
ABSTRACT 
Mountains, gorges and caves on celestial bodies are 
particularly intriguing for scientists. In order to 
explore such a demanding environment, a swarm of 
heterogeneous robots seems to be promising. In this 
paper, a heterogeneous robotic team consisting of a 
quadruped and a rover is presented. For cost-
effective exploration, a mission control is 
implemented which plans robot-specific trajectories 
on a common map.  

Although the robotic team members are described 
briefly, the focus lies on navigation algorithms based 
on proprioceptive and visual data provided by the 
robots internal sensors as well as on a panoramic and 
a time of flight camera, respectively. The results 
show good mapping and localization capabilities, 
thus being a cost-effective alternative to traditional 
stereo camera-based navigation. 

1 INTRODUCTION 
The up to 7 km deep trench of the Valles Marineris 
canyon system is particularly exciting for science. 
Due to indications of water resources, former 
volcanic activity and the shading of UV radiation, it 
fulfils the prerequisite for the existence of 
extraterrestrial life. However, mountains, gorges 
and caves form an extremely complex terrain which 
is difficult to access [1]. A swarm of heterogeneous 
robots seems to be a promising approach for 
successfully exploring such a demanding 
environment, i.e. aircrafts for wide-range coarse 
exploration, rovers for energy-efficient mobility and 
walking robots for moving around within the 
rugged rock formations and for navigating in caves 
and crevices. 

In order to explore such a demanding environment, 
the requirements on navigation and control are high. 
Besides high locomotion capabilities, every team 
member has to build up its own map for cost-
effective and secure navigation. In addition, it is 
beneficial to exchange and fuse the generated data 
as part of the network intelligence within the swarm 
to create a decentralized visual and geometric map, 
which the mission control and every swarm 

participant can use. This allows a global multi-robot 
exploration while taking the specific characteristics 
of each swarm participant into consideration, 
allowing an efficient exploration mission. 

To maximize the cost-effectiveness of each robotic 
agent, it is important to keep the weight of the robot 
platform low for high agility and low transport costs. 
Visual navigation is a very suitable technology that 
builds on lightweight, passive sensors and due to the 
large redundancy enables a reliable position 
estimation. In contrast to radio-based positioning, a 
permanent connection to other swarm participants is 
not necessary. However, the position estimation 
based on a continuous visual odometry using a 
stereo camera is not sufficient. Especially in areas 
with low brightness, long exposure times or 
resource-intensive lighting would be needed. 

In the proposed approach, a cost-effective 
navigation is realized by (i) using proprioceptive 
data (which are already used for controlling the 
robot motion) to record the body position and 
movement and to convert it into coarse position 
information and (ii) using visual data either from a 
lightweight time of flight (ToF) camera or from a 
360° panoramic camera after discrete time steps to 
correct for potential drifts realizing a reliable long-
range navigation. 

In the presented approach, a commercial off-the-
shelf rover platform is used to navigate through 
plain terrain, whereas the hominid robot Charlie [2] 
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Figure 1: The quadruped robot Charlie and a six-
wheeled rover during cooperative exploration 
mission. 
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is used to traverse rough terrain (Fig. 1). Section 2 
will give brief overview of this  
heterogeneous exploration team including the 
utilized proprioceptive and visual sensors. A 
description of the localization algorithms is provided 
in Section 3. The conducted experiments and their 
results can be seen in Section 4. The last section 
summarizes the results and provides an outlook. 

 

2 THE HETEROGENEOUS 
ROBOTIC TEAM 

The long-term goal is to establish a mission control 
which is monitoring and commanding the 
heterogeneous robotic team. Based on a global map 
and position information of each robot, it is 
generating exploration paths through the demanding 
environment for a desired exploration goal or to a 
sampling site. Thereby, the path planner uses each 
robot’s locomotion properties such as speed, 
maximum allowed slope, maximum allowed step 
height and time to reach the target. Consequently, 
the robot-specific trajectories include precise 
mission based costs. This allows to determine 
which robot needs to be sent to reach a desired 
goal in order to maximize the mission efficiency.  

