys (k) and their hashes (h).

3 We use the hash values as position pointers in a Gather
operation to load buckets from the hash table. We store
the found keys in a new SIMD register k ′.

1Source Code: https://github.com/TU-Berlin-DIMA/OpenCL-SIMD-hashing

Short Paper

Series ISSN: 2367-2005 489 10.5441/002/edbt.2018.54

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.54

Load

Memory Probe
keys

Hash

Hash
values …

k1
k2

k1 h1
k1

k3
k4
…

k2
k3
k4

h2
h3
h4

…k5
…k2
…k4
…k3
……

Hash table

Gather

Found
keys

k1
k5
k3
k4

Collision
mask…

Verify

1 2 3 4

a) First iteration.

Add 1

Hash values

h1
h2
h3
h4

h1
h2+1
h3
h4

5

b) Linear probing.

Memory Probe
keys

Hash

Hash
values

k5
k6

k5 h5

k7
…

k2
k6
k7

h2+1
h6
h7

…

Load

…

6 7

c) Second iteration (partial).

Figure 2: Vectorized operations on a linear probing hash table.

4 We compare the original probe keys (k) with the keys we
retrieved from the hash table (k ′). This comparison results
in a collision mask (c). Light green boxes in the mask
indicate matches and dark red boxes indicate collisions.

In our example, we find three expected keys: k1, k3, and k4. How-
ever, the hash table contains the key k5 at position h2 instead
of k2, which indicates a collision (i.e., k2 and k5 have the same
hash). In general, there are three possible cases per probe key:
(1) The bucket contains the key. (2) The hash bucket is empty.
(3) The key in the hash bucket and the probe key are different.

In cases one and two, we replace the matched probe key in
k with a new probe key. In case three, we keep the probe key
ki , but increment its hash value hi in h to probe the next bucket
(Figure 2b, step 5). We now continue with the next iteration.

6 We use the collision mask to load new keys into the SIMD
lanes for which there was no collision in the previous
iteration, leaving key k2 unchanged as described above.

7 We compute hashes for the new keys in k , leaving the
value h2+1 unchanged. Steps 3 to 7 repeat until all
probe keys are processed.

Note that we need to write the payload (matched keys) into an
output buffer with Selective Store between steps 4 and 5 , e.g., to
perform a hash join. For simplicity, we ignore empty hash buckets
in the illustration in Figure 2. To handle empty hash buckets, we
need to compute three bitmasks. The first bitmap (c ′) indicates
found keys, the second bitmap (c ′′) indicates empty buckets, and
the third bitmap (c) indicates collisions (c = ¬c ′ ∧ ¬c ′′).

If we are building a hash table, instead of using a Gather oper-
ation to load payloads, we use a Scatter operation to store keys.
Since multiple SIMD lanes can point to the same hash bucket, we
need to verify afterwards if the hash table contains the expected
keys using steps 3 and 4 . For successfully stored keys, we
store the payload in the hash table using a scatter operation. For
conflicting keys we need to probe the next bucket using step 5 .

Note that the hash table is unaware of being accessed with
vectorized operations. We can use the described scheme to access
hash tables built with scalar operations and vice versa.

2.3 Related Work
Heimel et al. showed that OpenCL is a viable way to run database
systems on heterogeneous processors [4]. Ourwork complements
this research by porting vectorization optimizations to OpenCL.
Pirk et al. introduced Voodoo – a vector algebra that abstracts
from the underlying processor and generates OpenCL code [7].
Breß et al. introduced Hawk – a hardware-tailored code generator
which produces custom code for heterogeneous processors [3].
Our work complements Voodoo and Hawk with templates for
efficient vectorized hash tables in OpenCL.

Richter et al. showed a seven-dimensional analysis of hash
tables [9]. Balkesen et al. [1] and Blanas et al. [2] studied efficient
hash joins focusing on radix joins. Jha et al. optimized hash joins
for Xeon Phis, but with limited use of SIMD instructions [6].

