
LIGHTREL at SemEval-2018 Task 7: Lightweight and Fast Relation
Classification

Tyler Renslow
DFKI, Saarbrücken, Germany
tdrenslow@gmail.com

Günter Neumann
DFKI, Saarbrücken, Germany

neumann@dfki.de

Abstract

We present LIGHTREL, a lightweight and fast
relation classifier. Our goal is to develop a
high baseline for different relation extraction
tasks. By defining only very few data-internal,
word-level features and external knowledge
sources in the form of word clusters and word
embeddings, we train a fast and simple linear
classifier.

1 Introduction

The main motivation for our participation at
SemEval-2018 (Gábor et al., 2018) was the ideal
opportunity to test and improve our relation ex-
traction system LIGHTREL. The system design
and development was inspired by the work de-
scribed in (Nguyen and Grishman, 2015). Their
goal was to depart from traditional relation ex-
traction approaches with complicated feature en-
gineering by exploring a deep neural network that
would minimize its dependence on external toolk-
its and resources, e.g. external word embeddings.
That allowed them to design a rather lightweight
relation extraction approach that would basically
only require supervised training data, external
word embeddings and a few hyperparameters.
Their ”end-to-end” relation extraction approach
produced competitive results.

Since tuning hyperparameters for neural net-
works can be a intricate process, we considered
whether it would be possible to define an even sim-
pler system and use it as a baseline for our future
research. Thus, we adopted some of the design
decisions made by (Nguyen and Grishman, 2015)
and combined them with a well-known, fast linear
classifier, viz. LibLinear (Fan et al., 2008).

Following Nguyen and Grishman (2015), we
represent a relation mention as a sequence of to-
kens. The core idea of our approach consists of
transforming this sequence into a a vector of fixed

length, such that each token (or word) is repre-
sented only by: 1) the word itself, 2) its shape (a
small, fixed amount of character-based features),
3) the word’s cluster id, and 4) the word’s embed-
ding of fixed size.

For this competition, we introduce a new
relation-level feature, namely the ID of the word
directly following and preceding entities one and
two, respectively. Furthermore, we ignore all to-
kens to the left of the first entity and to the right of
second entity. The size of the whole vector there-
fore hinges on the maximum number of elements
between the two entities found in the training set.

These representations are then used to train a
LibLinear model. Note that this reduces man-
ual feature engineering to defining the shape fea-
tures, finding an appropriate number of clusters
and word embedding dimensions, and hyperpa-
rameters for LibLinear. All other information is
automatically computed from the training data. In
this sense, we consider our system lightweight.

We initially developed and tested our approach
on the previous and widely-used SemEval-2010
Task 8 data set (Hendrickx et al., 2010), and
obtained as our best result an F1 measure of
79.78% on the test-data using the standard eval-
uation script from SemEval-2010 (see also Sec.
3). Although this result is behind the best reported
ones (the majority between 83%-85%, and the best
88.0%, cf. (Wang et al., 2016)), we think it pro-
vides a strong baseline compared to the manually-
engineered, feature-heavy approaches or complex
neural architectures. Thus, when the SemEval-
2018 Task 7 challenge was announced, it was a
natural decision to use it as an additional testing
ground for LIGHTREL.

2 Approach

LIGHTREL can be divided into three major steps:



1) extracting information from the training data
and external sources and storing it in an internal
representation; 2) converting the internal represen-
tation into feature vectors; 3) using feature vectors
to train a logistic regression classification model
to predict classes.

In the first step of the system, pertinent infor-
mation is extracted from the training data. Each
relation instance (the two entities and the text be-
tween them) is collected. Along with the relation
instance, the ID of the abstract, the IDs of the en-
tities, the relation type and the length of the sen-
tence are all gathered into one internal representa-
tion to facilitate vector computation later. We do
not include additional data in our training set, e.g.
from other tasks or subtasks, previous SemEval
years, etc. For example, the following relation:
<entity id="E89-1006.1">French tenses
</entity> in the framework of <entity
id="E89-1006.2">Discourse
Representation Theory</entity>

would be represented in our system as:
(’E89-1006’, [’French_tenses’, ’in’,
’the’, ’framework’, ’of’,
’Discourse_Representation_Theory’],
’E89-1006.1’, ’E89-1006.2’,
’MODEL-FEATURE REVERSE’, 6)

The only processing done on the text is: 1)
merging any punctuation and the word before it
into a single string and 2) joining multi-word enti-
ties into a single string with an underscore. Using
the words from these instances, we index a unique
vocabulary and the single word immediately fol-
lowing or preceding entity one or entity two, re-
spectively, provided that the word isn’t the other
entity. The unique relation types are also indexed
later so that their unique identifiers can be used as
a feature in the training vectors for LibLinear. In
the case of the competition, the test data is used to
expand the unique vocabulary and entity context
words. Once this information is collected, it can
be converted into vector representations to train a
LibLinear model.