To test and verify the multi-robot navigation 
approach, two systems are utilized. The quadrupedal 
walking robot Charlie is able to overcome obstacles 
and steep slopes whereas the rover is better suited to 
pass efficiently large distances on flat terrain. Both 
are equipped with a 360° panoramic camera. In 
addition, for navigational and motion control 
purposes, Charlie is equipped with a lightweight 
ToF camera. In the following, a more detailed 
description of every component can be found. 
 
2.1 Hominid Robot Charlie 
2.1.1 System Overview 

This chapter first introduces shortly the 
morphology and electromechanical system design 
of the hominid robot Charlie and its 
subcomponents. Details can be found in [3]. 
Besides the limbs, the degrees of freedom (DoF) 
and the ranges of motion of chimpanzees served 
as a general guideline for the design and 
development of the robot. Charlie's height from 
shoulder to ground is 750 mm in a quadrupedal 
posture and 1300 mm in a bipedal pose, measured 
from head to ground. 

The rear feet are 195 mm long and are inspired by 
the length of chimpanzee feet, as well. Within the 
rear foot, the following sensors are installed: a 
six-DoF force/torque sensor, a pressure-sensing 
array with 49 elements, an acceleration sensor 
(three axes), a temperature sensor, and eight 
absolute encoder (one per toe, one per passive 

DoF). Due to an asymmetric shape of the foot, it 
 
can be seen that the friction coefficient is higher if 
a force is applied in longitudinal directions rather 
than in lateral directions [4]. This characteristic of 
the foot is desired and is due to the fact that the 
foot has passive adaptive elements implemented 
between heel and toe, which mainly work in these 
directions. 

Introducing an active, artificial spine into a 
robotic system provides the potential to improve 
existing behaviors or gaits in terms of stability 
and energy efficiency. A serial design for the 
actuation of an artificial spine does not match 
with the spines seen in nature. An appropriately 
designed parallel kinematic mechanism on the 
other hand corresponds better to its natural 
counterpart. The advantage of a parallel alignment 
is the higher stiffness and it can provide higher 
torque than a serial kinematics of comparable size 
and weight. When an external load is applied to 
this alignment, multiple actuators participate in 
generating a response, e.g., holding the position or 
generating torque. The design of Charlie's spine 
follows the principle of a Stewart platform [5] and 
thus provides high stiffness with a possibility of 
lightweight design, which are excellent properties 
for the use as a body structure of a mobile robot.  

A spine can usually be divided into three sections: 
the cervical, the thoracic, and the lumbar spine [6]. 
The thoracic and lumbar section are often merged 
and called thoracolumbar section. In Charlie, the 
cervical spine follows the same structure like the 
thoracolumbar section, providing the head (which 
is equipped with cameras) an omnidirectional 
range of motion. 

2.1.2 Hardware Improvements for Visual 
Navigation in Unstructured Terrain 

In order to fulfill the scenario-specific tasks of the 
robot within the heterogeneous robot swarm, 
various revisions were made. To allow a quick 
adjustment of the rear feet on uneven ground as 
well as to realize fast waking patterns, the 
actuation of the ankles has been revised. Newly 
developed linear drives have quadrupled the 
effective speed of the ankle joints while 
maintaining the same torque. The weight of the 
actuators was reduced by 46% to 135 g/actuator. 
At the same time, the backlash in the ankles was 
reduced by one order of magnitude.  

In addition, the supporting structure of the rear 
legs was stiffened due to changes in expected load 
cases. Due to topologically-optimized support 
structures of the upper and lower leg, the 
maximum structure-related lateral displacement 
between robot center of gravity and foot contact 
area could be reduced from +/-19 mm to +/-3 mm 



with the leg stretched, which allows a 
significantly more stable bipedal stand. Similarly, 
the structure of the forelegs was optimized. 

The sensor system of the robot was extended by a 
360° panorama camera on the back of the robot as 
well as by a ToF camera in the robot’s head. To 
increase the field of detection of the ToF camera, 
the neck kinematics was extended by a seventh 
DoF. This allows an additional pitch movement of 
the head of 70°. In addition, the neck kinematics 
were reconfigured and equipped with new servo 
drives, providing an exact position feedback of 
the current servo motors. This allows a more 
precise transformation between camera and robot 
coordinate system. Altogether, currently 39 active 
DoFs are implemented and Charlie has a weight 
of 23.5 kg (fully equipped with batteries and 
cameras). 