Zhou and Ross introduced vectorizations for major database
operators (selections, joins, aggregations, etc.) [13]. They pointed
out opportunities of SIMD in databases but did not apply SIMD to
hash tables. Complementary to ourwork, Ye et al. evaluated differ-
ent strategies for efficient aggregations on multi core CPUs [12].

3 PORTABLE VECTORIZED HASHING
In this section, we review vectorization support in OpenCL and
present the internals of our OpenCL-based primitives Selective
Load, Selective Store, Gather, and Scatter.

3.1 Vectorization Support in OpenCL
To implement data movement primitives, we use several built-in
functions. OpenCL natively supports vector data types which
represent SIMD registers. OpenCL also provides arithmetic and
logical operations on vector types. For example, we compare two
vectors containing four values in Listing 1. We can also access
individual vector components by their indices which increase
from left to right. For example, probeKeys.s0 selects the left-
most component containing the value k1.

1 u i n t 4 probeKeys = {k1 , k2 , k3 , k4 } ;
2 u i n t 4 foundKeys = {k1 , k5 , k3 , k4 } ;
3 u i n t 4 mask = probeKeys == foundKeys ; / / { - 1 , 0 , - 1 , - 1 }

Listing 1: Vectorized data types and operations inOpenCL.

The function shuffle(input, mask) returns a vector in
which each component si contains the value of input.sj that
is specified by the corresponding component si in mask, i.e.,
j = mask.si . The function select(a, b, mask) returns a vec-
tor in which each component si contains the value of a.si if
mask.si ≥ 0 and b.si otherwise.

3.2 Implementation of Primitives
Selective Load. Listing 2 shows the internals of the Selective

Load primitive which we introduce with the other primitives
in Section 2.1 (Figure 2a). The algorithm has four parameters:
(1) input: source memory buffer, (2) offset: read offset on input.
(3) vector: target vector, and (4) mask: indicates the components
in vector which will be overwritten. The algorithm uses the
parameters as follows: (1) It moves components which will be
overwritten to the left of the target vector and adjusts the mask
accordingly (Lines 3–6). (2) The algorithm loads the input data
into a temporary vector (Line 7). (3) It copies the left-most values
from the temporary vector into the target vector according to
the mask (Line 8). (4) The algorithm moves the components of
the target vector back to their original positions (Lines 11–12).

The shuffle functions used in steps 1 and 4 of the algorithm
require permutation masks (left and back) to reorder the target
vector. To speed up execution, we precompute these masks and
store them in two lookup tables (one per step).

490

1 / / I npu t s : input , o f f s e t , v e c to r , mask
2 / / Outputs : o f f s e t , v e c t o r
3 u sho r t index =

∑n
i=0 −2n−i × mask.si ;

4 uchar8 l e f t = c onv e r t _ u i n t 8 (move_ le f t_masks [index]) ;
5 v e c t o r = s h u f f l e (v ec to r , l e f t) ;
6 i n t 8 mask2 = s h u f f l e (mask , l e f t) ;
7 u i n t 8 tmp = v load8 (0 , &inpu t [o f f s e t]) ;
8 v e c t o r = s e l e c t (v e c to r , tmp , mask == - 1) ;
9 o f f s e t += popcount (index) ;
10 / / l i n e s below can be omi t t ed f o r o p t im i z a t i o n
11 uchar8 back = c onv e r t _ u i n t 8 (move_back_masks [index]) ;
12 v e c t o r = s h u f f l e (v ec to r , back) ;

Listing 2: OpenCL implementation of Selective Load.

1 / / I npu t s : output , o f f s e t , v e c to r , mask
2 / / Outputs : o f f s e t
3 uchar index =

∑n
i=0 −2n−i × mask.si ;

4 uchar8 l e f t = c onv e r t _ u i n t 8 (move_ le f t_masks [index]) ;
5 u i n t 8 tmp = s h u f f l e (v ec to r , l e f t) ;
6 v s t o r e 8 (tmp , 0 , &ou tpu t [o f f s e t]) ;
7 o f f s e t += popcount (index) ;

Listing 3: OpenCL implementation of Selective Store.