The next step involves converting our relation
instances into feature vectors. In addition to the
information gleaned from the training data, we use
features that are independent of our training data.
For instance, we include a word-shape feature, a
unique vector representing certain character-level
features found in a word. In particular the features
are based on whether: any character is capitalized;
a comma is present; the first character is capital-
ized and the word is the first in the relation (repre-

senting the beginning of a sentence); the first char-
acter is lower-case; there is an underscore present
(representing a multi-word entity); and if quotes
are present in the token. These features were left
unchanged from the ones that achieved the best re-
sults on SemEval-2010 Task 8.

We also incorporate our own word embeddings
into our feature vectors. Our previous system de-
veloped for the SemEval-2010 task used Number-
batch embeddings from ConceptNet (Speer et al.,
2017) to yield the best results, but development
was slower than desired due to the size of the em-
bedding file. We therefore hand-pick the data used
to calculate the new, smaller embeddings in order
to experiment with domain-specific word embed-
dings better tuned to the task at hand.

We pre-compute two word embedding files: one
based on the ACM-Citation-network V9 corpus
of abstracts and the other on the DBLP-Citation-
network V5 corpus.1 The embeddings are cal-
culated using the word2vec2 tool with the fol-
lowing constraints: the continuous bag-of-words
model, 300-dimension vectors (chosen for porta-
bility from the old system that used 300-d Num-
berbatch vectors) and leaving out tokens occurring
fewer than five times. The DBLP corpus embed-
ding file used for the final system was around half
the size of the Numberbatch embeddings.

Cluster-membership features are also included
in our feature vectors. We used the MarLin
(Müller and Schuetze, 2015) clustering tool to
pre-compute word clusters for the aforementioned
two corpora based on their bigram context. In
particular, we ran five training epochs to cluster
the words into 1000 classes. MarLin was chosen
over the Brown clustering algorithm (Brown et al.,
1992), as these clusters produced better results
for SemEval-2010 Task 8. Using all of our fea-
tures, we convert our internal representation into
the proper input format for training a LibLinear
model. All features are binary besides the word
embeddings. The test data is converted into the
same format for predicting, albeit without relation
IDs in the case of the competition run.

In the same way as (Nguyen and Grishman,
2015), we represent a relation mention x of length
n as a sequence of tokens x = [x1, x2, ..., xn],
where xi is the i-th word in the mention. Further-

1Corpora available at https://aminer.org/
citation.

2https://code.google.com/archive/p/
word2vec/

https://aminer.org/citation
https://aminer.org/citation
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/


more, let xi1 and xi2 be the head of the two entity
mentions of interest. Now, we transform this into
a vector of fixed length l, whose size is determined
by the relation mention with highest number of to-
kens k between its entity head tokens, and by using
L tokens left to the entity token xi1 , and R tokens
to the right of xi2 . In all experiments described
below, L and R are set to 0, which is also done
by (Nguyen and Grishman, 2015). If a relation
mention has fewer than k elements between enti-
ties, we add padding elements (i.e. dummy word
tokens). One of the system parameters we tuned
was the padding strategy employed: in the end, we
got better results when padding after entity one as
opposed to padding before entity two. Thus, ini-
tially, all relation mentions are represented by a
fixed length vector x′ = [x′1, x

′
2, ..., x

′
k+2], where

x′1 = xi1 and x′k+2 = xi2 , with words plus the
necessary number of padding elements between.

Once we have a fixed-length vector for each
relation, we append the word-context feature to
the vector. The motivation behind this feature is
to provide some distributional information to the
model regarding the syntactic contexts in which
entities occur. In the case where there are no words
between entities, we use no word context in our
feature vector. If a single word occurs between
entities, they share the same context. Otherwise,
word context is represented by the word directly
to the right and left of entity one and two, respec-
tively. The context features are calculated based
on the original, non-normalized sentence, so that
padding elements are not involved.