2.1.3 Control Architecture 

Charlie’s control architecture consists of three 
layers. The deliberative top layer is responsible 
for following the planned trajectory. The input for 
this layer is generated by the mission control. In 
case Charlie is the best choice for exploring the 
target point, a trajectory follower will start 
generating proper motion commands by 
comparing current position and target point on the 
trajectory. The commanded translational and 
rotational velocity are then transformed by the 
locomotion control to joint targets. 

The locomotion control, the middle layer, is based 
on a biologically-inspired control. A central 
pattern generator [7], which generates a pulse that 
signals each leg when to start its swing phase 
defines the gait. One can specify the step cycle 
time, in which order the legs are lifted, and the 
phase offset between the diagonal legs in order to 
generate walking gaits like walk or trot. The 
triggering of a leg initiates a swing trajectory that 
can be parameterized according to the 
environmental requirements, e.g. the step length 
in longitudinal and lateral direction, the step 
height, the timings for lifting, shifting, and 
moving the leg back to the ground, and whether to 
lift the leg vertically in order to overcome 
obstacles or in direction of movement for 
reducing the range of motion requirements. In 
order to generate a stable walking pattern, the 
body is synchronously shifted with the walking 
pattern to release the load of a leg just before 
lifting it. Consequently, a stable open-loop 
walking pattern is generated.  

When walking in unstructured terrain, adaptions 
to the open-loop trajectories are mandatory to 
maintain stability. Therefore, Charlie has three 
adaption strategies: (i) the zero moment point [8] 
is calculated based on force/torque, inertia 

measurement unit (IMU) and joint position 
readings and controlled to match the desired one 
by generating adequate body shifts, (ii) a leg 
crouches when an obstacle is detected during 
down phase and (iii) stretches when no ground 
contact is detected during stance phase. 

In the low-level layer a decentralized approach is 
realized. For this purpose, the individual elements 
such as motors and sensor nodes are as self-
contained as possible with respect to sensor (pre-) 
processing and local control. In the actuator nodes, 
a classical cascaded controller is implemented 
with current, speed and position control loop, 
where the individual cascades can be activated  
and configured use case dependent. 

For communication between the low-level nodes 
as well as to the top layers, a daisy-chained 
communication structure is established [9], which 
enables the possibility of local control-loops 
between separate nodes [10]. One benefit of this 
approach is the minimal low communication 
overhead as well as fast sensor responses. Due to 
that, an additional adaptation loop is integrated in 
the rear legs, that adapts the foot stiffness for 
compliant ground adaption. 
 
2.2 Six-Wheeled Rover  
The rover uses six wheels with a differential drive 
and individual suspension to allow overcoming 
small obstacles. The chassis is equipped with a 
mounting platform allowing different sensor 
configurations to be installed. In the current 
configuration, it carries a power supply, an IMU, a 
panoramic camera and an embedded computing 
platform for collecting and evaluating the incoming 
sensor data. The platform additionally features a 
microcontroller connected to the motor driver to 
generate the steering signals. Both, the sensor data 
acquisition and remote-control signal, are 
implemented using the ROS framework. The 
exchange of information for collaborative 
exploration tasks or receiving control commands 
from the mission control is currently done via a Wi-
Fi connection. 
 
2.3 Panoramic Camera 
The panoramic camera, namely an iStar Fusion, 
consists of four individual fisheye cameras, which 
are intrinsically calibrated using an omnidirectional 
camera model [11]. The extrinsic calibration has 
been obtained by evaluating a checkerboard pattern 
visible in the small overlap areas between the 
cameras. For challenging lighting conditions, as 
expected in a canyon system, multiple images at 
different exposure times are taken and a high 
dynamic range (HDR) image created, allowing 
more details to be preserved in under- and 



overexposed areas of the images. This allows for a 
substantial improvement in image quality for 
manual inspection. In addition, local image features 
can be detected under challenging lighting 
conditions as well. 

 
2.4 Time of Flight Camera 
To complete the visual modality, a ToF camera, 
namely Camboard pico flexx by pmdtec, is 
integrated on Charlie’s mouth. Though, it has a 
small opening angle of 62° x 45° with a resolution 
of 224 x 171 pixel, it weighs only 8 g and can 
directly measure distances up to 4 m without any 
cost-intensive post processing. In addition, this 
laser-based sensor is especially helpful in very 
dark environments. 