1 / / I npu t s : input , v e c to r , mask
2 / / Output : v e c t o r
3 v e c t o r . s0 = inpu t [mask . s0] ;
4 v e c t o r . s1 = inpu t [mask . s1] ;
5 / / . . . up to v e c t o r . s7 = inpu t [mask . s7] ;

Listing 4: OpenCL implementation of Gather.

We select the required permutation mask depending on the
mask parameter (Line 3). The lookup tables together consume 4
KB and fit comfortably in the L1 cache.

Step 4 of the algorithm is only required if the calling code ex-
pects the components of target vector to remain in the original
order. In many cases the calling code does not have this expec-
tation. For example, the hashing scheme in Section 2.2 does not
require the original order as long as reordering is mirrored be-
tween probe keys and the collision mask. Therefore, we optimize
the general implementation shown above by omitting step 4 of
the algorithm (Lines 11 and 12). This optimizations discards one
lookup table and saves the respective space in the L1 cache.

Selective store. The implementation of Selective Store is pro-
vided in Listing 3. It is similar to Selective Load and has the same
parameters. Again, we move the components of vector that
will be stored according to mask to the left (line 5). The values
are then written to output (Line 6). Since the original vector is
unchanged, we do not have to shuffle it back.

Gather and Scatter.We provide the implementations for the
Gather and Scatter primitives in Listings 4 and 5. We access the
components of vector and mask by their indices (see Section 3.1).
Overall, we replace a complex and non-portable implementation
based on intrinsics (Listing 6) with a fairly simple and portable
implementation in OpenCL. Our implementation offers the same
functionality, while improving maintainability and portability.

4 EVALUATION
4.1 Experimental Setup

Execution Environment.We evaluate our implementation
on two processors, an Intel Core i7-6700K CPU2 and a Xeon Phi
7120P coprocessor3 based on Intel’s MIC architecture. As of writ-
ing, the newer Xeon Phi Knights Landing (KNL) product line does
not yet support OpenCL. On the Xeon Phi, we utilize 60 threads
for our measurements to emphasize call overheads. On the CPU,

24 GHz, 4 physical cores, 2 threads/core, 8 MB L3 shared, 32 GB RAM
31.24 GHz, 61 physical cores, 4 threads/core, 512 kB L2 per-core, 16 GB RAM

1 / / I npu t s : input , v e c to r , mask
2 ou tpu t [mask . s0] = v e c t o r . s0 ;
3 ou tpu t [mask . s1] = v e c t o r . s1 ;
4 / / . . . ou tpu t [mask . s7] = v e c t o r . s7

Listing 5: OpenCL implementation of Scatter.

1 / / I npu t s : u i n t 6 4 _ t ∗ t a b l e , _ _ 1 28 i index
2 __m128i index_R = _mm_s h u f f l e _ ep i 3 2 (index , _MM_SHUFFLE

↪→ (1 , 0 , 3 , 2)) ;
3 __m128i i 1 2 = _mm_c v t e p i 3 2 _ e p i 6 4 (index) ;
4 __m128i i 3 4 = _mm_c v t e p i 3 2 _ e p i 6 4 (index_R) ;
5 s i z e _ t i 1 = _mm_c v t s i 1 2 8 _ s i 6 4 (i 1 2) ;
6 s i z e _ t i 3 = _mm_c v t s i 1 2 8 _ s i 6 4 (i 3 4) ;
7 __m128i d1 = _mm_ l o a d l _ e p i 6 4 ((__m128i ∗)&t a b l e [i 1]) ;
8 __m128i d3 = _mm_ l o a d l _ e p i 6 4 ((__m128i ∗)&t a b l e [i 3]) ;
9 i 1 2 = _mm_ s r l i _ s i 1 2 8 (i 12 , 8) ;
10 i 3 4 = _mm_ s r l i _ s i 1 2 8 (i 34 , 8) ;
11 s i z e _ t i 2 = _mm_c v t s i 1 2 8 _ s i 6 4 (i 1 2) ;
12 s i z e _ t i 4 = _mm_c v t s i 1 2 8 _ s i 6 4 (i 3 4) ;
13 __m128i d2 = _mm_ l o a d l _ e p i 6 4 ((__m128i ∗)&t a b l e [i 2]) ;
14 __m128i d4 = _mm_ l o a d l _ e p i 6 4 ((__m128i ∗)&t a b l e [i 4]) ;
15 __m256i d12 = _mm256_ca s t s i 1 28_ s i 2 56 (_mm_unpack l o_ep i 64