The last step involves training a model to pre-
dict classes based on our vector representations of
the training data. We employ LibLinear’s default
classifier (version 2.11), cf. also Sec. 3. Once the
model is trained, it can then make predictions on
the vectors that represent test relation instances.
The predictions are then converted back into the
format necessary for evaluating our system using
the scorer script provided by SemEval.

3 Experiments

As mentioned before, our system was an adapta-
tion to the one that produced the optimal result on
SemEval-2010 Task 8. Through cross-validation,
we tuned our system parameters to produce the
best results on SemEval-2018 training data, bear-
ing in mind the goal of keeping our system as
lightweight as possible. It is important to note that

hyperparameter tuning was only done according to
system performance on task 1.1’s training data; we
simply used the optimal parameters from this task
while participating in task 1.2 for the competition.

Through experimentation, we found a LibLin-
ear classifier that performed better on the current
task than the one that we used for the SemEval-
2010 task. We also developed a novel word-
context feature for the 2018 task, which modestly
improved our cross-validation results (anywhere
from a 1% to 3% increase in F1 score, depend-
ing on the different parameters used). We will dis-
play the parameters that produced optimal results
in cross-validation, as well as the results obtained
using these same parameters in the competition
phase in tabular form below.

For the SemEval-2010 task, we obtained the
best results using LibLinear’s support vector clas-
sifier by Crammer and Singer (Crammer and
Singer, 2000) with a cost of 0.1 and a stopping
tolerance of 0.3. Given the fewer relation types
and smaller training vectors in the SemEval-2018
task, we experimented with different classifiers. In
development, we achieved the best performance
in using LibLinear’s default classifier, which per-
forms dual L2-regularized L2-loss support vector
classification, cf. (Fan et al., 2008). We set cost
and stopping tolerance parameters equal to 0.1, us-
ing default settings for all other parameters.

The total competition data was made up of
1228+355 = 1583 relation instances (#training +
#test), corresponding to an approximate train-test
split of ≈78%-22%. Because of this, we devel-
oped our system using 5-fold cross-validation on
the training set, which entails an even 80%-20%
split of data, i.e. 982 + 246 = 1228 instances.
Even though a subset of the training data was pro-
vided by the organizers for system development,
we opted to split the data in accordance with the
proportion of training and test instances, in order
to get the best estimate of system performance in
the competition phase.

We obtained the best average F1 score for
tasks 1.1 and 1.2 when using all features but the
shape feature (word, embeddings, clusters, entity
one context, entity two context); the second best
score was obtained when using all features and
the third best by removing the entity two context
feature from the entire feature set. These fea-
ture sets represent a modest approach to the task
at hand compared to more complex systems in-



corporating knowledge from sources like part-of-
speech tagging or dependency parsing. An ex-
ception to these feature sets was cross-validation
on task 1.2’s training data, where an average F1
score of 61.83% was obtained when using neither
context-related feature. However, since removing
a context-related feature (no e2 context) already
produced the best results in development, we de-
cided to hedge our bets in the competition with a
feature set composed of all features but the shape
feature, i.e. of no manually engineered features.

The results from cross-validation on task 1.1
and task 1.2 are shown in Table 1 below. Based on
these results, we expected our system to perform
similarly in the competition.

feature set task 1.1 task 1.2
all features 45.4% 62.0%
w/o shape 46.4% 61.7%

w/o e2 context 45.5% 62.1%

Table 1: Average F1 scores from 5-fold cross-
validation.

The actual results of the competition can be
seen below in Table 2. These results placed us in
18th out of 28 groups in subtask 1.1 and 12th out
of 20 in subtask 1.2.

feature set task 1.1 task 1.2
all features 39.3% 67.5%
w/o shape 39.9% 68.2%

w/o e2 context 39.2% 67.5%

Table 2: Competition F1 scores.

The best result was obtained when using all
features except the shape feature. This points to
evidence that there is overlap in the information
gained from the shape feature and the word fea-
ture. The same token, differing only in punctua-
tion (e.g. the strings ’IR’ and ’IR,’), is represented
with both different word and different shape IDs
in our system. However, for the shape feature to
provide extra information to the model, the word
feature would have to remain the same, since the
shape feature changed.