3 SELF-LOCALIZATION AND 
MAPPING 

 
Besides high mobility, the demanding terrain also 
requires innovative approaches of fully automatic 
localization and mapping. The use of a 360° 
panorama camera should enable a very low drift 
position determination even under complex 
conditions. To this end, an existing visual SLAM 
approach [12] is extended to support multi camera 
setups. Furthermore, the existing SLAM can be 
combined with tactile sensors to additionally record 
the ground conditions. In addition, an approach using 
the ToF camera with very limited view on the 
environment is tested together with a contact-based 
odometry. Consequently, by exploiting Charlie's 
perception capabilities, the generated maps are 
extended by proprioceptive information to enhance 
the generation of maps to improve motion planning. 
 
3.1 Contact-Based Odometry 
 
In order to gain pose updates with high frequency, 
one cannot use the visual localization and mapping 
variants. Therefore, a contact-based odometry is 
implemented for Charlie that merges the position 
changes of those feet which have ground contact 
(based on current motor positions and force-torque 
readings) with orientation samples coming from the 
IMU. The result is a dead reckoning pose which is a 
good estimation for a short time but is also likely to 
drift over longer periods due to sensor and model 
inaccuracies. 

 
3.2 Visual SLAM Using a Panoramic 

Camera 
To correct potential drifts of the dead reckoning 
odometry, a keyframe-based multi-camera visual 
SLAM system utilizing the ORB-SLAM2 
framework [12] is employed. The system approach 
is similar to the one described in [13], but 
additionally, the coarse position information 

provided by the platform as prior knowledge is 
exploited, thus supporting the scale estimation and 
allowing larger distances between the image 
locations. In contrast to traditional visual SLAM 
approaches, where a continuous video stream 
acquired from a camera is used for tracking the pose 
of the robot, the aim is to minimize the usage of the 
camera by taking images only at distinct locations 
while the robot has stopped. The motivation for this 
is threefold: First, the poor lighting conditions in a 
canyon system require long exposure times, which 
results in visible motion blur when moving. Second, 
the challenging lighting conditions typically exceed 
the dynamic range of the images. To overcome this 
problem, HDR images are fused from multiple 
images with different exposure times taken at the 
same location. While this greatly improves the 
visual quality of the images, taking HDR images 
while moving results in ghosting artefacts. Third, 
the power consumption of the system is even more 
critical in long-term extraterrestrial exploration 
scenarios. Both, the power required to continuously 
run the camera and processing the data in the visual 
SLAM system, make an approach that evaluates the 
visual information only at selected positions more 
suitable. 

Hence, an approach using a multi-camera visual 
SLAM system is proposed, which supports wide 
baselines by using relative motion priors. This 
system allows increasing the distances between 
locations where the robot briefly slows down to 
capture new high quality visual information (Fig. 2).  

At discrete time instances, new information is 
acquired in form of four HDR camera images, 
already fused in an online pre-processing step, 
together with a relative motion estimation with 
respect to the previous image location. The latter is 
obtained from pre-integration using the IMU on the 
rover or using the proprioceptive data provided by 
Charlie. The set of four HDR fisheye images is 
denoted as multi-frame and refer to the individual 
HDR fisheye images attached to each multi-frame 
as frames. For each new location, the initial estimate 
of the multi-frame position is determined by the 
relative motion estimate provided by the platform.  

In order to be flexible to changes in the robot 
configuration and payload, we do not specifically 
determine the error model for Charlie or the IMU 
but rather obtain estimates for the entries in the 
information matrix beforehand using the ground 
truth on a calibration run. In order to reduce the 
IMU measurement noise, zero velocity updates are 
performed when the rover stops to acquire visual 
information, which is well known from inertial 
navigation [16]. Including more accurate error 
models for the appropriate robot configurations and 
IMU [17] and using an efficient map exchange [18] 
to build a joint map is left for future work. 