↪→ (d1 , d2)) ;
16 __m256i d34 = _mm256_ca s t s i 1 28_ s i 2 56 (_mm_unpack l o_ep i 64

↪→ (d3 , d4)) ;
17 __m256i r e s = _mm256_permute2x128_si256 (d12 , d34 ,

↪→_MM_SHUFFLE (0 , 2 , 0 , 0)) ;

Listing 6: SIMD implementation of Gather [8].

we utilize eight threads to emphasize attainable throughput. We
use native implementations based on intrinsics [8] as a baseline.
First, we perform microbenchmarks to measure the performance
of our vectorized data movement primitives in isolation. We then
evaluate the complete hash table implementation by executing a
hash join. We separately measure building the hash table on the
inner join table, and probing it with keys from the outer table.

Every experiment is executed 20 times. We prevent autovec-
torization of the scalar and intrinsics implementation. For each
experiment we generate new test data to obtain unbiased results.

Load and Store. To evaluate both primitives, we stream 100
million keys (108, 32-bit int) from memory into a SIMD register
(or vice versa) and measure the throughput. For each invocation,
we change the mask indicating which SIMD lanes are accessed,
accessing four out of eight lanes on average. The large number
of keys simulates a large outer table of a hash join.

Gather and Scatter. To evaluate Gather and Scatter, we read
100 million keys from discontiguous memory locations into a
SIMD register. We use memory regions of different sizes, from
4 kB to 64 MB, to simulate hash tables built on inner tables used
in a hash join. The stride size between the memory locations
depends on the size of the memory region. Especially for large
memory regions, we chose the indices so that the accessed data
does not fit into the processor cache.

Hash Join Build and Probe. In general, we adopt the ex-
perimental setup of Polychroniou et al. [8] in order to obtain
comparable results. We build a hash table on the inner table with
a load factor of 50% and evaluate hash tables of different sizes,
from 4 kB to 64 MB. On the Xeon Phi, we cannot build 60 hash
tables of 64 MB in OpenCL due to OpenCL memory allocation
restrictions. As the reference [8] does not provide an intrinsics
implementation for the build on CPUs, we omit the curve.

To simplify partitioning the workload to different threads, the
number of keys in the outer table depends on the processor. On
the CPU, the outer table contains 100 million keys. On the Xeon
Phi, it contains 245.76 million keys. We chose the keys in the
outer table so that on average every tenth key is found in the
hash table. Note, that our hash join implementation includes
writing the matched probe keys to an output buffer.

491

0

1

2

3

0.0

2.5

5.0

7.5

10.0

12.5

Intrinsics OpenCL

B
il.

 O
ps

 /
S

ec
on

d G
B

 / S
econd

Selective Load

0

1

2

3

0.0

2.5

5.0

7.5

10.0

12.5

Intrinsics OpenCL

B
il.

 O
ps

 /
S

ec
on

d G
B

 / S
econd

Selective Store

a) Selective Load & Store on CPU.

L1 L2 L3

● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

●
● ● ●

●

● ● ●

●

● ● ● ●0.0

0.5

1.0

1.5

2.0

0

4

8

12

16

4
kB

16
 kB

64
 kB

25
6

kB
1

M
B

4
M

B

16
 M

B

64
 M

B

Hash Table Size

B
il.

 K
ey

s
/ S

ec
on

d

G
B

 / S
econd

Without call overhead

b) Build in OpenCL on CPU.