The results on the first task were worse than the
cross-validation results suggested. Since we incor-
porated the words from the test data into our word
and context features, there was no information that
the model could have missed in the competition
phase. Therefore, we attribute the slight decrease

in performance to the fact that more training and
less test data were used in development, meaning
that our models were overfitting in training.

Surprisingly, our system performed better on
noisily annotated data, given no extra development
in relation to the task. It is difficult to say with con-
viction why these results occurred, as our features
do not incorporate the entity markup. Another dif-
ference in this task is the data itself; it could be
that more tokens were found in the embedding and
cluster features, providing more information to the
model. However, this fact alone hardly explains an
almost 30% increase in F1.

Finally, we assessed our system’s speed. The
final system which produced the best results for
subtask 1.1 needed a total of 35 seconds to run on a
2012 MacBook Pro with 16GB of RAM and a 2.6
GHz quad-core Intel Core i7 processor3. The bot-
tleneck occurred in the creating of vectors (80%
of total time), which can be attributed to the sim-
ple way we stored and accessed the embeddings.
Training lasted 5 seconds, while testing/prediction
only required a fraction of a second. These re-
sults demonstrate our system’s agility in relation
to complex neural architectures, which typically
need hours, or even days, to train.

4 Conclusion

We believe our system has established a useful
baseline for relation classification. Our approach
is simple in that it involves few features. These
few features yield remarkable results given the
amount of time required to deploy the system, al-
lowing for quicker development and prototyping
of models compared to more cumbersome neural
networks. The performance on task 1.2 as opposed
to task 1.1 demonstrates our system’s flexibility,
as we obtained fair results with no extra develop-
ment. However, further research is needed to ex-
plain the jump in performance between the tasks.

Acknowledgments

This work was partially funded by the BMBF
through the project DEEPLEE (01IW17001) and
the European Union’s Horizon 2020 grant agree-
ment No. 731724 (iREAD).

3implementation available at https://github.com/
trenslow/LightRel

https://github.com/trenslow/LightRel
https://github.com/trenslow/LightRel


References
Peter F. Brown, Peter V. deSouza, Robert L. Mer-

cer, Vincent J. Della Pietra, and Jenifer C. Lai.
1992. Class-based n-gram models of natural lan-
guage. Comput. Linguist. 18(4):467–479.

Koby Crammer and Yoram Singer. 2000. On the learn-
ability and design of output codes for multiclass
problems. In Proceedings of the Thirteenth An-
nual Conference on Computational Learning The-
ory (COLT 2000), June 28 - July 1, 2000, Palo Alto,
California. pages 35–46.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A
library for large linear classification. Journal of ma-
chine learning research 9(Aug):1871–1874.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haı̈fa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 Task
7: Semantic relation extraction and classification in
scientific papers. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2018).
New Orleans, LA, USA.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian
Padó, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2010. Semeval-2010 task 8:
Multi-way classification of semantic relations be-
tween pairs of nominals. In Proceedings of the 5th
International Workshop on Semantic Evaluation, Se-
mEval@ACL 2010, Uppsala University, Uppsala,
Sweden, July 15-16, 2010. pages 33–38.

Thomas Müller and Hinrich Schuetze. 2015. Robust
morphological tagging with word representations.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics, Denver,
Colorado, pages 526–536.

Thien Huu Nguyen and Ralph Grishman. 2015. Rela-
tion extraction: Perspective from convolutional neu-
ral networks. In Proceedings of the 1st Workshop on
Vector Space Modeling for Natural Language Pro-
cessing, VS@NAACL-HLT 2015, June 5, 2015, Den-
ver, Colorado, USA. pages 39–48.

Robert Speer, Joshua Chin, and Catherine Havasi.
2017. Conceptnet 5.5: An open multilingual graph
of general knowledge. In 31st AAAI Conference on
Artificial Intelligence. San Francisco, USA, pages
4444–4451.

Linlin Wang, Zhu Cao, Gerard de Melo, and Zhiyuan
Liu. 2016. Relation classification via multi-level at-
tention cnns. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2016, August 7-12, 2016, Berlin, Ger-
many, Volume 1: Long Papers.