 

Local binary ORB features [14] (Fig. 3) are 
extracted in each frame and used to associate them 
with map points projected from a local map into the 
individual frames. If enough correspondences are 
found, the pose is optimized by minimizing the re-
projection error using a graph-based optimization 
engine, namely g2o [15]. If the prior does not result 
in a reliable position estimate, the position is 
obtained by matching the features to map points 
observed in the last multi-keyframe. After obtaining 
a valid position estimate, reliable multi-frames are 
promoted to multi-keyframes and are further 
processed by a simultaneously running mapping 
thread. This thread is responsible to create new map 
points, perform local bundle adjustment and to 
remove unstable map points and multi-keyframes. 
Recapulating, while the presented approach follows 
similar structures and concepts as introduced in 
previous work [12, 3], relative odometry constraints 
between the locations to the graph-based 
optimization problem including knowledge from the 
proprioceptive or IMU data are additionally added. 

 
3.3 Visual SLAM using a Time of Flight 

Camera (SLAM-3D) 
The robot Charlie is equipped with a ToF camera to 
perceive the ground in front of it’s feet. The primary 
usage is to detect obstacles in the path. But the ToF 
camera can also be a valuable resource for a graph-
based SLAM approach. Therefore, the depth image 
generated by the ToF camera is converted into a 
point cloud and used to create a three dimensional, 
geometric environment representation. So, the 
creation of a shared model together with systems 
using laser range devices as their primary sensor is 
possible. 

To generate a consistent map, at first, the input data 
is processed using the Point-Cloud-Library (PCL) 
[19]. Nearby scans are aligned using the Generalized  

 

Iterative Closest Point (GICP) algorithm to create 
relative poses between measurements. This variant 
performs a point-to-plane matching and works better 
on sparse point clouds than the original point-to-
point matching. PCL is also used to down-sample 
incoming scans and perform a distance-based outlier 
rejection. 

 
Figure 3: Detected features in one image 

 
The collected scans and the calculated relative poses 
are then stored in a graph using the Boost-Graph-
Library (BGL). This serves two major purposes: on 
one side, it provides a common interface to access 
the stored graph to be used by different front-ends 
and back-ends. On the other side, BGL also supports 
a number of graph algorithms like shortest-path and 

Figure 2: 360° view build from the four cameras of the panoramic camera 



breadth-first-search, that can be used in the mapping 
process directly. Additional relative poses are 
generated from the robot’s odometry. This 
information is added to the graph in the same way as 
the GICP result, thus adding to the overall 
information within the system.  
The third component in the SLAM solution is the 
optimization back-end, which is often called the 
SLAM by itself. This component solves for the 
errors that are present within the graph due to 
contradicting odometry and GICP constraints 
between all the nodes. As most optimizers require 
their own graph representation as data input, the 
graph is stored in BGL and translated to the back-
end’s format prior to the optimization process.  The 
results are then written back to the poses in the 
Boost-Graph to avoid dependencies on the used 
optimizer. For the current setup the g2o [15] 
framework is used for the global optimization step. 
 

4 EXPERIMENTS 
In this section, the results regarding self-localization 
and mapping are presented. For testing the multi-
robot mapping approach, several experiments with 
Charlie and a rover were conducted in the Space 
Exploration Hall [20] of the DFKI RIC (see Fig. 2). 
Due to the black painted walls and serval theatre 
lighting spots, challenging lighting condition can be 
realized. In addition, a motion tracking system with 
at least 1 cm accuracy is used to provide ground truth 
information. 
 
4.1 Multi-Camera Visual SLAM 
In Table 1 the performance of the proposed multi-
camera visual SLAM approach is shown on two 
different datasets recorded by Charlie and an 
additional dataset captured by the rover. The 
trajectories have been collected by moving on 
average 0.7 m with a subsequent stop to collect the 
HDR images. This procedure prevents the camera to 
continuously consume power and allows capturing 
images with higher quality. The datasets range from 
about 13 m up to roughly 30 m trajectory length. The 
number of multi-frame locations range from 22 to 47 
depending on the dataset. The results shown are 
measured in terms of the absolute trajectory error 
(ATE) [21], which was calculated after 6 DoF 
alignment between the ground truth and the 
estimated position of the multi-frames. While the 
trajectory error was in the range of 7.6 cm to 8.5 cm, 
the scale estimation error in the experiments was in 
the range from 0.2% up to 3.9% for both Charlie and 
the rover.   