L1 L2 L3

● ● ● ●
● ●

●

● ●
●

● ●

●

● ●
0.0

0.5

1.0

1.5

2.0

0

2

4

6

8

4
kB

16
 kB

64
 kB

25
6

kB
1

M
B

4
M

B

16
 M

B

64
 M

B

Hash Table Size

B
il.

 K
ey

s
/ S

ec
on

d

G
B

 / S
econd

c) Probe on CPU.

L1 L2 L3

● ● ● ●

●
● ●

● ● ● ● ● ● ● ●

0

1

2

3

0

5

10

15

20

25

4
kB

16
 kB

64
 kB

25
6

kB
1

M
B

4
M

B

16
 M

B

64
 M

B

Hash Table Size

B
il.

 B
uc

ke
ts

 /
S

ec
on

d

G
B

 / S
econd

●

Gather (Intrinsics)

Gather (OpenCL)

Scatter (Intrinsics)

Scatter (OpenCL)

d) Gather & Scatter on CPU.

L1 L2
● ●

●
●

●

●

●
●

● ● ● ● ● ●

0.00

0.05

0.10

0.15

0.20

0.0

0.4

0.8

1.2

1.6

4
kB

16
 kB

64
 kB

25
6

kB
1

M
B

4
M

B

16
 M

B

64
 M

B

Hash Table Size

B
il.

 K
ey

s
/ S

ec
on

d

G
B

 / S
econd

●Scalar (C) Scalar (OpenCL) Vectorized (Intrinsics) Vectorized (OpenCL)

e) Build on Xeon Phi.

L1 L2

● ●
● ●

● ● ●

● ●
●

●

● ● ● ●
0

1

2

0.0

2.5

5.0

7.5

10.0

4
kB

16
 kB

64
 kB

25
6

kB
1

M
B

4
M

B

16
 M

B

64
 M

B

Hash Table Size

B
il.

 K
ey

s
/ S

ec
on

d

G
B

 / S
econd

f) Probe on Xeon Phi.
Figure 3: Evaluation results on the Intel Core i7-6700K CPU and Xeon Phi 7120 coprocessor.

4.2 Results
Selective Load and Store. Figure 3a shows the results of

the Selective Load and Store microbenchmarks. The intrinsics-
based version of Selective Load outperforms the portable OpenCL
implementation by a factor of 1.75. The native Selective Store
implementation is 4.6 times faster than the OpenCL version.

Gather and Scatter. Figure 3d shows the results of the Gather
and Scatter microbenchmark. If the hash table fits into the L1
cache, the intrinsics implementation of Scatter is 1.5 times faster
than the OpenCL version. However, if the hash table size exceeds
the L1 cache, the performance of both implementations drops.
The native implementations of Gather is between 1.75 and 1.9
times faster than the OpenCL-based implementation.

Hash Join Build. We present the results of the hash build
experiment for the CPU in Figure 3b and for the Xeon Phi in
Figure 3e. On the CPU, the OpenCL-based vectorized implemen-
tation is marginally slower than the OpenCL-based scalar imple-
mentation. Both are significantly slower than the C-based build
and exhibit a curious rising trend up to a hash table size of 1 MB.
This trend is due to overheads of OpenCL kernel invocations.
To illustrate this, we also show scalar implementations which
build 10000 hash tables inside a single function to minimize call
overhead (dashed lines). These curves follow the expected shape.
On the Xeon Phi, all implementations show a rising trend due to
function call overhead. These overheads cause the bowl-shaped
form of the curves which is most visible for the C-based scalar im-
plementation. However, we cannot fully explain why the curves
of the C-based and OpenCL-based scalar implementations cross
between the hash table sizes of 64 kB and 128 kB.

Hash Join Probe. Figures 3c and 3f show the result of the
hash probe experiment on the CPU and the Xeon Phi.We compare
the vectorized OpenCL-based implementation with an intrinsics-
based implementation [8] and a scalar implementation. On the
CPU, both vectorized implementations outperform the scalar
version as long as the hash table fits into L2 cache. For 4 kB hash
tables, the intrinsics-based implementation is twice as fast as the
scalar implementation, whereas the OpenCL-based implementa-
tion is 1.3 times faster. For small hash tables on the Xeon Phi, the
intrinsics-based implementation greatly outperforms the scalar
version whereas the OpenCL-based vectorized implementation

is slower. On this processor, the data movement primitives are
implemented directly as SIMD instructions which perform much
faster than implementations that rely on an emulation.

5 CONCLUSION
Vectorized database operators improve performance but require
processor-specific APIs. In this paper, we vectorize the essential
primitives Gather, Scatter, Selective Load and Selective Store in
OpenCL to reduce code complexity and to ensure portability.

We conduct an evaluation on CPUs and Xeon Phi coprocessors.
In general, vectorized hashing based on intrinsics outperforms
OpenCL-based hashing. Hash tables usually exceed processor
caches. In this case, both variants arememory-bound and perform
similarly. However, on CPUs, OpenCL-based vectorized hashing
outperforms scalar hashing for moderately sized hash tables that
fit into the L2 cache. In this case, our OpenCL-based hashing
scheme is competitive to intrinsics-based hashing.

Acknowledgements: This work was funded by the EU projects SAGE (671500)
and E2Data (780245), DFG Stratosphere (606902), and the German Ministry for
Education and Research as BBDC (01IS14013A) and Software Campus (01IS12056).

REFERENCES
[1] Cagri Balkesen, Jens Teubner, et al. 2013. Main-memory hash joins on multi-

core CPUs: Tuning to the underlying hardware. In IEEE ICDE. 362–373.
[2] Spyros Blanas, Yinan Li, et al. 2011. Design and evaluation of main memory

hash join algorithms for multi-core CPUs. In ACM SIGMOD. 37–48.
[3] Sebastian Breß et al. 2017. Generating Custom Code for Efficient Query

Execution on Heterogeneous Processors. CoRR abs/1709.00700 (2017).
[4] Max Heimel, Michael Saecker, Holger Pirk, et al. 2013. Hardware-Oblivious

Parallelism for In-Memory Column-Stores. PVLDB 6, 9 (2013), 709–720.
[5] Intel. [n. d.]. Intel C++ Intrinsic Reference. Retrieved September 30, 2017 from

https://software.intel.com/sites/default/files/a6/22/18072-347603.pdf
[6] Saurabh Jha, Bingsheng He, et al. 2015. Improving main memory hash joins

on intel xeon phi processors: An experimental approach. PVLDB, 642–653.
[7] Holger Pirk, Oscar Moll, Matei Zaharia, et al. 2016. Voodoo-a vector algebra

for portable database performance on modern hardware. PVLDB, 1707–1718.
[8] Orestis Polychroniou, Arun Raghavan, and Kenneth A Ross. 2015. Rethinking

SIMD vectorization for in-memory databases. In ACM SIGMOD. 1493–1508.
[9] Stefan Richter, Victor Alvarez, et al. 2015. A Seven-dimensional Analysis of

Hashing Methods and Its Implications on Query Processing. PVLDB, 96–107.
[10] Thomas Willhalm et al. 2009. SIMD-scan: Ultra Fast In-memory Table Scan

Using On-chip Vector Processing Units. PVLDB 2, 1, 385–394.
[11] Thomas Willhalm, Ismail Oukid, Ingo Müller, and Franz Faerber. 2013. Vector-

izing Database Column Scans with Complex Predicates. In ADMS. 1–12.
[12] Yang Ye, Kenneth A. Ross, and Norases Vesdapunt. 2011. Scalable Aggregation

on Multicore Processors. In ACM DaMoN. 1–9.
[13] Jingren Zhou and Kenneth Ross. 2002. Implementing database operations

using SIMD instructions. In ACM SIGMOD. 145–156.

492

	Efficient SIMD Vectorization for Hashing in OpenCLTobias Behrens, Viktor Rosenfeld, Jonas Traub, Sebastian Breß, Volker Markl