In Fig. 4, the result of our wide-baseline visual 
SLAM system on the Charlie 1 dataset is illustrated. 
The ground truth data obtained by the external 
motion tracking system is shown in black including 
the distinctive motion pattern of Charlie. In blue, the 
estimated trajectory of the proposed Visual SLAM 

system is shown and the estimated positions of the 
multi-frames are presented in red squares.  

 
Table 1: Results for the multi-camera visual 
SLAM 

 

 
Figure 4: Ground truth and estimated trajectory 
obtained from the proposed multicamera visual 
SLAM system for the Charlie 1 dataset 

 
4.2 SLAM-3D 
The test environment was designed to contain 
some reflecting obstacles, so that each scan 
contains sufficient features for GICP matching. 
Fig. 5 shows Charlie in the environment for the 
mapping test. Fig. 6 shows the generated Multi-
Level-Surface Map (MLS) that was created while 
Charlie was walking along the obstacles. The ATE 
is with 161 mm almost doubled in comparison to 
the panoramic camera approach. However, the 
accuracy is quite sufficient for navigation 
purposes. During the experiments it showed, that 
converting the images of the ToF camera to point 
clouds raises some issues. The camera’s field of 
view is relatively narrow resulting in a point cloud 
that captures only a small part of the environment. 
Due to the robot’s design and the requirements of 
the motion planner to evaluate the floor in front of 
the robot, the camera is tilted downwards, thus 
making the captured area even smaller. Thus, the 
generated point clouds tend to have little overlap 
resulting in an unreliable position tracking using 
ICP. If the robot stands on an even surface this 
problem increases even more. Another issue was 
noticed regarding the black walls in the space 
exploration hall. Because of their low reflectance, 
they were almost completely invisible in the 
camera’s depth image. 

Still, the experiment showed, that a good position 
estimation is possible (Fig. 7). However, turning 
movements had to be restricted in rotational speed 

 Trajectory M.-Frames ATE 
Charlie 1 29.15 m 47 76 mm 
Charlie 2 13.36 m 22 85 mm 
Rover 17.33 m 24 79 mm 



to remain an overlapping point cloud for the GICP. 
Walking outside on uneven terrain might improve 
the accuracy of this approach. 

 

 
Figure 5: Charlie during exploration 

 

 
Figure 6: MLS map generated from contact-based 

odometry and depth images 
 

 
Figure 7: Ground truth and estimated trajectory 
obtained from the proposed SLAM using odometry 
and the ToF camera 

 
5 CONCLUSION 
In this paper, a robotic team for exploration of 
inaccessible terrain consisting of a six-wheeled 
rover and quadrupedal walking robot is presented. 
Both robots are shortly introduced with focus on 
their sensory disposition for visual navigation. 
Two SLAM approaches were developed and 
investigated: using proprioceptive data to generate 
coarse pose information and building up on that 

with visual data coming from (i) a 360° 
panoramic camera and (ii) a small-sized ToF 
camera. The results show, that with both 
approaches, a precise localization can be achieved.  

The panoramic camera approach, estimates 
reliably the robot pose in good as well as in bad 
lighting conditions, due to the generation of HDR 
images. Using the relative motion prior allows a 
larger distance between image locations thus 
resulting in lower power consumption.  

In case of the ToF camera approach, a dense point 
cloud can be used to generate a MLS map. The 
ToF sensor is lightweight and generates without 
further processing power depth images regardless 
of the surrounding lighting conditions. Due to the 
small opening angle, the camera must be tilted 
upwards especially when walking over plain 
ground with very few features. Using serval light-
weight ToF cameras together could be a further 
improvement to gain higher accuracy. 

Based on a common map, the path-planning 
module of the mission control can plan with 
taking robot-specific locomotion capabilities into 
consideration. Thus, a cost-effective multi-robot 
exploration mission can be realized. In further 
works, additional robots could join the team. In 
addition, improved locomotion capabilities could 
facilitate the trajectory generation. Especially, the 
usage of the generated map to adapt the generated 
foot positions to avoid stepping on an edge seems 
to be a promising approach.  

The combination of the two SLAM approaches 
presented here could also be worthwhile in the 
future. This could improve the precision of the 
map material and would have the additional 
advantage of creating a certain redundancy. 
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